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Abstract

For many years, osteocytes have been the forgotten bone cells and considered as inactive 

spectators buried in the bone matrix. We now know that osteocytes detect and respond to 

mechanical and hormonal stimuli to coordinate bone resorption and bone formation. Osteocytes 

are currently considered a major source of molecules that regulate the activity of osteoclasts and 

osteoblasts, such as RANKL and sclerostin; and genetic and pharmacological manipulations of 

either molecule markedly affect bone homeostasis. Besides playing a role in physiological bone 

homeostasis, accumulating evidence supports the notion that dysregulation of osteocyte function 

and alteration of osteocyte life-span underlies the pathophysiology of skeletal disorders 

characterized by loss bone mass and increased bone fragility, as well as the damaging effects of 

cancer in bone. In this review, we highlight some of these investigations and discuss novel 

observations that demonstrate that osteocytes, far from being passive cells entombed in the bone, 

are critical for bone function and maintenance.
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1. Introduction

Osteocytes are stellate-shaped cells that differentiate from osteoblasts and become entombed 

within the mineralized bone matrix during bone deposition. Osteocytes are considered 
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permanent residents in bone, with a half-life of 25 years, and constitute more than 95% of 

bone cells within the matrix or on bone surfaces (1). Osteocyte bodies are individually 

encased in lacunae carved within the mineral and exhibit cytoplasmic processes that run 

along narrow canaliculi within the mineralized matrix forming the so-called lacunar-

canalicular system (2). Through their cytoplasmic projections, osteocytes establish 

intercellular communications with neighboring osteocytes through gap junctions, and also 

reach the periosteal and endocortical surfaces of cortical bone, the lumen of blood vessels 

and Haversian canals, as well as the surfaces adjacent to the bone marrow on endocortical 

and cancellous bone surfaces (2;3). This lacunar-canalicular system has the potential to 

allow cell-to-cell communication between osteocytes and other bone cells and also 

distributes osteocyte-secreted molecules within the bone/bone marrow microenvironment 

(4;5). However, the mechanisms by which osteocyte expressed molecules and secreted 

factors reach their cellular targets remain poorly understood. Accumulating evidence 

demonstrates that osteocytes detect and respond to mechanical and hormonal stimuli to 

coordinate the function of osteoblasts and osteoclasts (6). The discovery that sclerostin, a 

potent inhibitor of bone formation, is primarily expressed by osteocytes and is 

downregulated by bone anabolic stimuli identified this molecule as one of the long sought 

messengers by which osteocytes affect the function of bone surface cells (7–12). More 

recent evidence demonstrates that osteocytes also express cytokines that regulate osteoclast 

generation and participate in the recruitment and differentiation of osteoclasts precursors, 

thus initiating targeted bone remodeling (13). This review will focus on the recent findings 

regarding the function of osteocytes in bone homeostasis under physiological and 

pathophysiological conditions.

2. Regulation of bone formation by osteocytes

Osteocytes express several molecules that negatively affect bone formation, including the 

dickkopf WNT signaling pathway inhibitor 1 (DKK1) (14), also expressed by osteoblasts, 

and SOST, which is primarily expressed postnatally in osteocytes, but not in osteoblasts 

(12). Both, the product of the SOST gene sclerostin, and DKK1, block the binding of the 

wingless-type MMTV integration site family members (Wnts) to Frizzled receptors and low-

density lipoprotein receptor-related proteins (LRP) 5 and 6, thus preventing Wnt signaling 

activation (12;15). Wnts and Wnt signaling activation have proven to be critical for 

osteoblast differentiation, survival and function as they induce commitment of multipotential 

mesenchymal progenitors towards the osteoblast lineage, stimulate osteoblast 

differentiation, and regulate osteoblast activity (16). Thus, through the production of Wnt 

signaling antagonists, osteocytes are able to regulate the formation and activity of 

osteoblasts. Genetic and pharmacologic evidence supports this mechanism. Deletion of a 

single allele of the DKK1 gene in mice leads to an increase in bone formation and bone 

mass (17). Similarly, targeted deletion of the SOST gene increases bone mass and bone 

strength (18). In addition, genetic deletion or pharmacological inhibition of LRP4, a 

facilitator of sclerostin action, also results in increased bone formation and bone mass (19). 

Further, neutralizing inhibitors of DKK1, sclerostin or LRP4 have emerged as promising 

and feasible therapeutic targets (discussed in section 5.1).
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The case of sclerostin is particularly attractive because is also regulated by several stimuli 

with anabolic effects on the skeleton. For instance, parathyroid hormone (PTH), the only 

FDA approved anabolic agent for osteoporosis in the U.S., decreases SOST/sclerostin 

expression in osteocytes in rodent models and humans (11;12;20–22). In addition, numerous 

studies support the notion that osteocytes orchestrate the increase in bone formation in 

response to mechanical loads by downregulating sclerostin, thereby locally unleashing Wnt 

signaling (23). Cortical bone areas exposed to high mechanical strain exhibit a reduction in 

sclerostin-positive osteocytes and concomitant higher bone formation on adjacent periosteal 

surfaces (10). Conversely, SOST/sclerostin expression levels are increased in unloaded bone 

(24) and mice overexpressing a human SOST transgene in osteocytes show low bone mass 

(7) and fail to exhibit the anabolic response to mechanical stimulation (24). Osteocytes are 

considered the mechanosensors in bone, and have the potential for sensing mechanical 

forces and translate them into biochemical signals (25). Targeted deletion of osteocytes 

results in bone loss and this osteocyte-less bone does not respond normally to unloading 

(discussed in section 5.2) (26).

Osteocytes appear also to affect osteoblast and osteoclast differentiation through physical 

interactions. Recent in vitro evidence suggests that direct cell-to-cell contact with osteocytes 

induces an up-regulation of osteoblast differentiation genes (Col1a, Runx2, Alpl) in 

osteoblasts when compared to osteoblasts cultured alone (27). In addition, Notch signaling, 

which is activated by homotypic or heterotypic interactions between Notch receptors and 

Notch ligands, has aroused as novel pathway regulating the activity of bone cells through 

cell-to-cell communication (28). Overexpression of Notch intracellular domain 1 in 

osteocytes decreases osteoclast-mediated bone resorption and increases cancellous and 

cortical bone volume, by mechanisms poorly understood (29–31). Thus, cell-to-cell 

communication between osteocytes and other cells in bone/bone marrow microenvironment 

also regulates bone homeostasis, although the specific mechanisms involved are not 

completely understood.

New evidence demonstrates that osteocytes mediate the anabolic actions of canonical Wnt/

βcatenin signaling in bone (32), demonstrating the importance of cell autonomous Wnt/

βcatenin signaling in osteocytes themselves (Figure 1). Bone anabolic stimuli activate this 

pathway and human mutations of components along this pathway underscore its crucial role 

in bone accrual and maintenance. However, the cell responsible for orchestrating Wnt 

anabolic actions has remained elusive, as activation of Wnt/βcatenin signaling in 

preosteoblasts or osteoblasts inhibits resorption without increasing bone formation (33). This 

new evidence now showed that, in contrast, activation of canonical Wnt signaling in 

osteocytes [dominant active (da)βcatOt mice] induces bone anabolism and triggers Notch 

signaling without affecting survival (32). These features contrast with those of mice 

expressing the same daβcatenin in osteoblasts, which exhibit decreased resorption and 

perinatal death from leukemia (16). daβcatOt mice exhibit increased bone mineral density in 

the axial and appendicular skeleton, and marked increase in bone volume in cancellous/

trabecular and cortical compartments compared to littermate controls. daβcatOt mice display 

increased resorption and formation markers, high number of osteoclasts and osteoblasts in 

cancellous and cortical bone, increased bone matrix production, and markedly elevated 
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periosteal bone formation rate. Wnt and Notch signaling target genes, osteoblast and 

osteocyte markers, and pro- and anti-osteoclastogenic cytokines are elevated in bones of 

daβcatOt mice. Further, the increase in RANKL is dependent on SOST/sclerostin (discussed 

in section 4). Thus, activation of osteocytic βcatenin signaling increases both osteoclasts and 

osteoblasts leading to bone gain, and is sufficient to activate the Notch pathway. These 

findings demonstrate disparate outcomes of βcatenin activation in osteocytes versus 

osteoblasts and identify osteocytes as central target cells of the anabolic actions of canonical 

Wnt/βcatenin signaling in bone.

Osteocytes also regulate mineralization and phosphate (Pi) homeostasis through the release 

of several molecules. Osteocytes are richer than osteoblasts in molecules that regulate Pi 

homeostasis such as phosphate-regulating neutral endopeptidase (PHEX), dentin matrix 

protein 1 (DMP1), matrix extracellular phosphoglycoprotein (MEPE) and fibroblast growth 

factor 23 (FGF23), reviewed in (13). FGF23, mainly secreted by osteocytes, is a hormone 

that plays a crucial role in Pi homeostasis by inhibiting its renal reabsorption. 

Supraphysiologic FGF23 levels found in several genetic disorders decrease renal Pi 

reabsorption and induce hypophosphatemia resulting in osteomalacia and rickets (34). 

Consistent with the findings in the human diseases, transgenic mice overexpressing FGF23 

are hypophosphatemic whereas FGF23 knockout mice are hyperphosphatemic (35;36).

3. Regulation of bone resorption by osteocytes

Under physiologic conditions, interactions between cells present in the bone remodeling 

compartment (BRC) result in a balanced and coupled remodeling of bone, a lifelong process 

responsible for bone damage repair and mineral homeostasis. One of the functions of the 

osteocyte network is to detect microdamage and trigger its repair (3); consequently, 

osteocytes have a prominent role in the initiation of bone remodeling at selected sites of the 

skeleton. Increased osteocyte apoptosis has been shown to be induced in vivo in areas of 

microdamage in several pathological conditions associated with enhanced bone resorption 

such as overload, bone disuse, glucocorticoid administration or estrogen deficiency 

suggesting that apoptosis is linked to targeted bone resorption (37–40). Consistent with this 

notion, exclusive induction of apoptosis of osteocytes is sufficient to increase resorption and 

leads to bone loss (26). It has been proposed that apoptotic osteocytes trigger a cascade of 

signals initiated in the endosteum that contains the lining cells, which lift from the bone 

surface to form the canopy that encloses the BRC. Apoptotic osteocytes also signal to 

neighboring cells (osteocytes or other osteoblast lineage cells) to change the expression of 

pro- and anti-osteoclastogenic genes such us the chemotactic factor high mobility group box 

1 (HMGB1) protein, which upregulates the expression of the tumor necrosis factor (ligand) 

superfamily, member 11 (RANKL), colony stimulating factor 1 receptor (M-CSF) or 

osteoprotegerin (OPG). These evidence provides the molecular basis of osteocyte-driven 

recruitment of osteoclast precursors and their differentiation in particular areas of bone 

(41;42).

Osteocytes are now considered a major source in bone of the pro-osteoclastogenic cytokine 

RANKL, a master stimulator of osteoclastogenesis. Indeed, osteocytes express higher levels 

of RANKL than osteoblasts and bone marrow stromal cells, and mice lacking the RANKL 
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gene in osteocytes exhibit an osteopetrotic phenotype characterized by reduced bone 

resorption (43;44). However, it is still under debate whether the osteocytic membrane-bound 

or the soluble RANKL form is responsible for osteocyte-mediated bone resorption. Recent 

data suggest that osteocytic RANKL is predominantly provided as a membrane-bound form 

to osteoclast precursors through osteocyte cytoplasmatic projections, whereas the 

contribution of soluble RANKL to osteoclastogenesis is minor (45;46). Thus, direct cell-to-

cell contact between membrane-bound RANKL expressing osteocytes and osteoclast 

precursors appears to be required to initiate osteoclast development.

Osteocytes also secrete the anti-osteoclastogenic cytokine OPG, a soluble decoy receptor 

that competes with RANKL for its receptor tumor necrosis factor receptor superfamily, 

member 11a, NFKB activator (RANK) on osteoclast precursors (47). OPG secretion is 

regulated by the Wnt/β-catenin pathway and mice lacking β-catenin in osteocytes exhibit 

increased osteoclast numbers and bone resorption (48;49).

RANKL and M-CSF are two major factors that contribute to osteoclast differentiation and 

maturation. Recent evidence suggests that osteocytes are an additional source of secreted M-

CSF in bone (50). Moreover, M-CSF expression is increased by PTH receptor signaling in 

osteocytes and exhibits similar pattern of expression to RANKL expression (44). Further, 

deletion of the distal control region of the RANKL gene regulated by PTH (DCR) eliminates 

the ability of the PTH receptor/cAMP pathway to increase not only RANKL expression, as 

expected, but also M-CSF expression, demonstrating that M-CSF regulation is secondary to 

RANKL regulation (44). This evidence is the first in vivo demonstration of M-CSF 

regulation by RANKL and is consistent with an earlier in vitro study showing that RANKL 

augmented M-CSF production in pre-osteoclastic cells (51). The regulation of M-CSF by 

RANKL appears counter-intuitive, since M-CSF increases the expression of the RANKL 

receptor RANK in osteoclast precursors (52), suggesting that M-CSF is needed for RANKL 

signaling. However, deletion of the DCR only reverses the PTH-induced M-CSF expression 

demonstrating that basal levels of M-CSF are sufficient to induce RANK expression and to 

allow the initial action of PTH-stimulated osteocytic RANKL on bone resorption. RANKL/

RANK signaling in turn could induce higher M-CSF expression in a positive feedback loop, 

stimulating osteoclastogenesis. Further, M-CSF is expressed not only in osteoclast 

precursors but also in osteocytes (53;54) suggesting that RANKL (either membrane-bound 

or soluble form) could upregulate M-CSF gene expression in osteoclast precursors or in 

osteocytes. Future studies are required to determine the cellular source of M-CSF in 

osteocyte-driven resorption induced by PTH receptor activation.

Together, these findings suggest that osteocytes have the potential to control bone resorption 

through direct and indirect regulation of osteoclast differentiation and function under 

physiological and pathological conditions.

Besides the strong evidence demonstrating that osteocytes support osteoclast development, 

novel findings suggest that osteocytes, as osteoclasts, can also remove mineralized matrix by 

remodeling their perilacunar/canalicular matrix. The expression of genes known to be 

utilized by osteoclasts to remove bone, including tartrate-resistant acid phosphatase (TRAP) 

and cathepsin K, carbonic anhydrase 2 and matrix metalloproteinases is elevated in 

Delgado-Calle and Bellido Page 5

Curr Mol Biol Rep. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



osteocytes from lactating mice (55–57). Furthermore, recent work demonstrated that global 

deletion of the calcitonin receptor leads to increased osteocytic, but not osteoclastic, 

osteolysis during lactation, providing the first evidence for a physiological role of the 

calcitonin receptor to protect the maternal skeleton from bone loss during lactation by direct 

actions on osteocytes (58). Although the physiologic implications of these observations 

remain to be determined, this data suggests that, as previously described for phosphate 

metabolism, osteocytes also contribute to calcium mobilization and mineral homeostasis 

through perilacunar remodeling as has been proposed earlier(1;59).

4. Cross talk between bone formation and bone resorption via Wnt-βcatenin 

signaling in osteocytes

Wnt signaling pathway has emerged as a key regulator of bone homeostasis. βcatenin is the 

obligatory transducer for canonical Wnt signaling, which is stabilized by Wnt ligands and 

translocates to the nucleus to activate transcription of Wnt target genes. Inactivation of Wnt/

βcatenin in early stages of the osteoblastic lineage arrests osteoblast differentiation resulting 

in lack of mature osteoblasts and reduced bone formation (60–63). Wnt/βcatenin inactivation 

in mature osteoblasts/osteocytes increases osteoclast differentiation and bone resorption, 

without affecting osteoblast differentiation or bone formation (48;49;64). Moreover, 

activation of Wnt/βcatenin in osteoblasts increases bone mass by reducing bone resorption, 

without apparent effect on osteoblast production (16). Although this genetic evidence shows 

that Wnt/βcatenin signaling in osteoblasts alters osteoclasts and bone resorption without 

effects on osteoblasts or bone formation, the pathway is linked to bone anabolism. Despite 

the fact that bone anabolic stimuli activate canonical Wnt/βcatenin signaling and human 

mutations of this pathway underscore its essential role in bone accrual, the cell responsible 

for orchestrating these actions has remained elusive. Recent findings from our group 

identified osteocytes as the central target cells for the anabolic actions of canonical Wnt/

βcatenin signaling in bone (32). Activation of βcatenin signaling in osteocytes increases both 

bone formation and bone resorption, with a positive balance that results in bone gain. These 

findings suggest that osteocytes, rather than less-differentiated cells in the osteoblastic 

lineage, might mediate anabolism induced by systemic activation of the Wnt/βcatenin 

pathway, with inhibitors of GSK3β or neutralizing antibodies of sclerostin or DKK1.

We investigated the mechanism by which activation of βcatenin signaling in osteocytes 

versus in less mature cells of the osteoblastic lineage leads to opposite effects on resorption 

(Figure 1). As expected, activation of Wnt/βcatenin in both osteoblast and osteocytes 

increases OPG expression. However, activation of the pathway in osteocytes also increases 

the levels of osteocytic RANKL, resulting in a high RANKL/OPG ratio. Upregulation of 

RANKL expression by activation of Wnt/βcatenin in osteocytes is driven by SOST/

sclerostin production, as demonstrated by the fact that SOST overexpression in vivo leads to 

an increase in RANKL levels (32). Moreover, neutralizing antibodies of sclerostin abolished 

this effect. This result is consistent with previous findings indicating that SOST/sclerostin 

up-regulates RANKL and increases osteoclasts numbers (65), and support the notion that 

osteocytes, through sclerostin production and Wnt/βcatenin signaling modulation, not only 

regulate osteoblasts activity, but also control osteoclast differentiation. In fact, inhibition of 
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sclerostin by neutralizing antibodies increases bone formation, and also decreases the serum 

levels of the bone-resorption marker CTX in both mouse and clinical models (66). Thus, the 

bone anabolism achieved by administration of neutralizing antibodies of sclerostin might 

result from the combination of enhanced osteoblast production and reduced osteoclast 

numbers due to increase OPG and/or decreased RANKL production.

5. Osteocytes and bone remodeling under pathological conditions

5.1. Osteocytes, aging and hormonal dysregulation

With advancing age, the balance between bone resorption and bone formation during bone 

remodeling changes and becomes negative. Thus, the quantity and quality of bone do not 

remain constant with age; rather they change to decline bone mass and strength, leading to 

the common skeletal syndrome known as osteoporosis. During aging, osteocyte density 

declines, with an increase in the number of empty lacunae (67;68). Thus, reduced osteocyte 

numbers and osteocyte apoptosis have been proposed to be partially responsible for the 

disparity between bone resorption and bone formation that occurs with aging. Reduced 

osteocyte density might result from the decline in physical activity with old age leading to 

reduced skeletal loading (discussed in section 5.2), accumulation of reactive oxygen species 

in bone, and/or increased levels of endogenous glucocorticoids with age (3;69;70). In 

addition, loss of sex steroids, either after loss of ovarian function in women at menopause or 

in patients of either sex with gonadal dysfunction, is considered the main factor for the 

development of osteoporosis, leading to an imbalance between bone resorption and bone 

formation that results in bone loss. Loss of sex steroids also increases osteocyte apoptosis 

(71;72). Further, excess of glucocorticoids (GCs), either endogenous as in aging or due to 

administration as immunosuppressants, leads to loss of bone, and increased apoptosis of 

osteocytes (and osteoblasts) is one of the mechanisms that underlie the reduced bone 

formation and bone fragility that characterize GC-induced osteoporosis (73). Therefore, 

decreased osteocyte viability is a common factor associated to the fragility syndrome that 

characterizes estrogen withdrawal, glucocorticoid excess and aging.

Not only osteocyte viability is reduced with aging, GC excess or loss of sex steroids, but 

also the activity of these cells is altered, with changes in the transcription of osteocytic genes 

including SOST. In fact, serum sclerostin levels increase with age, and positive associations 

between bone mineral density and serum sclerostin levels have been reported in several 

studies (22;74). These results raise the possibility that increased production of sclerostin by 

osteocytes leads to the decreased bone formation that characterizes osteoporosis. 

Interestingly, however, this is not the case when SOST mRNA levels are studied in bone 

tissue (19;68), suggesting that serum concentration does not necessarily reflect sclerostin 

levels in bone. In fact, LRP4 deficiency in bone markedly elevates serum sclerostin levels; 

however, animals exhibit a progressive cancellous and cortical bone gain (19).

The fact that apoptotic osteocytes trigger bone resorption, together with the evidence 

suggesting that the production of osteocyte derived molecules is altered with aging, GCs and 

sex steroids loss, makes osteocytes an attractive target to treat common skeletal diseases 

associated with bone loss (discussed in section 6).
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5.2. Osteocytes and bone loss induced by reduced mechanical loading

Aforementioned, mechanical forces have a positive effect on the skeleton, whereas 

conditions such as prolonged bed rest, physical inactivity, or reduced gravity results in bone 

loss and increased risk of fractures. Earlier work demonstrated that unloaded bone or bone 

subjected to excessive loading exhibit increased prevalence of osteocyte apoptosis, and it 

has been proposed that this event precedes RANKL upregulation and osteoclast-mediated 

bone resorption (37;75–78). Depletion of osteocytes in a murine model prevented the bone 

loss induced by tail suspension (26), suggesting that osteocytes are responsible for the 

increase in osteoclast-mediated bone resorption. Moreover, genetic deletion of RANKL in 

osteocytes was sufficient to protect animals from unloading-induced increased in osteoclasts 

and bone loss (79). However, whether the increase in osteocyte apoptosis and RANKL 

expression induced by unloading, or other pro-apoptotic stimuli, are mechanistically linked 

had remained unknown. In a recent report, we found that in a tail suspension mouse model 

prevention of osteocyte apoptosis blocks the increase in RANKL expression in osteocytes, 

supporting the notion that indeed there is a functional relationship between osteocyte 

apoptosis and RANKL production (80). However, prevention of apoptosis in osteocytes was 

not sufficient to protect the animals from bone mass loss induced by unloading indicating 

that RANKL derived from non osteocytic sources (likely osteoblasts) also contributes to the 

bone loss resulting from lack of mechanical forces. Osteocyte apoptosis is also considered a 

key step controlling the activation and/or targeting of osteoclastic resorption associated to 

bone fatigue-induced remodeling. Inhibition of osteocyte apoptosis by using a caspase 

inhibitor was sufficient to prevent the fatigue-induced RANKL upregulation and the 

activation of osteoclastic resorption (76;81), indicating a direct relationship between 

osteocyte apoptosis and local osteoclast resorption. However these results differ from those 

described in our model of unloading, suggesting that the course of tissue remodeling after 

unloading and overloading might be determined by different mechanisms.

The levels of SOST/sclerostin are also modulated by mechanical forces. Local 

downregulation of SOST/sclerostin in osteocytes is required to activate Wnt/βcatenin 

signaling and trigger bone formation in particular areas in bone subjected to mechanical 

forces (24). The levels of circulating sclerostin are elevated with prolonged bed rest or 

immobilization (82). In fact, SOST knockout mice are protect from disuse-induced bone loss 

(83). Conversely, overexpression of sclerostin in osteocytes prevents load-induced bone 

formation (24). All together these findings confirm that osteocytes, through the modulation 

of sclerostin and RANKL production, are responsible of the bone loss that follows reduced 

loading or disuse.

5.3. Osteocytes and cancer-induced bone disease

Bone is a frequent and preferred site for cancer metastases and cancer involvement. At least 

80% of patients with advanced breast cancer and prostate cancer develop bone metastases, 

and >90% of multiple myeloma (MM) patients experience bone involvement. Cancer in 

bone is an important contributor to the decreased survival and quality of life for these 

patients due to bone pain and pathologic fractures. Tumor alters normal bone remodeling, 

resulting in the uncoupled activity of osteoclast and osteoblasts (84). Enhanced osteoclast 

activity in turn, causes osteolytic bone lesions and increases the growth and progression of 
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the tumor in bone. The bone marrow microenvironment in cancers that involve bone is a 

major contributor to tumor growth and the bone destructive process. Numerous pieces of 

evidence demonstrate that both, direct cell-to-cell interactions and exchange of soluble 

factors between tumor cells and cells in the bone marrow (osteoblasts, osteoclasts, stromal 

cells, and immune cells) stimulate osteoclast differentiation and alter osteoblast numbers and 

activity (84–86). However, although our knowledge of osteocyte biology has increased 

during the last decade, the potential interactions between tumors and osteocytes and their 

contribution to the development and progression of cancer involving bone is just now 

starting to be revealed. Accumulating evidence support the notion that osteocytes play an 

important role in MM disease. MM, is a hematologic malignancy characterized by 

monoclonal plasma cells that grow in the bone marrow, and the presence of localized 

osteolytic lesions that rarely heal, due to increased bone resorption and suppressed bone 

formation (87). Previous work demonstrates that the BRC is disrupted in MM (88), 

suggesting that not only exchange of soluble factors occurs between MM and other cells in 

bone, but also mechanisms involving direct cell-to-cell contact exist between different cells 

in the bone marrow microenvironment. In fact, we found that osteocytes physically interact 

(via Notch signaling) and exchange soluble factors with MM tumor cells in vivo (89). In 

addition, consistent with a recent study reporting decreased viability of osteocytes in 

biopsies from MM patients (90), our findings indicate that activation of Notch signaling in 

osteocytes by cell-to-cell contact with MM cells and MM-secreted factors increase the 

prevalence of apoptotic osteocytes in tumor-bearing bones (Delgado-Calle, Bellido, and 

Roodman, unpublished). The increased osteocyte apoptosis induced by MM cells enhanced 

the osteoclastogenic activity of osteocytes by increasing the ability of osteocytes to attract 

osteoclast precursors and their RANKL production, suggesting that apoptotic osteocytes in 

MM can start and/or sustain targeted bone resorption within the focal lesions observed in 

MM patients.

Further, the levels of the osteocyte specific product sclerostin are elevated in the serum of 

MM patients, and these levels correlate with reduced osteoblast function and poor survival 

(91); although the source of sclerostin remains unknown. We found in our studies that 

interactions between MM cells and osteocytes increased osteocytic sclerostin (92), which in 

turn decreases Wnt signaling and inhibits osteoblast differentiation, supporting the idea that 

osteocytes are the main source of sclerostin in MM. Importantly, our data also indicates that 

bidirectional Notch signaling between osteocytes and MM cells also stimulates MM cell 

growth.

In addition to these results, recent findings suggest that FGF23 derived from osteocytes 

drives MM growth in bone by binding to FGF23 receptors and the co-receptor Klotho in 

MM cells, and activating transcription of pro-metastatic and pro-osteolytic genes, such as 

heparanase (93). Furthermore, osteocytes located in osteolytic lesions in MM patients 

overproduce interleukin 11 (IL-11), which is sufficient to enhance osteoclast differentiation 

(90). New evidence also suggests that tumor growth induces changes in physical forces that 

are sensed by osteocytes, which enhance the production of factors such as chemokine (C-C 

motif) ligand 5 (CCL5) and matrix metalloproteinases that promote tumor progression and 

invasion (94). Together, these results reveal a previously unknown role for osteocytes in 
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cancer in bone and indicate that tumor cells instruct osteocytes to generate a 

microenvironment that favors tumor growth and bone destruction.

6. Osteocytes and therapies of common skeletal disorders

Evidence accumulated in the last decades support the notion that current therapies for 

osteoporosis act on osteocytes (Figure 2). The most widely prescribed and first-line drugs 

for common bone diseases include PTH and bisphosphonates such as alendronate, 

risedronate, ibandronate, or zoledronic acid. PTH is classically considered to be a bone 

catabolic agent; however, when delivered intermittently at low doses, PTH strongly 

stimulates cortical and/or trabecular bone formation in animal and clinical studies (95). The 

mechanisms underlying PTH actions in the skeleton and the target cells for PTH in bone 

remain under intensive investigation. Most likely PTH affects different signaling pathways 

and alters the activity of several bone cells, including osteoblasts, lining cells, osteoclasts, 

and osteocytes. Nonetheless, some skeletal actions of PTH might be mediated by direct 

effects of the hormone on osteocytes. Indeed, earlier work from our laboratory shows that 

whereas intermittent PTH administration increases bone mass and the circulating markers of 

bone resorption in an animal model, genetic knockdown of the PTH receptor 1 (PTHR1) in 

osteocytes blunts this effect, indicating that PTH receptor in osteocytes is required for bone 

anabolism induced by intermittent PTH administration (96;97). Moreover, constitutive 

activation of PTHR1 signaling in osteocytes is sufficient to increase bone mass and the rate 

of bone remodeling, two recognized skeletal actions of PTH (50).

Whereas increased bone mass induced by PTH could be potentially explained by 

downregulation of the osteocyte-specific bone formation inhibitor SOST (11;12;20–22), the 

mechanism by which osteocytes mediate bone resorption induced by PTH remains unclear. 

The constitutive activation of PTHR1 signaling in osteocytes enhances bone resorption by 

regulating the expression of the RANKL gene directly in osteocytes, through the distal 

control region (DCR) of the RANKL gene as it was discussed above (Section 3) (44). 

Further, recent findings from our lab suggest that matrix metalloproteinase 14 (MMP14) is 

also a target gene of the osteocytic PTH receptor involved in the PTH-mediated regulation 

of bone resorption (Delgado-Calle and Bellido, unpublished). MMP14 has been shown to be 

required for bone formation and maintenance of osteocytic processes during skeletal 

development (98;99), and is also involved in RANKL shedding (100). However, its potential 

role in PTH regulation of bone remodeling is unknown. In our studies, inhibition of MMP14 

activity by a neutralizing antibody in animals with constitutive activation of PTHR1 

signaling in osteocytes decreases bone resorption and the number of osteoclasts, and this 

effect is associated with decreased bone formation and mineral apposition.

Besides PTH analogs, all therapies for osteoporosis are anti-resorptive, including the 

previously mentioned bisphosphonates, the selective estrogen receptor modulators, estrogen 

preparations, and denosumab. In fact, the anti-fracture effects of treatment with sex steroids 

or bisphosphonates are partially explained by preservation of osteocyte viability (71;101). 

Similarly, inhibition of osteoblast apoptosis by intermittent administration of PTH also 

increases osteocyte density (102) . In addition, the potent anti-resorptive effects of the 
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neutralizing antibodies for RANKL exert in bone, might be due to the inhibition of 

osteocytic RANKL (103).

On the other hand, the discovery of osteocyte-mediated inhibition of Wnt signaling by 

sclerostin production has led to a novel anabolic approach for the management of 

osteoporosis: neutralization of sclerostin. Functional mutations of the SOST gene cause 

abnormal skeletal phenotypes in humans, characterized by high bone mineral density 

(104;105). Genetic ablation of the SOST gene in mice results in a high bone mass phenotype 

with increased BMD, bone volume, bone formation, and bone strength (18). Inhibition of 

sclerostin action has a marked anabolic effect in several animal models and it is currently in 

clinical trials for the treatment of postmenopausal osteoporosis. Initial and ongoing studies 

in humans to determine the effect of sclerostin inhibition on osteoporosis revealed promising 

increases in BMD and bone formation (106). However, whether this effect translates in anti-

fracture efficacy is still unknown. Nevertheless, these results are encouraging, and advocate 

for new studies to determine the effect of sclerostin inhibition in other skeletal diseases 

characterized by low bone density (chronic kidney disease or multiple myeloma). All these 

results together highlight the potential of targeting osteocytes and their derived factors to 

increase bone mass and strength in low bone mass disorders.

7. Conclusions

In closing, advances of the last few years provided experimental evidence demonstrating 

that osteocytes are critical regulators of bone homeostasis by controlling osteoblast and 

osteoclast activity. We now know that although osteoclasts and osteoblasts execute bone 

remodeling by resorbing and forming bone respectively, osteocytes, through changes in their 

life-span and the production of RANKL and sclerostin, tightly regulate physiological bone 

remodeling. Moreover, changes in osteocyte viability and production of osteocyte-derived 

molecules contribute to the pathogenesis of several skeletal diseases. The discovery of some 

of the molecular mechanisms by which osteocytes influence the function of osteoblasts and 

osteoclasts has already given rise to therapeutic approaches to alter osteocyte function such 

as neutralizaing antibodies for sclerostin. In addition, overwhelming evidence also shows 

that some of the positive effects that first-line treatments for bone diseases like PTH, 

bisphosphonates or sex steroids, exert their action on bone at least in part by acting on 

osteocytes. Further, osteocytes can also play a major role in the development and 

progression of cancer that grows in bone, providing the mechanistic basis for targeting 

osteocyte-tumor cell interactions as a novel treatment for cancer induced bone disease. It is 

expected that ongoing and future investigations will reveal the role of new molecules and 

mechanisms by which osteocytes, the most abundant and long-lived cells in bone, influence 

bone homeostasis, thereby increasing the number of potential targets of pharmacological 

intervention towards an improved management of bone diseases.
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Figure 1. Activation of Wnt-βcatenin signaling in osteocytes has an anabolic effect in bone
(A) Activation of Wnt/βcatenin in osteoblasts/osteoblast precursors increases bone mass by 

increasing OPG production, which reduces bone resorption, without apparent effect on 

osteoblast production. (B) Activation of Wnt/βcatenin signaling in osteocytes increases both 

bone formation and bone resorption, with a positive balance that results in bone gain. (C) 
Activation of Wnt signaling in all osteoblastic cells induced by neutralizing antibodies to 

sclerostin increases bone formation and initially decreases the serum levels of the bone-

resorption marker CTX in both mouse and clinical models, that eventually come back to 

control levels. These findings suggest that osteocytes, rather than less-differentiated cells in 

the osteoblastic lineage, might mediate anabolism induced by systemic activation of the 

Wnt/βcatenin pathway, with neutralizing antibodies of sclerostin.
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Figure 2. Osteocytes and therapies of common skeletal disorders
All current therapies for osteoporosis act on osteocytes. Anti-sclerostin antibodies increase 

bone formation and might reduce resorption by increasing OPG expression. The anabolic 

effect of intermittent PTH might be explained in part by downregulation of the SOST gene 

and therefore decreasing sclerostin levels. Part of the anti-fracture efficacy of intermittent 

PTH administration and bisphosphonates, might be due to inhibition of osteocyte apoptosis, 

and thus preservation of the osteocytic lacunar-canalicular network. The anti-resorptive 

activity of RANKL neutralizing antibodies is likely due to the inhibition of osteocytic 

RANKL, which is considered the major source of RANKL in adult skeleton.
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