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BS-SNPer: SNP calling in bisulfite-seq data
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Abstract

Summary: Sodium bisulfite conversion followed by sequencing (BS-Seq, such as whole genome

bisulfite sequencing or reduced representation bisulfite sequencing) has become popular for

studying human epigenetic profiles. Identifying single nucleotide polymorphisms (SNPs) is import-

ant for quantification of methylation levels and for study of allele-specific epigenetic events such as

imprinting. However, SNP calling in such data is complex and time consuming. Here, we present

an ultrafast and memory-efficient package named BS-SNPer for the exploration of SNP sites from

BS-Seq data. Compared with Bis-SNP, a popular BS-Seq specific SNP caller, BS-SNPer is over 100

times faster and uses less memory. BS-SNPer also offers higher sensitivity and specificity com-

pared with existing methods.

Availability and implementation: BS-SNPer is written in Cþþ and Perl, and is freely available at

https://github.com/hellbelly/BS-Snper.

Contact: bolund@biomed.au.dk, kdso@clin.au.dk or orntoft@ki.au.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sodium bisulfite conversion followed by sequencing (BS-Seq) has be-

come popular for studying human epigenetic profiles (Laird, 2010).

Whole genome bisulfite sequencing detects 90% of methylation

events and SNPs in the nuclear DNA (Lister et al., 2009). However,

its cost remains too high for most laboratories. Reduced representa-

tion bisulfite sequencing (RRBS) is a more efficient and economical

way to monitor genome-wide promoter and CpG island methylation

status (Laird, 2010) and it has become a popular method to

investigate epigenetic changes in clinical tissue samples (Berman

et al., 2012; Hansen et al., 2011).

SNP identification is important for identification of allele-

specific epigenetic events such as, gamete specific and genetic im-

printing (Reik and Walter, 2001; Wilkins, 2005). However, SNP

calling from BS-Seq data has been shown to be complicated. One

problem is that reads from two genomic strands are not complemen-

tary at methylated loci. Two methods were widely used to solve this

problem. One is to align the reads in a three-letter space; the other is

VC The Author 2015. Published by Oxford University Press. All rights reserved. 4006
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 31(24), 2015, 4006–4008

doi: 10.1093/bioinformatics/btv507

Advance Access Publication Date: 28 August 2015

Applications Note

https://github.com/hellbelly/BS-Snper
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv507/-/DC1
http://www.oxfordjournals.org/


a wildcard algorithm which accounts for the C/T conversions.

Many software packages have been developed based on these

two methods. Bismark (Krueger and Andrews, 2011),

MethylCoder (Pedersen et al., 2011), BRAT-BW (Harris et al.,

2012) and BS Seeker (Chen et al., 2010) are based on the Burrows–

Wheeler transform. Bismark and BS Seeker use Bowtie (Langmead

and Salzberg, 2012) to align the reads in a three-letter space.

BSMAP (Xi and Li, 2009) uses a wildcard algorithm.

Another problem is that true C/T SNPs in samples cannot be dis-

tinguished from C/T substitutions caused by bisulfite conversion

and, thus, could be misidentified as unmethylated Cs (Liu et al.,

2012). Given that over two-thirds of all SNPs occur in CpG context

(Tomso and Bell, 2003), sequence variations need to be addressed as

an important error source. After alignment, real methylation status

could be recovered, because a C/T SNP in Watson strand and G/A

SNP in Crick strand should be interpreted as unmethylated cytosine

variation (see Supplementary Fig. S1). Thus, Watson and Crick

strands should be independently treated to reduce such errors.

To our knowledge, Bis-SNP is a popular BS-Seq data based SNP

calling tool. Another BS-Seq specific SNP caller, MethylExtract, is

slightly faster than Bis-SNP (Barturen et al., 2013). However, Bis-

SNP performs better in sensitive and accuracy. Here, we present BS-

SNPer, a program for BS-Seq variation detection from alignments in

standard BAM/SAM format (Li et al., 2009). We implemented a

novel algorithm (called ‘dynamic matrix algorithm’, see text below)

and approximate Bayesian modeling to improve the performance.

Using published RRBS data, BS-SNPer showed higher specificity

and sensitivity with lower memory requirement and was over 100

times faster than Bis-SNP.

2 Methods

Two steps are implemented to obtain the final SNP set. In the first

step, a candidate SNP set is obtained from alignments, usually in the

BAM/SAM format, using a novel method ‘dynamic matrix algorithm’.

In the second step, the candidate set was converted to the final SNP set

using Bayes model, considering alignment quality and read support.

Step 1. Dynamic matrix algorithm
Alignments are filtered based on sequencing quality, mapping qual-

ity and mismatch rates. Mutations are removed if their frequencies

are lower than a certain threshold (default 0.1). The formulae to cal-

culate the frequencies are listed in Supplementary Table S1. For the

remaining candidate SNP set, positions, reference bases, the num-

bers of supporting reads and average sequencing quality for all four

bases in both Watson and Crick strands are recorded. In order to im-

prove memory and computation efficiency, these data are dynamic-

ally allocated and freed for each chromosome. For each position in a

chromosome, the data are stored in the form of a vector; thus the

data of a chromosome are stored in a matrix. The content and size

of the matrix change with the chromosomes. The method is thus

called ‘dynamic matrix algorithm’.

Step 2. Approximate Bayesian modeling
In brief, the Bayesian inference of each genotype is based on its

posterior distributions, P(GjD), using Bayes’ formula. The posterior

distribution is built upon two components: the prior distribution of

each genotype P(G), and the likelihood P(DjG), which is the probabil-

ity of observing reads D given genotype G. For the prior P(G), we

referred to the model of SOAPsnp (Li et al., 2009). We observed that,

when sequencing depth was higher than 10, the choice of the prior had

no large effects. The likelihood, which represents the error rates

caused by multiple sources, is calculated by the formula

P(Djg¼G)¼
Yn

i¼1
PðDijg ¼ GÞ for multiple independent samples Di,

where i¼1, 2, . . . , n, and n is the number of reads. We used average

error rate instead of full evaluation in error rate, which increases the

modeling speed. The genotype with largest probability is recognized as

the final SNP. See Supplementary Text for more details.

3 Results

Our previous RRBS data (Huang et al., 2014) were used to test the

performance of BS-SNPer and to compare it with Bis-SNP. The data

comprise one para-normal sample (below called ‘Normal’; normal

tissue adjacent to cancer tissue at a distance of at least 5 cm) and three

cancer samples, i.e. primary renal cell carcinomas (pRCC), local

invasion of the vena cava (IVC) and distant metastasis to the brain

(MB) tissues from a patient with metastatic clear cell renal cell carcin-

oma. Whole exome sequencing data in the same work (Huang et al.,

2014) were employed to assess the performance of SNP calling.

All reads of four samples were aligned to the GRCh37 assembly

(hg19) of the human genome using the program BSMAP with options

‘-z 64 -p 12 -s 16 -v 10 -q 2’. The alignments were then fed into both

BS-SNPer, MethylExtract and Bis-SNP under same conditions. We

evaluated the algorithms on a system equipped with a six-core Intel

Xeon E5650 2.66GHz processor and 32 GB memory. The system

runs on 64-bit Red Hat Enterprise Linux 4.1. The minimal running

time of four samples of MethylExtract and Bis-SNP was 6 and 20 h,

respectively, whereas BS-SNPer only used around 10min for each

sample. Compared with Bis-SNP, the increase in speed was more than

100 times in all four cases, including normal tissue (Normal), pRCC,

local IVC, distant MB, of our published data (Huang et al., 2014).

The increase in speed was not at the cost of memory or accuracy. The

maximal memory usage of BS-SNPer was 8 GB, whereas

MethylExtract and Bis-SNP used 10 GB for all cases, respectively. BS-

SNPer also showed higher sensitivity and specificity for all four sam-

ples (Supplementary Table S2). For example, in Normal tissue, 2730

SNPs were detected by BS-SNPer, among which 2335 were validated

by exome data [false positive rate (FPR) 14.47%]. Bis-SNP detected

3483 SNPs, while 2011 of them were validated (FPR 42.26%;

MethylExtract 39.93%). As exome sequencing detected 2873 SNPs

for this sample, false negative rate of BS-SNPer was 18.73%, whereas

that of Bis-SNP and MethylExtract was 30% and 57.01%, respect-

ively (Supplementary Table S2).

In conclusion, based on a dynamic matrix algorithm and

Bayesian statistical framework, we present BS-SNPer, a SNP calling

tool for BS-Seq data. BS-SNPer provides high performance in terms

of speed, memory usage, accuracy and sensitivity.
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