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Trials of the early bactericidal activity (EBA) of tuberculosis (TB) treatments assess the decline,
during the first few days to weeks of treatment, in colony forming unit (CFU) count of
Mycobacterium tuberculosis in the sputum of patients with smear-microscopy-positive pul-
monary TB. Profiles over time of CFU data have conventionally been modeled using linear,
bilinear, or bi-exponential regression. We propose a new biphasic nonlinear regression model
for CFU data that comprises linear and bilinear regression models as special cases and is more
flexible than bi-exponential regression models. A Bayesian nonlinear mixed-effects (NLME)
regression model is fitted jointly to the data of all patients from a trial, and statistical inference
about the mean EBA of TB treatments is based on the Bayesian NLME regression model. The
posterior predictive distribution of relevant slope parameters of the Bayesian NLME regression
model provides insight into the nature of the EBA of TB treatments; specifically, the posterior
predictive distribution allows one to judge whether treatments are associated with monolinear
or bilinear decline of log(CFU) count, and whether CFU count initially decreases fast, followed
by a slower rate of decrease, or vice versa.

Key Words: Bayesian nonlinear mixed-effects (NLME) regression model; Biphasic; Colony forming unit (CFU)
count; Early bactericidal activity (EBA)Tuberculosis (TB).

1. INTRODUCTION

1.1. Early Development of Tuberculosis Treatment Regimens

Standard efficacy endpoints in pivotal Phase III trials of tuberculosis (TB) treatments
are the proportion of patients with positive sputum culture after 6 months of treatment, and
the proportion of patients experiencing relapse within a 2-year follow-up period (Mitchison,
2006; Mitchison and Davies, 2008). Proof of clinical efficacy of TB treatments, therefore,
generally requires lengthy and expensive clinical trials (Mitchison, 2006; Phillips and
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Fielding, 2008; Wallis et al., 2009). Furthermore, mono-therapy with anti-TB drugs is often
ineffective, mainly due to increasing incidence of drug resistance (Yang et al., 2011), so that
TB is typically treated with combinations of bactericidal and sterilizing drugs (Diacon et al.,
2012). As Diacon et al. (2012) state, “ideally [new treatment] regimens would contain new
drugs able to combat tuberculosis resistant to currently available drugs, especially multidrug-
resistant (MDR) tuberculosis. . ..” Thus one of the challenges in early development of new
TB treatments is to identify promising combinations of drugs for subsequent testing in
pivotal clinical trials. Since the treatment regimens may involve combinations of three or
four drugs, including one or more novel molecules, potentially large numbers of regimens
need to be screened. One way to do so efficiently and cost-effectively is to assess the early
bactericidal activity (EBA) of those regimens.

1.2. Early Bactericidal Activity

An EBA trial assesses the decline, during the first few days to weeks of treatment,
in colony forming unit (CFU) count of Mycobacterium tuberculosis in the sputum of
patients with smear-microscopy-positive pulmonary TB (Diacon et al., 2012). Such EBA
trials are usually conducted during the early stage of drug development (Phase II).

An early definition of EBA was the “fall in counts/mL sputum/day [of CFU count]
during the first two days of treatment” (Mitchison and Sturm (1997) as cited in Donald
and Diacon (2008)). More generally, the EBA in a given patient over a time interval from
Day t1 to Day t2, i.e. EBA (t1 – t2), can be estimated as follows:

EBA t1 � t2ð Þ ¼ � log CFUt2ð Þ � log CFUt1ð Þ
t2 � t1

(1)

(see, e.g. Botha et al. (1996)). Here, log CFUt1ð Þ and log CFUt2ð Þ are the observed log(CFU)
counts at Day t1 and Day t2, respectively, where 0 � t1 < t2 � T , and T is the length of the
profile period over which serial sputum samples are collected. Equation (1) represents a
“model-free” estimate of EBA(t1 – t2), since it is the function only of the observed log(CFU)
counts at Day t1 and Day t2.

Alternatively, EBA(t1 − t2) can be estimated as:

EBA t1 � t2ð Þ ¼ � f̂ t2ð Þ � f̂ t1ð Þ
t2 � t1

(2)

where f(t) is a suitable regression function for log(CFU) count vs. time, and f̂ t1ð Þ and f̂ t2ð Þ
are the associated fitted values at Day t1 and Day t2, respectively (see, e.g. Jindani et al.
(2003)).

The model-based estimate of EBA t1 � t2ð Þ in Equation (2) has two potential
advantages over the model-free estimate in Equation (1): First, the EBA estimate in
Equation (1) uses information from only two CFU counts, namely those observed at
Day t1 and Day t2; in contrast, the whole series of observed CFU counts may be used to
estimate f t1ð Þ and f t2ð Þ, with potential gains in precision for the model-based EBA
estimate in Equation (2). Second, the model-free EBA estimate for a given time interval
(t1 – t2) can only be calculated if CFU counts are in fact available for these particular
times; in contrast, the model-based estimate can be calculated (e.g. by extrapolating the
curve over time interval (t1 – t2)) even if CFU counts have not been observed at Day t1
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and Day t2, either because the study design did not specify data collection at those times
or because of missing data.

We note that, if the regression function f(t) is linear over the whole profile period
[0, T], then the EBA estimate in Equation (2) is given by minus one times the slope of the
regression of log(CFU) count against time. Indeed, both in vitro and in vivo studies have
suggested that anti-TB drugs eradicate a fixed proportion of TB bacteria per unit time
(Gillespie et al., 2002), at least over suitably short time intervals, which would imply an
exponential decay in CFU count, or equivalently, a linear decay in log(CFU) count. Thus,
if the decay of CFU counts over the whole interval [0, T] is exponential (equivalently, log-
linear), the EBA estimate in Equation (2) over all sub-intervals (t1 – t2) of [0, T] is
constant and equal to minus one times the slope of the linear regression line of log(CFU)
count vs. time.

1.3. Need for Nonlinear Regression Models

Jindani et al. (2003) argued that “standard EBA” TB trials, namely those estimating
EBA(0–2), may fail to measure the sterilizing activity of TB drugs: For example, mono-
therapy of pyrazinamide has been shown to be less bactericidal than that of isoniazid and
streptomycin during the first few days of treatment (EBA), but proves to eradicate TB
bacteria at about the same rate afterward (sterilization). Thus, even though pyrazinamide
has weak EBA, its sterilizing activity proves to be better than that of isoniazid and
streptomycin (Brindle et al., 2001; O’Brien, 2002). Based on these findings, Jindani
et al. (2003) suggested the extension of “standard EBA” trials to a treatment period of
at least 5 to 7 days, in order to evaluate the sterilization activity of anti-TB drugs.
Currently, the treatment and profile period for EBA trials typically is 14 days, with
collection of one or two pretreatment and serial post-treatment overnight sputum samples.
EBA values that are routinely reported for such TB trials include EBA(0–2), EBA(0–14),
EBA(2–14), and EBA(7–14).

As mentioned above, over a suitably short time interval, a TB drug typically
eradicates a fixed proportion of TB bacteria per unit time, implying exponential
decline of CFU count over the time interval in question. Empirically, an exponential
decline of CFU count (or a linear decline in log(CFU) count) has indeed been
observed for most TB regimens, at least during the first few days of treatment, and
certainly during the first two days. Thus, EBA(0–2) can be estimated from a simple
linear regression of log(CFU) count vs. time (see Equation (2)) (Brindle et al., 2001;
Jindani et al., 2003; Dietze et al., 2008). However, when the profile period of EBA
trials, and associated EBA calculations, covers time intervals significantly longer than
2 days, say 14 days, then the assumption of a constant rate of decay over the whole
time interval generally is no longer valid. In fact, for many TB drugs, a significant
difference between the rate of decline over the first two days of treatment compared to
the subsequent days has been observed (Donald and Diacon, 2008): Usually, during
the first few days of treatment, log(CFU) counts decline with a fast rate, followed by a
slower rate of decline during the second phase. The decline in log(CFU) count can
therefore be biphasic (Mitchison and Davies, 2008) over a 14-day treatment period.
Thus, for EBA trials with longer profile periods, estimation of EBA generally requires
some form of nonlinear modeling that appropriately reflects the biphasic nature of the
regression of log(CFU) count against time.
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1.4. Nonlinear Regression Models Proposed in Literature

In order to account for the biphasic nature of log(CFU) count vs. time curves, two
types of nonlinear regression models have essentially been described in the literature,
namely bilinear and bi-exponential regression.

Diacon et al. (2012, 2013) performed bilinear regression of log(CFU) count against
time on a by-patient basis, with visual identification of the node parameter (or inflection
point), and assuming that the node was the same for all patients in a given treatment
group. Thus, the approach of Diacon et al. (2012, 2013) did not accommodate between-
patient variation in the node. Accordingly, EBA was compared between treatment groups
using analysis of variance of the resulting by-patient EBA estimates. Furthermore, it
would seem preferable to estimate the node parameter from the data, rather than determine
it through visual inspection. In addition, it would seem preferable to fit the model as a
bilinear mixed-effects regression model.

Jindani et al. (2003) suggested that the switch of one rate of decline in log(CFU)
count to another might be smooth (rather than abrupt, as would be implied with a bilinear
regression model). Modeling such a smooth transition, Gillespie et al. (2002) and Jindani
et al. (2003) used bi-exponential regression of CFU count against time, while Davies et al.
(2006a), Davies et al. (2006b), and Rustomjee et al. (2008) regressed log(CFU) count,
observed over 56 days of treatment, against the logarithm of a bi-exponential function as a
mixed-effects regression model. However, in bi-exponential regression models, the initial
rate of decline in CFU count necessarily is greater than the terminal rate. Thus, bi-
exponential regression models do not seem adequate for treatments (and individual
profiles) which are associated with terminal rates of decline that are faster than initial
rates of decline. Such treatments have only been described recently (Diacon et al., 2012).
The bi-exponential mixed-effects regression model can fit data beyond 14 days of
treatment, e.g. for 56-day “serial sputum colony counts (SSCC)” trials (Rustomjee
et al., 2008). The trial discussed by Rustomjee et al. (2008) shows a clear distinction
between the EBA and longer term sterilizing activity for each of the treatment regimens:
More specifically, per treatment group, the mean log(CFU) count over time suggests that
the initial slope is substantially larger than the terminal slope. In our experience, the
attempt to fit such a model to data beyond the scope of 14-day EBA trials results in
convergence issues when the terminal slopes are greater than the initial slopes.

1.5. Objectives and Outline of the Present Article

The observations in the above section indicate that nonlinear regression models
for log(CFU) count vs. time data published in the literature might require some
modification and generalization. In this article, we propose a new nonlinear regression
model for log(CFU) count that comprises linear and bilinear regression models as
special cases. The new regression model is biphasic, but allows for a smooth transition
between the two rates of decline in log(CFU) count. The regression model approximates
bi-exponential regression models, but is more flexible in the sense that it allows for
terminal rates of decline to be greater than initial rates of decline. The model is
implemented as a Bayesian nonlinear mixed-effects (NLME) regression model, fitted
jointly to the data of all patients from a trial. Statistical inference about the mean EBA of
TB treatments is based on the Bayesian NLME regression model. The posterior pre-
dictive distribution of relevant slope parameters of the Bayesian NLME regression
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model provides insight into the nature of the EBA of TB treatments; specifically, the
posterior predictive distribution allows one to judge whether treatments are associated
with monolinear or bilinear decline of log(CFU) count, and whether log(CFU) count is
predicted initially to decrease fast, followed by a slower rate of decrease, or vice versa.

In Section 2, we present and derive the nonlinear regression model, and in Section 3,
we describe its implementation as a Bayesian NLME regression model. Section 4.1
summarizes the results of an extensive empirical investigation of the suitability of the
model fitted on a by-patient basis, and Section 4.2 is devoted to an application of the
methodology to the data of a recently published EBA study.

2. LINEAR, BILINEAR, AND BIPHASIC REGRESSION MODEL

In this section, we propose a biphasic nonlinear regression model for log(CFU)
count vs. time data. We start with a regression model with a constant rate of change
(mono-exponential or log-linear regression model), and then generalize to a bilinear
regression model incorporating two rates of change (initial and late). Accordingly, we
derive a biphasic regression model allowing for smooth transition from the first to the
second phase.

2.1. Constant Rate of Change: Linear Regression Model

In the following, let y = y(t) be the CFU count at time t, and similarly, let μ = μ(t)
denote the expected CFU count at time t. If we assume that the rate of change in expected
CFU count is proportional to μ, we obtain the following well-known differential equation:

dμ
dt

¼ �λ� � μ (3)

Here λ* > 0 is the proportionality constant and characterizes the rate of decrease. From
Equation (3), it follows that:

1

μ
dμ ¼ �λ�dt (4)

Integrating both sides of Equation (4), we have

ð
1
μ dμ ¼ �

ð
λ�dt with solution:

ln μð Þ ¼ �
ð
λ�dt ¼ α� � λ� � t (5)

where ln �ð Þ is the natural logarithm. Equivalently to Equation (5), we can write:

μ ¼ eα
� � e�λ��t (6)

Based on Equation (6), we can postulate the following multiplicative mono-exponential
regression model for y, namely:

y ¼ eα
� � e�λ��t � eε

where eε is a multiplicative error term at time t. However, often CFU counts y are transformed
logarithmically before model fitting, which leads to the log-linear regression model:
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log yð Þ ¼ α� λ � t þ ε (7)

where log(y) = log10(y) is, by convention for this type of data, the logarithm to the base of 10,
and therefore α = α*/ln(10) (intercept parameter) and λ = λ*/ln(10) (slope parameter). In our
experience, after log-transformation, the variance of log(CFU) count over time is stable, so
that the assumption of constant variance for the residual term ε seems appropriate.

2.2. Variable Rate of Change: Bilinear and Biphasic Regression Models

As mentioned above, the majority of log(CFU) count vs. time profiles over 14 days
of treatment is biphasic. If this is the case, the rate of change in log(CFU) count itself
changes over time. In general, if we allow λ* in Equation (3) to be a function of time,

namely λ*(t), then Equation (5) becomes ln μð Þ ¼ �
ð
λ� tð Þdt, or equivalently, in terms of

the logarithm to the base 10:

log μð Þ ¼ �
ð
λ tð Þdt (8)

where λ tð Þ ¼ λ� tð Þ=ln 10ð Þ.

2.2.1. Step Function: Bilinear Regression Model. When λ(t) in Equation (8)
is a step function (see Figure 1a), we have:

λ tð Þ ¼ λ1; t � κ

λ tð Þ ¼ λ2; t > κ
(9)

Then:
log μð Þ ¼ α� λ1 � t; t � κ

log μð Þ ¼ αþ λ2 � λ1ð Þ � κ � λ2 � t; t > κ

which leads to the conventional bilinear regression model for log(CFU) count, namely:

log yð Þ ¼ α� λ1 � t þ ε; t � κ

log yð Þ ¼ αþ λ2 � λ1ð Þ � κ � λ2 � t þ ε; t > κ
(10)

Here, the parameters α and κ are the intercept and node parameter of the regression curve,
respectively, and the slopes λ1 and λ2 characterize the linear decline on or before the node
t � κð Þ and after the node t > κð Þ, respectively.

Last, we note it is convenient to write the regression model in Equation (10) in
terms of the parameters β1 ¼ λ1 þ λ2ð Þ=2 and β2 ¼ λ2 � λ1ð Þ=2, which are, respectively,
the average of and half the difference between the two rate constants λ1 and λ2. Then
Equation (10) becomes:

log yð Þ ¼ α� β1 � t þ β2 � t þ ε; t � κ

log yð Þ ¼ α� β1 � t � β2 � t � 2κð Þ þ ε; t > κ
(11)
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2.2.2. Hyperbolic Tangent Function: Biphasic Regression Model. As
has been pointed out by Jindani et al. (2003), the switch from one rate of decline
in log(CFU) count to another might be smooth, rather than abrupt as is implied with
by the bilinear regression model in Equation (10). In order to model a smooth
transition, we can use a monotonic function that interpolates between the early
rate of decline, λ1, and the late rate of decline, λ2. For example, a class of such
functions is formed by linear transformations of cumulative distribution functions
(Seber and Wild, 1989).

In the following, we model λ(t) using the hyperbolic tangent function:

Figure 1 Example plot of rate of change in expected log(CFU) count λ tð Þð Þ over time (days).

A BAYESIAN NONLINEAR MIXED-EFFECTS REGRESSION MODEL 1253



λ tð Þ ¼ λ1 þ λ2
2

þ λ2 � λ1
2

� e
t�κ
γ � e�

t�κ
γ

e
t�κ
γ þ e�

t�κ
γ

(12)

The hyperbolic tangent function in Equation (12), shown in Figure 1b, is essentially a
smooth version of the step function in Equation (9). For small t, λ(t) tends to λ1, i.e.
limt!0 λ tð Þ ¼ λ1, and similarly, for large t, the function λ(t) tends to λ2, i.e.
limt!1 λ tð Þ ¼ λ2. Furthermore, λ κð Þ ¼ λ1 þ λ2ð Þ=2, so that κ can be viewed as the
“node” of the function λ(t). Last, the parameter γ governs the “smoothness” of the
transition from rate λ1 to rate λ2. With λ(t) as in Equation (12), we obtain μ ¼ μ tð Þ as
the integral in Equation (8), namely:

log μð Þ ¼ α� λ1 þ λ2
2

� t � λ2 � λ1
2

� γ � ln e
t�κ
γ þ e

�t�κ
γ

e
κ
γ þ e

�κ
γ

0@ 1A
Thus, we have the following biphasic nonlinear regression model for log(y):

log yð Þ ¼ α� λ1 þ λ2
2

� t � λ2 � λ1
2

� γ � ln e
t�κ
γ þ e

�t�κ
γ

e
κ
γ þ e

�κ
γ

0@ 1Aþ ε (13)

Note that, for small t (and small γ relative to κ), the term e
t�κ
γ tends to zero, while the term

e
�t�κ

γ becomes large. Thus, for small t t � κð Þ, log μð Þ declines approximately linearly with

slope � λ1. Vice versa, for large t, the term e
t�κ
γ becomes large, while the term e

�t�κ
γ tends to

0. Thus, for large t, t � κð Þ, log μð Þ declines approximately linearly with slope � λ2.
In summary, the regression model in Equation (13) is a “smooth” version of the

bilinear regression model in Equation (10). (In fact, the regression model in Equation (10) is
a special case of the regression model in Equation (13) when γ ! 0.) The parameters λ1 and
λ2 can therefore be interpreted as the “early” and “late” rates of decline, respectively, while
the parameter α is the intercept of the regression curve. Furthermore, γ characterizes the
“smoothness” of the transition from the early to the terminal decay curve, and κ is the
node parameter. Furthermore, for small t (when λ1 > λ2 > 0), the variable y (i.e. CFU count

on the original scale) is approximated by an exponential function C1 � e�λ1�t where C1 ¼
exp α� λ2�λ1

2 � κ � γ � ln e
κ
γ þ e

�κ
γ

n oh i� �
and for large t, the variable y is approximated by

an exponential function C2 � e�λ2�t, where C2 ¼ exp αþ λ2�λ1
2 : κ þ γ � ln e

κ
γ þ e

�κ
γ

n oh i� �
. In

that sense, the regression model in Equation (13) approximates bi-exponential regression
models.

Last, when β1 ¼ λ1 þ λ2ð Þ=2 and β2 ¼ λ2 � λ1ð Þ=2, Equation (13) becomes:

log yð Þ ¼ α� β1 � t � β2 � γ � ln
e
t�κ
γ þ e

�t�κ
γ

e
κ
γ þ e

�κ
γ

0@ 1Aþ ε (14)

The regression models in Equation (13) and Equation (14) can be fitted to the log(CFU)
count vs. time data of individual patients using maximum likelihood (ML) estimation
(similar to conventional “by-patient” regression modeling by Diacon et al. (2012, 2013)).
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Relevant EBA parameters can accordingly be estimated for each patient based on these
model fits.

It should be noted that the regression models in Equation (13) and Equation (14) are
similar to models proposed by Bacon and Watts (1971); Griffiths and Miller (1973);
Ratkowsky (1983); Grossman et al. (1999), which also have two intersecting line seg-
ments as a limiting case; these models comprise parameterizations different to our
proposed model.

3. BAYESIAN FIT OF REGRESSION MODELS

3.1. Model 1: Biphasic—Student t Errors and “Default” Wishart Priors

We propose a biphasic hierarchical Bayesian NLME regression model for log(CFU)
count vs. time, fitted jointly to the data of all patients from a given trial.

We start by specifying an NLME regression model for the log(CFU) counts. Let yijk
be the CFU count for patient i ¼ 1; . . . ;Nj in treatment group j ¼ 1; . . . ; J at time-point
k ¼ 1; . . . ;Kij, and let tijk be the corresponding measurement time. Then, based on
Equation (14), we write the following NLME regression model:

log yijk
� � ¼ αij � β1ij � tijk � β2ij � γij � ln

e
tijk�κij

γij þ e
�tijk�κij

γij

e
κij
γij þ e

�κij
γij

0@ 1Aþ εijk (15)

The parameters of the regression model in Equation (15) are analogous to those of the
“by-patient” regression model in Equation (14).

The subsections below provide a full specification of the random effects and prior
distributions of the regression model in Equation (15).

Random Effects. The vectors μij ¼ αij; β1ij; β2ij
� �0

of intercept and slope para-
meters are assumed independent across patients (i.e. independent across indices i and j),
with tri-variate normal distributions as follows:

μij e N μj;Ωμj

� �
(16)

In Equation (16), μj ¼ αj; β1j; β2j
� �0

are vectors of mean intercepts and slopes, and Ωμj

are the associated covariance matrices, namely:

Ωμj ¼
σ2αj Covj αij; β1ij

� �
Covj αij; β2ij

� �
Covj αij; β1ij

� �
σ2β1j Covj β1ij; β2ij

� �
Covj αij; β2ij

� �
Covj β1ij; β2ij

� �
σ2β2j

26664
37775

Furthermore, the parameters κij and γij are assumed to follow truncated normal distribu-
tions, independent of each other, and independent of μij , as follows:
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κij e TN κj; σ
2
κj

� �
� I Lκ � κij � Uκ

� �
γij e TN γj; σ

2
γj

� �
� I Lγ � γij � Uγ

� � (17)

In Equation (17), I(x) denotes an indicator function taking the value 1 if x is true, and 0
otherwise, and Lκ, Uκ, Lγ, and Uγ are the prespecified lower bound and upper bound for
parameters κij and γij, respectively.

Finally, the residuals εijk are assumed to follow independent Student t distributions,
independent of μij, κij, and γij, as follows:

εijk e T 0; σ2εj ; vj
� �

(18)

where σ2εj and vj are scale parameters and degrees of freedom, respectively, from the
corresponding Student t distribution. The specification of the Student t distribution can
accommodate heavily tailed residual errors which, in this regard, is more flexible than the
normal distribution.

A subset of CFU counts might be reported as zero or “no count” values. Genuine
zero counts will typically occur when, for a given patient profile, CFU counts are
observed over time to decline to near-zero values, just prior to observing one or more
zero counts. Thus, genuine zero counts will typically occur toward the end of a CFU
count vs. time profile. When regressing log(CFU) count against time using Equation (15),
the log(CFU) counts corresponding to zero count can be specified as a left censored value
of 1 (formally, log(yijk) < 1) (Rustomjee et al., 2008).

Prior Distributions. In order to complete the Bayesian specification of the
NLME regression model described above, proper but vague prior distributions are
assigned to all unknown parameters of the NLME regression model.

First, multivariate normal and Wishart prior distributions are specified, respectively,
for μj and Ω�1

μj
in Equation (16), namely:

μj e N 0; 104 � I3
� �

(19)

Ω�1
μj e W 3; 3� Rj

� �
(20)

where 0 = (0, 0, 0)′ and I3 denotes the 3 × 3 identity matrix. Rj represent 3 × 3 inverse
scale matrices.

One challenge is the choice of an appropriate prior distribution for the covariance
matrix of the vectors of intercept and slope parameters μij, i.e.Ωμj. We used the methodology
by Kass and Natarajan (2006), referred to as the “default” Wishart prior, for choosing Rj.
This methodology relates to the choice of Rj in the application of generalized linear mixed-
effects regression modeling and is derived from the data directly (hence, the resulting
posterior distribution does make double use of the data). The inverse scale matrix Rj is
derived by selecting the weight which the mean of the “shrinkage” prior, i.e. 0, should
contribute toward its posterior (where “shrinkage” represents μij � μj). Under the assumption
that the node and smoothness parameters are fixed at κp ¼ Uκ þ Lκð Þ=2 and
γp ¼ Uγ þ Lγ

� ��
2, respectively (which are the prior mean for κj and γj, respectively (see
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below)), the regression model with normally distributed errors in Equation (15) reduces to a
linear mixed-effects regression model, for which Rj are derived as follows:

Rj ¼ c � 1

Nj � ~σ2εj
XNj

i¼1

Z 0
ij � Zij

 !�1

(21)

where ~σ2εj are the ML estimates of σ2εj when assuming the regression model is homo-
geneous across all patients (i.e. disregarding random effects such that αij ¼ αj, β1ij ¼ β1j
and β2ij ¼ β2j). The matrices Zij are defined as follows:

Zij ¼

1 �tij1 �γp � ln e
tij1�κp

γp þe
�
tij1�κp

γp

e
κp
γpþe

�κp
γp

� �
..
. ..

. ..
.

1 �tijk �γp � ln e
tijk�κp

γp þe
�
tijk�κp

γp

e
κp
γpþe

�κp
γp

� �
..
. ..

. ..
.

1 �tijKij �γp � ln e

tij Kij
�κp

γp þe
�
tij Kij

�κp
γp

e
κp
γpþe

�κp
γp

 !

266666666666664

377777777777775
We used c = 2.5, causing the mean of the ‘shrinkage” prior, i.e. 0, to have little
contribution toward its posterior. The choice of c = 2.5 is equivalent to setting the interval
between the lowest and highest possible values for the relative contribution matrix of the
mean of the “shrinkage” prior (to its posterior) to 28.6%.

The parameters κj, γj, σ
2
κj , and σ2γj (see Equation (17)) are assumed to follow uniform

prior distributions, namely κj e U Lκ;Uκð Þ, γj e U Lγ;Uγ

� �
, σ2κj e U Lσ2κj ;Uσ2κj

� �
, and

σ2γj e U Lσ2γj ;Uσ2γj

� �
, where Lσ2κ , Uσ2κ

, Lσ2γ , Uσ2γ
are the prespecified lower bound and

upper bound for parameters σ2κj and σ2γj , respectively.

Finally, the scale parameters σ2εj and degrees of freedom vj in Equation (18) are
respectively assigned inverse gamma prior distributions, namely σ2εj e IG 10�4; 10�4ð Þ,
and uniform prior distributions, namely vj e U 2; 100ð Þ.

For a typical 14-day EBA study, the hyper-parameters of the prior distributions can
be chosen as follows: Lκ ¼ 2, Uκ ¼ 11, (to avoid overfit of the first few and last few
observations over time), Lγ ¼ 0:1, Uγ ¼ 2 (allowing for smooth transition between a few
successive data points), Lσ2κ ¼ 0:01, Uσ2κ

¼ 30, Lσ2γ ¼ 0:01, and Uσ2γ
¼ 5 (providing

weakly informative prior distributions for the scale parameters σ2κj and σ2γj ).

3.2. Model 2: Biphasic—Student t Errors and “Frequentist” Wishart

Priors

To assess the sensitivity of results to the choice of Rj, we fitted Model 1 as a linear
mixed-effects regression model under the assumption that the node and smoothness
parameters (i.e., κij, κj, γij, and γj) are fixed at Uκ þ Lκð Þ=2 and Uγ þ Lγ

� �
=2, respectively.

We calculated the “frequentist” estimates for Ωμj via ML estimation (using the SAS®

procedure PROC NLMIXED) to serve as Rj (SAS Institute Inc., 2008).
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3.3. Model 3: Biphasic—Normal Errors and “Default” Wishart Priors

Model 1 can incorporate the assumption that the residual errors follow normal
distributions (i.e. instead of Student t distributed residual errors), i.e. εijk e N 0; σ2εj

� �
,

where σ2εj are the corresponding residual variances following inverse gamma prior dis-

tributions, namely σ2εj e IG 10�4; 10�4ð Þ.

3.4. Model 4: Biphasic—Normal Errors and “Frequentist” Wishart

Priors

The sensitivity of results to the choice of Rj in Model 3 can be assessed using the
“frequentist” approach specified for Model 2.

3.5. Model 5: Bilinear—Student t Errors and “Default” Wishart Priors

Based on Equation (11), we can postulate the following bilinear mixed-effects
regression model:

log yijk
� � ¼ αij � β1ij � tijk þ �1ð ÞJijkþ1� β2ij � tijk þ 2 Jijk � 1

� � � β2ij � κij þ εijk (22)

where Jijk ¼ 1þ step tijk � κij
� �

, and step (x) denotes a function taking the value 0 if
x � 0, and 1 otherwise. The parameters of the regression model in Equation (22) are
analogous to those of the “by-patient” regression model in Equation (11), and the
specification of its random effects and prior distributions are similar to those of Model 1.

3.6. Model 6: Bilinear—Normal Errors and “Default” Wishart Priors

Model 5 can incorporate the assumption that the residual errors follow normal
distributions (i.e. instead of Student t distributed residual errors).

3.7. Model 7: Monolinear—Student t Errors and “Default” Wishart

Priors

The conventional linear mixed-effects regression model can be written as follows:

log yijk
� � ¼ αij � λij � tijk þ εijk (23)

The parameters of the regression model in Equation (23) are analogous to those of the
“by-patient” regression model in Equation (7), and the specification of its random effects
and prior distributions are similar to those of Model 1.

3.8. Model 8: Monolinear—Normal Errors and “Default” Wishart

Priors

Model 7 can incorporate the assumption that the residual errors follow normal
distributions (i.e. instead of Student t distributed residual errors).
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3.9. Posterior Predictive Distributions

The posterior predictive distribution of relevant slope parameters of the Bayesian
NLME regression model provides insight into the nature of the EBA of TB treatments;
specifically, the posterior predictive distributions of β2j allow one to judge whether
treatments are associated with monolinear or biphasic decline of log(CFU) count
(depending on whether a future β2j is likely to be close to or substantially different
from zero), and whether log(CFU) count initially decreases fast, followed by a slower
rate of decrease (if a future β2j is likely to be negative), or vice versa (if a future β2j is
likely to be positive). The simulation of the posterior predictive distribution of the future
regression slopes β2fj (where the subscript f stands for “future patient”) can be imple-
mented in a straightforward manner using the Markov Chain Monte Carlo (MCMC)
output of the Gibbs sampling algorithm of the joint posterior distribution of the
regression model parameters.

3.10. Model Selection and Model Checking

Alternative NLME regression models can be explored via various Bayesian model
selection tools and may be fitted to assess:

● Alternative shapes of the log(CFU) count vs. time profiles, e.g. assuming a linear,
bilinear, or biphasic relationship between log(CFU) count and time.

● The sensitivity of results to the choice of prior distributions.
● Alternative distributions for random effects and residuals (error terms).

In order to check our primary model (Model 1; Section 3.1), and to assess the aspects
listed above, we fitted the seven additional models (with alternative Bayesian specifica-
tions) specified in Section 3.2 through Section 3.8. The fit of each of the models was
checked using conditional posterior ordinates (CPOs) and their reciprocals (ICPOs). Some
detail is included in the appendix.

Two methods for discriminating between various regression models were consid-
ered: The deviance information criterion (DIC) (Spiegelhalter et al., 2002) and Bayes
factors (Kass and Raftery, 1995).

3.10.1. Deviance Information Criterion. The DIC is a model adequacy and
goodness-of-fit measure and is defined for Model M as follows:

DIC Mð Þ ¼ 2Dðθm;MÞ � D �θm;Mð Þ ¼ D �θm;Mð Þ þ 2pm (24)

where θm is a dm � 1 vector of model parameters, y is an n� 1 vector of observed data,
D θm;Mð Þ ¼ �2 ln f yjθm;Mð Þð Þ is the conventional deviance measure (i.e. minus twice

the log-likelihood), �θm and D θm;Mð Þ are the mean of the posterior distribution of θm and

D θm;Mð Þ, respectively, and pm ¼ D θm;Mð Þ � D �θm;Mð Þ is the number of “effective”
parameters.

The quantity DIC(M) is therefore a measure which takes both goodness of fit and
complexity of Model M into account and is more appropriate to assess the predictability of
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random effects in Model M (Spiegelhalter et al., 2003). The model with the smallest DIC
is considered to fit the data more appropriately. However, the DIC measure may be
unreliable in cases where �θm is an unreliable estimator of θm (Ntzoufras, 2009).

3.10.2. Bayes Factors. When comparing Model M0 and Model M1, based on
the posterior probability of each of the models given the data, the Bayes factor in favor of
M0 is defined as follows:

B01 ¼ f yjM0ð Þ
f yjM1ð Þ (25)

where y is an n� 1 vector of observed data, and f yjM0ð Þ and f yjM1ð Þ are the marginal
likelihoods of y under Model M0 and Model M1, respectively.

Unlike the DIC, Bayes factors do not explicitly include a term that penalizes
model complexity, but rather incorporates the latter in the marginal likelihood of a
given model automatically (Ward, 2008). Furthermore, the DIC compares models
conditional on their model parameters, whereas the Bayes factors compare models
on a marginal basis.

In the case of NLME regression modeling, the marginal likelihoods in Equation (25)
need to be approximated. The Laplace–Metropolis approximation, in its general form, for
ln f yjMð Þð Þ is given by the following expression (Ntzoufras, 2009):

ln f̂ yjMð Þ
� �

¼ 1

2
dm ln 2πð Þ þ 1

2
ln jRθm j

þ
Xdm
j¼1

ln sj
� �þXn

i¼1

ln f yij�θm;Mð Þð Þ þ
Xdm
j¼1

ln f �θmjjM
� �� �

(26)

where �θmj and sj are the mean and standard deviation, respectively, of the posterior
distribution of θmj, and Rθmj j is the determinant of the dm � dm correlation matrix of the
posterior distribution of θm. In mixed-effects models, the calculation of the Laplace–
Metropolis marginal likelihood requires that the random effects included in each patient’s
likelihood function should be integrated out (Lewis and Raftery, 1997). The five random
effects (see Model 1) for each patient were marginalized using the multidimensional
integration library R2Cuba of the R project (R Core Team, 2014; Hahn et al., 2013).
The Laplace–Metropolis approximation in Equation (26) is based on asymptotic theory of
the normal distribution and works well for symmetric posterior distributions of θm
(Ntzoufras, 2009).

3.11. Computational Issues

The OpenBUGS software (Version 3.2.2) is used to implement the MCMC Gibbs
sampling algorithm to draw samples from the joint posterior distribution of the model
parameters (Gelfand and Smith, 1990; Gilks et al., 1996; Lunn et al., 2009).

Due to the high-dimensional nature of NLME regression models, by-patient para-
meter estimates, obtained from regression fits (such as Equation (14)) for each patient
individually (using SAS® procedure PROC NLMIXED), were used as starting values for
the random effects. The posterior samples were thinned to reduce the autocorrelation
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among posterior samples. Graphical convergence diagnostics, such as iteration and auto-
correlation plots, and the Brooks–Gelman–Rubin statistic (Brooks and Gelman, 1998) for
two parallel chains, were used to monitor convergence of posterior samples. Dispersed
starting values for the second chain were provided to ensure convergence of the two
respective chains. Multidimensional integrals (for calculation of Laplace–Metropolis
marginal likelihoods) were calculated using libraries available in the R project (R Core
Team, 2014).

4. EMPIRICAL STUDY AND EXAMPLE OF APPLICATION

4.1. Empirical Study

While theoretical considerations may assist in the derivation of a suitable regres-
sion model for a certain type of data, the most important requirement for a good
regression model is that it should fit the data well. Thus, in deriving a regression
model for CFU count, we have started with an empirical study of a large number of
log(CFU) count vs. time profiles from four EBA trials. The typical shapes of such
profiles, identified in the empirical study, confirm observations made previously by
other authors and motivate the theoretical derivation of the biphasic nonlinear regression
model proposed in Section 2.2.2.

For the purpose of this empirical study, we have had access to the data from four
EBA trials comprising of CFU count vs. time profiles of a total of 291 patients. In all four
trials, CFU data were collected over a period of 14 days of treatment. Relevant clinical
trial characteristics of clinical trial protocol CL001, CL007, CL010, and NC001 are
summarized in Table 1, including the total number of randomized patients, and the
number of randomized patients with complete profiles (data up to Day 14).

The log(CFU) count vs. time profiles of all patients with complete profiles were
fitted, separately by patient, using the SAS® procedure NLMIXED. Note that we used
only patients with complete data profiles since the primary purpose of the empirical study
was to judge the adequacy of the proposed biphasic model specifically when fitted to 14-
day CFU count vs. time profiles; naturally, when data profiles are (substantially) shorter
than 14 days (e.g. due to a patient dropping out of a trial early), a simple monolinear
model will often be adequate.

Plots of the data together with by-patient fits of the biphasic regression model are
included as Figure A.1 through Figure A.21 in the supplementary material. The residuals
were assumed to follow independent and identically distributed normal distributions, and
the lower and upper bounds of κ and γ were respectively set to Lκ ¼ 2, Uκ ¼ 11, Lγ ¼ 0:1,
and Uγ ¼ 2. Studying the data profiles, we noted the following (see Table 4.2):

1. Over the profile period of 14 days, the log(CFU) count vs. time profiles seem either
linear (for the minority of patients: 40 out of 247) or biphasic (for the majority of
patients: 207 out of 247). For an example of a (near) linear profile, see Figure 1a;
examples of clearly biphasic profiles are given in Figures 1b through Figure 1d.

2. The rate of decline in log(CFU) count during the initial phase is greater than during the
terminal phase for the majority of biphasic profiles (e.g. Figure 1b); the rate of decline
in log(CFU) count during the initial phase is smaller than during the terminal phase for
the minority of biphasic profiles (e.g. Figure 1c).
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3. The transition from the first to the second phase is smooth for a minority of biphasic
profiles (e.g. Figure 1d); a bilinear regression model seems adequate for the majority of
biphasic profiles (e.g. Figure 1b and Figure 1c).

4. The average rate of decline in log(CFU) count during the initial phase is for some
treatment regimens greater than during the terminal phase. However, for one of the
newer compounds under investigation, bedaquiline (TMC207), and for some treatment
regimens containing TMC207 in combination with other drugs, the average rate of
decline in log(CFU) count during the initial phase is smaller than during the terminal
phase.

5. Whatever the respective average rates of decline in log(CFU) count for a given
treatment regimen, rates of decline both during the initial and late phases exhibit
appreciable interindividual variability; for individual patients, the rate of decline in
log(CFU) count during the initial phase might be smaller than during the late phase,
even though the respective average rates for the treatment regimen in question might
exhibit the reverse relationship.

6. The time-point (node) at which the initial rate of decline changes to the terminal rate of
decline exhibits appreciable individual variability (possibly as a result of little infor-
mation for the estimation of the node parameter).

Table 1 Characteristics of clinical trials included in the empirical study

Clinical trial Scheduled sample days Treatment group N n

CL001 Daily from Day –2 to Day 8; TMC207 100 mg 15 12
Day 10, Day 12, Day 14 TMC207 200 mg 15 13

TMC207 200 mg 15 13
TMC207 400 mg 15 14
Rifafour 8 6
Total 68 58

CL007 Daily from Day –2 to Day 4; PA-824 200 mg 15 12
Day 6, Day 8, Day 10, Day 12, PA-824 600 mg 15 12
Day 14 PA-824 1000 mg 16 15

PA-824 1200 mg 15 11
Rifafour 8 7
Total 69 57

CL010 Daily from Day –2 to Day 4; PA-824 50 mg 15 12
Day 6, Day 8, Day 10, Day 12, PA-824 100 mg 15 15
Day 14 PA-824 150 mg 15 14

PA-824 200 mg 16 14
Rifafour 8 8
Total 69 63

NC001 Daily from Day –2 to Day 14 J 15 14
J -Z 15 12
J-Pa 15 12
Pa-Z 15 13
Pa-Z-M 15 10
Rifafour 10 8
Total 85 69

Total Total 291 247

Notes. Treatment group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824, Pa-Z =
PA-824 + Pyrazinamide, Pa-Z-M = PA-824 + Pyrazinamide + Moxifloxacin, Rifafour = Rifafour e-275®. N =
total number of randomized patients. n = number of randomized patients with complete profiles.
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Observations from the empirical study suggest the following:

● Bilinear regression models seem adequate for the log(CFU) count vs. time profiles of
many patients, but certainly not for all, since a substantial minority of profiles exhibit a
smooth transition between phases. Whatever the case may be, it is preferable to fit a
regression model that allows for a smooth transition between phases, thereby allowing
one to judge the adequacy of the bilinear regression model.

● Bilinear regression models need to accommodate individual variation in the node and
should estimate the node parameter from the data, rather than determining it through
visual inspection.

● Bi-exponential regression models are not adequate for treatments (and individual
profiles) which are associated with terminal rates of decline that are faster than initial
rates of decline.

● The log(CFU) count vs. time profiles suggest that the residual variance is constant over the
range of fitted values, i.e., the logarithm is effective as variance stabilizing transformation.

On the whole, a visual inspection of the model fits suggests that the proposed regression model
generally fits the data well (see Figure A.1 through Figure A.21 in the supplementary material).

4.2. Example of Application

We fitted the Bayesian NLME regression model in Equation (15) (Model 1) to the
data of the NC001 trial (see Table 2) (Diacon et al., 2012) and compared its fit with that of
the alternative regression models (Model 2 through Model 8).

Figure 2 Fitted log(CFU) counts vs. time for empirical study.
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Model Selection. Model comparison statistics for the various Bayesian NLME
regression models fitted are provided in Table 3. The model comparison statistics appear
to be sensitive to the choice of the hyper-parameters of the Wishart prior distributions
(“default” vs. “frequentist”): This, however, is a well-known drawback (Lindley, 1993)
with the use of Bayes factors. The DIC favors bilinear models slightly over biphasic
models, followed by linear models. The marginal likelihood (Bayes factor) criterion
favors linear models, followed by biphasic and bilinear models. Both the DIC and
marginal likelihood (Bayes factor) criteria favor models with Student t distributed errors
over those with normally distributed errors.

The ICPOs suggest all models fit the data reasonably well.

Early Bactericidal Activity of Study Treatments. Posterior estimates and
corresponding 95% Bayesian credibility intervals (BCIs) for the mean EBA t1 � t2ð Þ of
Model 1, including pairwise comparisons vs. Rifafour, are presented in Table 4. Posterior
estimates and corresponding 95% BCIs for the mean regression model parameters of
Model 1 are included as supplementary material to this article (Table B.1). Mean EBA(0–
14) was significantly different from 0 for each treatment regimen. Treatment with Pa-Z-M
had the highest bactericidal activity both over the whole 14-day treatment period and over
the time intervals Day 0 to Day 2 and Day 2 to Day 14. These results can be compared to
those published by Diacon et al. (2012).

Posterior estimates and corresponding 95% BCIs for the mean log(CFU) count vs.
time profiles of the six treatment regimens are presented for Model 1 in Figure 2a and for
Model 2 through Model 8 as supplementary material to this article (Figure B.1 to
Figure B.7, respectively). The posterior estimates and corresponding 95% BCIs for the
mean log(CFU) count vs. time profiles were similar for Model 1 to Model 8.

The posterior predictive distributions of the β2j (i.e., β2fj) based on Model 1 are
presented in Figure 2b for each treatment group. The estimates for the mean β2 and β2f
per treatment group suggest that the initial rate of decrease in CFU count for some

Table 3 Comparison of Bayesian NLME regression models

DIC % ICPO < x

Model D θm;Mð Þ D �θm;M
� �

pm DIC(M) ln f̂ y Mjð Þ
� �

x ¼ 40 x ¼ 70 x ¼ 100

Model 1 1335.00 1144.00 191.00 1526.002 −1365.664 97.57 98.87 99.11
Model 2 1360.00 1158.00 202.70 1563.003 −1336.713 97.73 98.95 99.19
Model 3 1454.00 1273.00 180.70 1635.005 −1382.127 97.98 98.62 98.95
Model 4 1476.00 1282.00 194.40 1671.006 −1367.235 97.73 98.70 99.03
Model 5 1324.00 1127.00 197.20 1521.001 −1376.756 97.57 98.87 99.19
Model 6 1445.00 1257.00 187.40 1632.004 −1408.108 97.89 98.54 98.95
Model 7 1565.00 1398.00 167.50 1733.007 −1236.991 98.54 99.11 99.19
Model 8 1644.00 1481.00 162.50 1806.008 −1262.322 98.54 98.95 99.11

Notes. CPO: conditional posterior ordinate; ICPO: reciprocal of CPO; DIC: deviance information criterion.
Model 1: biphasic: Student t errors and “default” Wishart priors. Model 2: biphasic: Student t errors and
“frequentist” Wishart priors. Model 3: biphasic: normal errors and “default” Wishart priors. Model 4: biphasic:
normal errors and “frequentist” Wishart priors. Model 5: bilinear: Student t errors and “default” Wishart priors.
Model 6: bilinear: normal errors and “default” Wishart priors. Model 7: monolinear: Student t errors and
“default” Wishart priors. Model 8: monolinear: normal errors and “default” Wishart priors. Superscripts indicate
the ranking of model comparison statistics from least favored (1) to most favored (8).
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treatment groups containing TMC207 (i.e. J and J-Z) is slow, followed by a faster rate,
and vice versa for the treatment groups not containing TMC207 (Pa-Z and Pa-Z-M, and
Rifafour). The decrease in mean log(CFU) count of J-Pa is effectively linear over time.
The estimates for the mean γ per treatment group suggest that the mean log(CFU) count
switches from one rate of decrease to another smoothly.

5. DISCUSSION

EBA trials of TB treatments assess the decline, during the first few days to weeks of
treatment, in CFU count of Mycobacterium tuberculosis in the sputum of patients with
smear-microscopy-positive pulmonary TB (Diacon et al., 2012). EBA trials are a mainstay
in the early clinical development of TB treatment regimens and thus are frequently
performed.

The research reported in this article was motivated by the need for a general and
flexible regression model for CFU count vs. time data. Such data have conventionally
been modeled using linear, bilinear, or bi-exponential regression. Linear regression,
while potentially appropriate for some individual profiles, is not generally adequate
since many data profiles are clearly biphasic, at least for treatment and observation
periods longer than 2 to 7 days. Both bilinear and bi-exponential models seem
adequate for many individual profiles, but the former do not allow for a smooth
transition between the initial and terminal phases of decline of CFU counts, while the

Table 4 Model 1—Inferential statistics for mean EBA t1 � t2ð Þ

Mean Mean vs. rifafour

Parameter Treatment n Estimate 95% BCI Estimate 95% BCI

EBA(0–14) J (N=15) 15 0.074 [0.010; 0.145] −0.073 [−0.185; 0.042]
J-Z (N=15) 15 0.133 [0.065; 0.204] −0.013 [−0.128; 0.101]
J-Pa (N = 15) 15 0.101 [0.056; 0.146] −0.045 [−0.147; 0.055]
Pa-Z (N = 15) 15 0.154 [0.100; 0.207] 0.007 [−0.098; 0.113]
Pa-Z-M (N = 15) 15 0.248 [0.087; 0.430] 0.102 [−0.082; 0.304]
Rifafour (N = 10) 10 0.146 [0.055; 0.238]

EBA(0–2) J (N = 15) 15 −0.002 [−0.086; 0.084] −0.156 [−0.316; 0.000]
J-Z (N = 15) 15 0.069 [−0.038; 0.170] −0.085 [−0.254; 0.081]
J-Pa (N = 15) 15 0.105 [0.019; 0.187] −0.049 [−0.210; 0.105]
Pa-Z (N = 15) 15 0.179 [0.079; 0.277] 0.025 [−0.142; 0.187]
Pa-Z-M (N = 15) 15 0.313 [0.164; 0.460] 0.159 [−0.040; 0.355]
Rifafour (N = 10) 10 0.154 [0.021; 0.290]

EBA(2 -14) J (N = 15) 15 0.086 [0.019; 0.170] −0.059 [−0.185; 0.075]
J-Z (N = 15) 15 0.144 [0.066; 0.229] −0.001 [−0.132; 0.133]
J-Pa (N = 15) 15 0.100 [0.053; 0.148] −0.044 [−0.160; 0.072]
Pa-Z (N = 15) 15 0.149 [0.093; 0.203] 0.004 [−0.114; 0.124]
Pa-Z-M (N = 15) 15 0.238 [0.046; 0.455] 0.093 [−0.124; 0.330]
Rifafour (N = 10) 10 0.145 [0.037; 0.251]

Notes. Treatment group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824, Pa-Z =
PA-824 + Pyrazinamide, Pa-Z-M = PA-824 + Pyrazinamide + Moxifloxacin, Rifafour = Rifafour e-275®.
EBA t1 � t2ð Þ: early bactericidal activity over Day t1 to Day t2; BCI: Bayesian credibility interval; n = number
of patients in each category.
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latter cannot account for drugs and individual profiles which are associated with
terminal rates of decline that are faster than initial rates of decline. Such terminal
rates of decline have been described only recently.

In this article, we have proposed a biphasic nonlinear regression model for CFU
data that comprises linear and bilinear regression models as special cases and is more
flexible than bi-exponential regression models. An extensive empirical study of a large
number of CFU count vs. time profiles from a database of four EBA trials suggests that

Figure 3 Model 1—Mean log(CFU) count and posterior predictive distributions.
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the proposed model fits well virtually all individual profiles. We have implemented the
model as a Bayesian NLME regression model, fitted jointly to the data of all patients from
a trial. One advantage of the Bayesian implementation of the model is that for patients
with incomplete and sparse profiles (due to missing data), it is generally plausible as
“strength is borrowed” from the remainder of the data, which manifests as random-effects
estimates are shrunken toward the overall mean.

Statistical inference about the mean EBA of TB treatments is based on the Bayesian
NLME regression model. The posterior predictive distribution of relevant slope para-
meters of the Bayesian NLME regression model provides insight into the nature of the
EBA of TB treatments; specifically, the posterior predictive distribution of slope para-
meters allows one to judge whether treatments are associated with monolinear or bilinear
decline of log(CFU) count, and whether log(CFU) count initially decreases fast, followed
by a slower rate of decrease, or vice versa. In this regard, our analysis of data from the
NC001 trial confirms that TMC207, somewhat unusually among anti-TB treatments, is a
drug associated with a terminal rate of decline in CFU count that is faster than the initial
rate of decline.

Our primary Bayesian implementation of the regression model was based on the
Student t error distribution and the so-called “default” Wishart prior for the covariance
matrix of the random intercept and slope parameters. However, the fit of alternative
specifications of error and prior distributions was also explored. It seems that the
Student t distribution, which allows for heavier tails than the normal distribution, better
accommodates occasional outliers seen in the data. The DICs favor bilinear models
slightly over biphasic models, followed by linear models, whereas the Bayes factors
favor linear models, followed by biphasic and bilinear models. Given the different
verdicts, it should be noted that the DIC compares models conditional on their model
parameters (for which their random effects are likely to enhance model fit), whereas the
Bayes factors compare models on a marginal basis. With our analysis, the Bayes factors
prefer the simplest model (i.e. linear) over the more refined models (i.e. biphasic and
bilinear), whereas the DICs prefer the latter. Note that the linear model cannot establish to
which extent the bactericidal activity between initial and later phases of treatment differs,
and investigation of this difference is a crucial aspect of EBA studies.

In summary, the biphasic model (Model 1) proposed here empirically fits well all
individual data profiles studied and, according to the marginal likelihood (Bayes factor)
criterion, is favored over the bilinear model. Furthermore, the biphasic model allows one
to quantify differences in early and late rates of decline of CFU counts, which is of some
importance in characterizing the mode of action of anti-TB treatments.

APPENDIX

Model checking can include the assessment of the predictive performance of the
regression model using the posterior predictive distribution of replicated data yf . The
goodness of fit between replicated and observed data can be assessed accordingly
(Ntzoufras, 2009).

The posterior predictive distribution of yf is given by the following expression:

f yf jy
� � ¼ ð f yf ; θjy

� �
dθ ¼

ð
f yf jθ
� �

f θj yð Þdθ (27)
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where yf , y, and θ represent a r � 1, n� 1, and d � 1 vector of replicated and observed
data, and model parameters, respectively.

The aforementioned approach has been criticized because of its double use of the
data, and as a result, Geisser and Eddy (1979) proposed the use of the leave-one-out cross-
validation predictive distribution instead, namely:

f yijy i½ �
� �

¼
ð
f yijθð Þf θjy i½ �

� �
dθ (28)

where y i½ � represents the vector y with the ith observation (i.e. yi) omitted.
The quantity f yijy i½ �

� �
in Equation (28) is also known as the CPO and can be

estimated by the following:

dCPOi ¼ 1

L

XL
l¼1

1

f yijθ lð Þ� � !�1

(29)

where θ lð Þ represents the vector of posterior MCMC samples from θ at iteration l. ThedCPOi estimate can be interpreted as the harmonic mean of the probability distribution

of yi for each θ lð Þ, where l ¼ 1; 2; . . . ; L following the simulation burn-in period.
A large number of small dCPOi estimates would indicate a poor fit of the candidate

model. Such dCPOi estimates can also be used to identify possible outliers in the data.

Conversely, the reciprocal of dCPOi, or dICPOi, can also be used to assess model fit.

Estimates of dICPOi > 40 and dICPOi > 70 highlight possible or extreme outliers in the
data, respectively (Ntzoufras, 2009).

SUPPLEMENTARY MATERIAL

Supplemental data for this article can be accessed on the publisher’s website.
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