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Abstract

Triple-negative breast cancers (TNBCs) are typically resistant to treatment, and strategies that 

build upon frontline therapy are needed. Targeting the murine double minute 2 (Mdm2) protein is 

an attractive approach as Mdm2 levels are elevated in many therapy-refractive breast cancers. The 

Mdm2 protein-protein interaction inhibitor Nutlin-3a blocks the binding of Mdm2 to key signaling 

molecules such as p53 and p73α, and can result in activation of cell-death signaling pathways. In 

the present study, the therapeutic potential of carboplatin and Nutlin-3a to treat TNBC was 

investigated, as carboplatin is under evaluation in clinical trials for TNBC. In mutant p53 

TMD231 TNBC cells, carboplatin and Nutlin-3a led to increased Mdm2 and was strongly 

synergistic in promoting cell death in vitro. Furthermore, sensitivity of TNBC cells to combination 

treatment was dependent on p73α. Following combination treatment, γH2AX increased and 

Mdm2 localized to a larger degree to chromatin compared to single-agent treatment, consistent 

with previous observations that Mdm2 binds to the Mre11/Rad50/Nbs1 complex associated with 

DNA and inhibits the DNA-damage response. In vivo efficacy studies were conducted in the 

TMD231 orthotopic mammary fat pad model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. 

Using an intermittent dosing schedule of combined carboplatin and Nutlin-3a, there was a 

significant reduction in primary tumor growth and lung metastases compared to vehicle and 

single-agent treatments. Additionally, there was minimal toxicity to the bone marrow and normal 

tissues. These studies demonstrate that Mdm2 holds promise as a therapeutic target in combination 

with conventional therapy and may lead to new clinical therapies for TNBC.
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Introduction

The development of efficacious therapies for TNBC has been challenging due to its 

aggressive nature and lack of hormone receptors that can be therapeutically targeted (1, 2). 

Platinum agents, such as cisplatin and carboplatin, form DNA-platinum adducts resulting in 

intra- and interstrand DNA crosslinks leading to increased double strand breaks and cell 

death (3). Clinical studies have indicated that platinum-based therapy can provide enhanced 

efficacy in TNBC (4, 5). Furthermore, clinical trials are currently evaluating the utility of 

combination therapies that include carboplatin to specifically treat TNBCs with metastases 

(NCT01881230, NCT00691379, and NCT01281150; www.clinicaltrials.gov). While 

platinum agents show promise in the clinic, new combination treatment modalities are 

needed that optimize tumor cell kill without enhancing platinum-mediated toxicity to normal 

tissues, thereby increasing the therapeutic window.

Targeting the mouse double minute 2 (Mdm2) signaling axis holds promise as a novel 

approach to combination therapy in the treatment of TNBC. Mdm2 is a multi-faceted protein 

involved in numerous aspects of cell growth, survival, and invasion (6). Mdm2 is a E3 
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ubiquitin ligase that targets p53 for degradation by the proteasome (7) and is expressed in a 

number of tumor types. There is mounting evidence demonstrating the critical role Mdm2 

plays in cell growth regulation and cancer (6). In breast cancers, studies have shown Mdm2 

gene amplifications range from 10–60% with some studies indicating a worse prognosis 

with overexpression of Mdm2 or gene amplification (6, 8). Moreover, evidence suggests that 

high Mdm2 levels correlate with a higher incidence of metastasis in vivo (6, 8, 9).

Nutlin-3a is a small molecule, which binds to the N-terminal hydrophobic pocket of Mdm2 

and blocks protein-protein interactions (PPIs) between Mdm2 and p53 (10). Nutlin-3a also 

inhibits the binding of the p73 isoform p73α, as well as E2F1 and hypoxia inducible factor 

1α (Hif-1α), to the N-terminal hydrophobic pocket of Mdm2 (11–13). It is estimated that 

p53 is mutated in approximately 50% of all cancers with 60% of TNBCs bearing mutations 

in p53 (14, 15); in contrast, p73 is rarely mutated in cancers (14, 16). p73 is a member of the 

p53 family of tumor suppressors and has similar transactivation functions relating to the 

induction of pro-apoptotic genes in response to cellular stress (17, 18). Lau and colleagues 

showed that when cells were treated with Nutlin-3a, the binding of p73α to Mdm2 was 

inhibited, leading to p73α-mediated induction of pro-apoptotic downstream targets and 

increased apoptosis in cells lacking wild-type p53 (12). The use of Nutlin-3a to inhibit PPIs 

between Mdm2 and binding partners, including p53, p73α, E2F1, and Hif-1α (10–13), may 

lead to a multi-targeted approach to treating cancer, especially when coupled with clinically 

relevant DNA damaging drugs such as carboplatin.

The purpose of the present study was to investigate the therapeutic potential of modulating 

Mdm2 function in the context of carboplatin-mediated DNA damage utilizing an optimized 

human mutant p53 TNBC orthotopic xenograft model. In vitro, carboplatin and Nutlin-3a 

were strongly synergistic in increasing cell death in TNBC cells with a mutant p53 

background. siRNA studies indicated that drug sensitivity, as well as Mdm2 protein levels, 

were dependent on p73α. Following combination treatment in our model system, there was 

increased Mdm2 localized to chromatin compared to single agent treatment. In vivo efficacy 

experiments, conducted in the TMD231 orthotopic mammary fat pad model in NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice, demonstrated a statistically significant reduction in 

primary tumor volume as well as lung metastases with significantly increased probability of 

survival compared to vehicle and single-agent treatments. In regards to normal tissue 

toxicity, body weights were only transiently affected, and recovered to normal levels post-

treatment. Treatment-mediated decreases in hematopoietic function were similar in mice 

treated with carboplatin alone or combination Nutlin-3a/carboplatin, and these decreases did 

not lead to bone marrow aplasia. The present study demonstrates that Mdm2 is a valid 

therapeutic target in mutant p53 TNBC and that Mdm2 PPI inhibitors offer new avenues for 

exploring novel combination therapies for treatment of TNBC.

Materials and Methods

Cells and Cell Culture

MDA-MB-231 (HTB-26), MDA-MB-468 (HTB-132), MCF10A (CRL-10317), and MCF-7 

(HTB-22) were purchased from ATCC in 2010 (MCF-7), 2012 (MDA-MB-468), and 2014 

(MDA-MB-231 and MCF10A). Primary human fibroblast cells were kindly provided by 
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Kathrin Scheckenbach, Düsseldorf, Germany in 2014. TMD231 cells were obtained from 

Dr. Harikrishna Nakshatri in 2009 and are a derivative of the MDA-MB-231 cell line (19). 

TMD231 cells were transduced with E2-Crimson lentiviral vector, p2CL7CR2wo, 

(TMD231-CR) for in vivo imaging as described (20). Upon receipt, cell stocks were 

cryopreserved at low passage. Authentication of molecular profiles was verified by short 

tandem repeat (STR) analysis (IDEXX BioResearch), and cells tested negative for 

mycoplasma. TMD231 cells were cultured in MEM-α (Gibco) supplemented with 10% FBS 

(Atlanta Biologicals) and 1% HEPES (Invitrogen). MDA-MB-231, MDA-MB-468, and 

primary human fibroblast cells were cultured in DMEM (Gibco) supplemented with 10% 

FBS (Atlanta Biologicals). MCF10A cells were cultured in Medium 171 (Gibco) 

supplemented with 1% MEGS (Invitrogen) and 0.1% cholera toxin (Sigma). All cells were 

cultured at 37°C with 5% CO2.

Compounds

Nutlin-3a was synthesized at the IUPUI Chemical Synthesis and Organic Drug Lead 

Development Core and confirmed through HPLC-MS analysis. Carboplatin was purchased 

from Sigma. For in vitro studies, carboplatin was dissolved in H2O, while Nutlin-3a was 

dissolved in DMSO. Final concentration of DMSO was <0.2%. For in vivo studies, 

carboplatin was dissolved in PBS, while Nutlin-3a was suspended in 0.5% methylcellulose 

(Sigma) and 0.05% Tween80 (Sigma).

Methylene Blue Proliferation Assay

The methylene blue proliferation assay was derived from Oliver et al. (21). Cells were 

treated with varying concentrations of Nutlin-3a, carboplatin, or combination dose-ratios for 

3–5 days in triplicate-sextuplicate. IC50 values were calculated according to the linearization 

method of Chou and Talalay (22) and were used to construct isobolograms as previously 

described (23).

Clonogenic Proliferation Assay

TMD231 cells were plated at low cell density and treated with Nutlin-3a, carboplatin, or a 

1:1 combination and colonies enumerated at Day 14.

Cell Counting Proliferation Assay

Cells were treated with Nutlin-3a, carboplatin, 1:1 Nutlin-3a/carboplatin, or appropriate 

vehicle control. Each experiment was conducted in triplicate. The number of live cells was 

determined in the presence of trypan blue dye via hemocytometer.

In Vitro Analysis of Activated Caspase-3/7, γH2AX, Mdm2, and Cleaved PARP

For in vitro studies, activated Caspase-3/7 was measured using ApoTox-Glo Triplex Assay 

(Promega) as per manufacturer’s instructions. For measurement of γH2AX foci, TMD231 

cells were seeded on chamber slides (Lab-Teck Brand Products) and treated the next day. 

Cells were fixed with 2% paraformaldehyde, and stained with a fluorescein isothiocyanate 

(FITC)-conjugated phospho-histone H2AX (Ser139) primary antibody (1:200 dilution, Cell 

Signaling), incubated with 4',6-diamidino-2-phenylindole (DAPI), and analyzed as 
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described in the Supplemental Materials and Methods. γH2AX, Mdm2, and cleaved PARP 

were measured using MILLIPLEX MAP γH2AX/β-Tubulin, Mdm2/β-Tubulin or PARP/

GAPDH Magnetic Beads (EMD Millipore) as per manufacturer’s instructions. Mean 

fluorescence intensities (MFI) per µg protein were normalized to GAPDH or β-Tubulin MFI.

Annexin V and 7-AAD Apoptosis Assay

TMD231 cells were treated for 96 hours with the IC50 concentrations of carboplatin or 

Nutlin-3a alone, or in 1:0.3, 1:1, or 1:3 dose-ratios of Nutlin-3a:carboplatin in triplicate. 

Cells were collected and stained using Annexin V-FITC (BD Biosciences) and 7-AAD (BD 

Biosciences) per manufacturer’s instructions and analyzed by flow cytometry.

Western Blot Analysis

Cells were lysed with RIPA buffer containing 1 Complete-EDTA free mini tablet (Roche), 

and 1% phosphatase inhibitor 3 (Sigma) (24, 25). Protein was quantified using the DC 

Protein Assay (Bio-Rad) per manufacturer’s instructions. Western blot densitometry was 

determined using ImageJ software (http://imagej.nih.gov/) and proteins of interest were 

normalized to loading control and expressed relative to untreated, vehicle, or siControl cells.

Antibodies

For in vitro and in vivo Western blots, Mdm2 (90kDa band) antibody cocktail included 

SMP14 (sc-965, Santa Cruz), 2A9 (OP155T, Calbiochem), and 4B11 (OP143, Calbiochem). 

Antibodies for PUMA (21kDa, #4976, Cell Signaling), p21 (21kDa, DCS60, Cell 

Signaling), p53, (DO-1, sc-126, Santa Cruz), MdmX (55kDa, ab154324, Abcam), γH2AX 

(17kDa, #2577, Cell Signaling), α-tubulin (50 kDa, clone B-5-1-2, Sigma-Aldrich) and 

GAPDH (37kDa, 14C10, #2118, Cell Signaling) were also used. In the TMD231 cells, the 

predominant form of p73 detected was the alpha isoform (~80kDa, A300-126A, Bethyl 

Laboratories). While the p73 polyclonal antibody A300-126A recognizes multiple isoforms 

of p73, it does not recognize ΔNp73. For the chromatin association assay, antibodies 

included Mdm2 (3G9, Millipore), H2AX (A300-082A, Bethyl), and β-Actin (AC-15, 

Sigma) as previously described (25).

Transient knockdown of p73α with siRNA

ON-TARGETplus non-targeting control and SMARTpool ON-TARGETplus p73 siRNAs 

were purchased from Dharmacon (GE Healthcare). See Supplemental Materials and 

Methods for p73 siRNA constructs. Lipofectamine RNAiMAX (Life Technologies) was 

used for transfection. For Western blot and proliferation assays, TMD231 cells were 

transfected with either non-targeting control siRNA or p73 siRNA. On day 1 post-

transfection, cells were seeded into 6-well plates (Western) or 96-well plates (proliferation 

assays), treated with Nutlin-3a or carboplatin, alone or in combination for 72 hours, and 

IC50 values determined. For Western blot experiments, cells were treated with Nutlin-3a or 

carboplatin, alone or in combination for 24 hours.
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Chromatin Association Assay

TMD231 cells were treated with Nutlin-3a, carboplatin, 1:1 combination, or vehicle control 

for 6 hours. Cells were harvested, and soluble and chromatin bound proteins separated with 

CSK buffer as described (26). The chromatin fraction was extracted with RIPA buffer 

containing protease inhibitors (24, 25). Whole cell lysates were prepared as previously 

reported (27).

Animals

All studies were carried out in accordance with, and approval of, the Institutional Animal 

Care and Use Committee of Indiana University School of Medicine and the Guide for the 

Care and Use of Laboratory Animals. Female NOD/scid and NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice 6–8 weeks of age were obtained from the In Vivo 

Therapeutics Core of the Indiana University Simon Cancer Center. Animals were 

maintained under pathogen-free conditions and maintained on Irradiated Global 2018 

(Uniprim 4100 ppm) (TD.06596, Harlan Laboratories USA) food pellets with ad libitum 

access to autoclaved, acidified tap water under a 12-hour light-dark cycle at 22–24°C.

Animal Strain Comparisons

NOD/scid and NSG mice were implanted with 1×106 TMD231 cells into the mammary fat 

pad. Tumor volumes were calculated according to the formula (α2 × β)/2, where α was the 

shorter and β was the longer of the two dimensions following caliper measurements. Mice 

were sacrificed throughout the study to better understand longitudinal metastasis formation 

in the lungs via H&E staining.

Orthotopic Xenograft Studies

In the first study, NSG mice were implanted with 1×106 TMD231 or TMD231-CR cells in 

the mammary fat pad. Mice were optically imaged on day 7 and block-randomized to 

treatment groups based on tumor fluorescence intensity: vehicle (Veh; PBS

+methylcellulose/Tween80), 25 mg/kg carboplatin i.p. (Carb) (in AM), 200 mg/kg Nutlin-3a 

p.o. (Nut) (in PM), or 25 mg/kg carboplatin+200 mg/kg Nutlin-3a (Combo), and were dosed 

three times weekly for 2 weeks. Body weights were collected weekly and primary tumors 

were measured via caliper bi-weekly. The endpoint for the study was when the primary 

tumors reached ≥1000mm3. At the time of sacrifice, the primary tumors and lungs were 

collected for Ki67 and H&E staining.

In the second study, animals were implanted and block-randomized into treatment groups: 

vehicle (Veh; PBS+methylcellulose/Tween80), 20 mg/kg carboplatin (Carb), 200 mg/kg 

Nutlin-3a (Nut), and 20 mg/kg carboplatin+200 mg/kg Nutlin-3a combination (Combo) 

(n=12 per group). Mice were dosed twice weekly for 4 weeks. Body weights and primary 

tumors were measured as described above. To determine drug effects on bone marrow, four 

mice from each treatment group were sacrificed at 5 days following the completion of 

treatment and total bone marrow cell counts determined. At the time of sacrifice, the 

primary tumors and lungs were collected and fixed for H&E analysis. Femurs were collected 

to determine bone marrow cellularity. The remaining mice from each treatment group (n=8 
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per group) were used to examine the probability of survival for tumors to reach ≥800 mm3. 

Total bone marrow cell counts were also determined at the endpoint (n=3 per group).

In the third study, mice were implanted as described above and dosed with vehicle (Veh; 

PBS+methylcellulose/Tween80), 20 mg/kg carboplatin (Carb) (in AM), 200 mg/kg 

Nutlin-3a (Nut) (in PM), or 20 mg/kg carboplatin+200 mg/kg Nutlin-3a in combination 

(Combo) twice weekly for 4 weeks. Endpoint was when primary tumors reached ≥1000 

mm3. Following necropsy, primary tumors, lungs, liver, spleen and femur bones were 

collected and evaluated with H&E staining. Bone marrow cellularity, complete blood counts 

(CBCs), and progenitor assays were completed.

Tissue Processing and Staining

Tissues were fixed in 10% neutral buffered formalin at 4°C for 24 hours followed by tissue 

processing, and then embedded in paraffin. Five-micron sections were cut and stained for 

routine H&E or Ki67 (DAKO).

Whole Slide Digital Imaging

The Aperio ScanScope CS system whole slide digital imaging system was used for imaging 

(Leica Biosystems). All slides were imaged at 20×. Images were captured from the whole 

slides and stored in the Spectrum software system. See Supplemental section for details of 

analysis.

In Vivo Imaging

Anesthesia was induced with 4–5% isoflurane (balance medical oxygen), and maintained 

with 1–2% isoflurane. Mice were imaged using an Optix MX3 (ART Technologies), where 

excitation and emission of E2-Crimson was carried out at 635 nm and 650 nm, respectively.

Bone Marrow Cellularity

Femurs were collected, crushed, and cells were filtered through 70 µm filters. Red blood 

cells were depleted with RBC Lysis Buffer (Qiagen). Total cell counts were determined 

using a Beckman Coulter Counter.

Colony-forming Unit Progenitor Assay

Bone marrow cells were plated in triplicate at 2×104 per plate in MethoCult GF M3434 

(StemCell Technologies) and progenitor colonies counted as described in Cai et al. (28).

Total Complete Blood Counts (CBCs)

Tumor-bearing mice were treated with vehicle control (Veh), carboplatin (Carb), Nutlin-3a 

(Nut) or carboplatin+Nutlin-3a combination (Combo). After a 2–4 week recovery period, an 

aliquot of peripheral blood was analyzed via Hemavet for red blood cells, platelets, and 

white blood cells.
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Statistics

Data were analyzed by one-, two-way, or repeated measures ANOVA or Student’s t-test, as 

appropriate, using SigmaPlot 11.2 (Systat Software, Inc.). In order to normalize the 

variability, data were logarithmically transformed for the purposes of statistical analysis for 

the MILLIPLEX data, Ki67 and H&E stain quantification, and CBCs data. Differences 

among individual pairs of means were determined by the Holm-Sidak post-hoc test. IC50 

were values determined using CalcuSyn (BioSoft). Kaplan-Meier survival plots were 

generated using SigmaPlot, and changes in survival analyzed by log-rank test. Data were 

considered significant at p<0.05. Data are presented as mean±1SD unless noted otherwise.

Results

In vitro evaluation of carboplatin and Nutlin-3a on growth of mutant p53 TNBC cells

The effects of single or combination Nutlin-3a/carboplatin treatment was evaluated in a 

panel of TNBC cell lines using methylene blue proliferation assays. Both carboplatin and 

Nutlin-3a produced dose-related decreases in cell proliferation in MDA-MB-231, TMD231, 

and MDA-MB-468 cells (Fig. 1A–C). Further, the IC50 values for both drugs were greatly 

reduced in combination treatments compared to single-agent treatments (Supplemental 

Table S1). In the isobologram analyses, the isoboles of different dose-ratios of carboplatin 

and Nutlin-3a fell well below the line of additivity indicating a synergistic effect of 

combination treatments (Fig. 1E–G). In addition, combination indices were <1 for all 

Nutlin-3a:carboplatin ratios tested, again indicating synergism between Nutlin-3a and 

carboplatin (Supplemental Fig. S1). As expected, MCF-7 (wt-p53) cells were more sensitive 

to single agent Nutlin-3a (Fig. 1D), and isobologram analysis indicated Nutlin-3a was 

synergistic with carboplatin (Fig. 1H). Additionally, combination indices <1 were observed 

in MCF-7 cells (Supplemental Figure S1).

Effects of combination treatment on cell death in TNBC cells and normal cells in vitro

Based on proliferation assay results, the effect of combination treatment on clonogenicity 

was evaluated in TMD231 cells. Colony formation was inhibited in a concentration-

dependent manner following Nutlin-3a, carboplatin, and 1:1 combination treatment (Fig. 

2A–C). Growth was inhibited by ~50% at concentrations of 2.5 µM carboplatin or 30 µM 

Nutlin-3a alone (Fig. 2A–B). In contrast, following combination treatment, clonogenic 

growth was inhibited ~50% by 1.5 µM of each compound, consistent with synergism (Fig. 

2C). To understand how cell proliferation was inhibited, kinetic experiments were conducted 

using TMD231 cells to quantify the number of viable cells throughout a 5-day treatment 

period. We elected to use a 1:1 dose-ratio of Nutlin-3a:carboplatin for this study since this 

ratio exhibited the largest synergism in the isobologram analysis (Fig. 1F). Based on 

analysis of carboplatin plasma levels in clinical trials for metastatic disease, a concentration 

of 15 µM carboplatin was selected for the in vitro studies (29). Consistent with our cell-

proliferation data, 15 µM Nutlin-3a did not markedly affect cell viability, whereas 15 µM of 

carboplatin significantly reduced cell number, over time (Fig. 2D). For the combination 

treated cells, there was a significant further reduction in the number of cells relative to 

carboplatin alone (Fig. 2D, inset).
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The sensitivity of MCF10A mammary epithelial and normal human fibroblast cells to single 

agent and combination treatment was compared to that of TMD231 cells. Cells were 

exposed to 15 µM of carboplatin, Nutlin-3a, or a 1:1 ratio of carboplatin and Nutlin-3a for 5 

days. As expected, wild-type p53 normal human cells were significantly more sensitive to 

Nutlin-3a than the mtp53 TMD231 cells (Fig. 2E). Interestingly, the TMD231 cells were 

significantly more sensitive to carboplatin than the normal human cells (Fig. 2E), consistent 

with previous reports that mtp53 cancer cells can have inefficient nucleotide excision repair 

(30), rendering them more susceptible to platinum-mediated DNA damage. As observed in 

Fig. 2D, TMD231 cells were significantly more sensitive to the combination treatment than 

single agent alone. Moreover, TMD231 cells were significantly more sensitive than the 

MCF10A epithelial and human fibroblast cells to 15 µM combination treatment (Fig. 2E). 

While in vitro toxicity data do not necessarily predict toxicity in vivo, these data indicate 

that careful selection of compound doses and scheduling will be crucial to avoid 

unacceptable levels of normal tissue toxicity in vivo.

We next examined the effects of the combination treatment on activated Caspase-3/7 

following dual Nutlin-3a and carboplatin treatment in TMD231 cells. The 1:1 combination 

of Nutlin-3a:carboplatin led to a significant increase in activated Caspase-3/7 compared to 

single drug treatments after 3 days of treatment (Fig. 2F). Additionally, cleaved PARP was 

significantly increased in combination treated TMD231 cells following 3 days treatment 

(Fig. 2G). Further, apoptosis was examined in TMD231 cells after 4 days of treatment, 

based on our observation of reductions in cell number by 4 days post treatment (Fig. 2D, 

inset). The IC50 values from three different dose-ratios [1:1 (0.8:0.8 µM), 1:0.3 (3.75:1.25 

µM), and 11:3 (0.7:2.1 µM) Nutlin-3a:carboplatin], as calculated from the TMD231 

proliferation assays (Fig. 1 and Supplemental Table S1), were used in the apoptosis assays. 

Total apoptosis/necrosis was significantly increased in all combination-treatments (50–75%) 

compared to either drug alone (20–30%) (Fig. 2H), indicating that cell death pathways are 

activated in TNBC cells following combination treatment in vitro. Normal fibroblast cells 

were relatively resistant to Nutlin-3a and carboplatin both as single agents and in 

combination with total apoptosis/necrosis <5% (Supplemental Fig. S2) indicating specificity 

of the combination treatment inducing apoptosis in TNBC cells compared to normal cells.

Target modulation and mechanism of action following combination treatment

We hypothesized, based on previous studies (12), that the effects of Nutlin-3a in a mutant 

p53 background were most likely attributable to p73α-mediated signaling. To gain an 

understanding of molecular mechanisms that contribute to cell death in TNBC cells, the 

effect of treatment on levels of p73α and downstream targets Mdm2, p21, and PUMA was 

evaluated in TMD231 cells (Fig. 3A). TMD231 cells were transiently transfected with non-

targeting control or p73 siRNAs followed by treatment with single agent or combination for 

24 hours. In the siControl RNA TMD231 cells, Nutlin-3a alone and combination Nutlin-3a/

carboplatin produced increases in Mdm2 when compared to vehicle-treated cells (Figure 3A, 

left panel). p73α was constitutively expressed in TMD231 cells and no large changes in 

p73α levels were evident following treatment. PUMA levels were higher in combination-

treated TMD231 cells compared to vehicle and single agent-treated cells and increases in 

p21 were observed following carboplatin or combination treatment. Efficient knockdown of 
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p73α was obtained (Fig 3A, right panel) and the effect of p73α knockdown following 

treatment was evaluated. In contrast to siControl cells treated with Nutlin-3a or combination, 

Mdm2 protein levels were lower in siRNAp73-transfected cells, indicating that p73α plays a 

role in regulating Mdm2 levels (Fig. 3A). In comparison to siControl cells, p21 levels were 

lower in carboplatin- and combination-treated siRNAp73 cells and PUMA levels were lower 

in combination-treated siRNAp73 cells, indicating that p21 and PUMA induction is 

dependent to some extent on p73α (Fig. 3A). The levels of the Mdm2-binding partner 

Mdmx were also evaluated; no significant changes in protein levels in both siControl and 

siRNAp73 transfected cells were observed following treatment (Fig. 3A).

Sensitivity of TMD231 cells to carboplatin and Nutlin-3a was dependent on p73α protein 

levels. When cellular sensitivity was examined by methylene blue proliferation assays, there 

was a significant increase in IC50 values for carboplatin alone and carboplatin plus Nutlin-3a 

at a 1:1 dose-ratio in siRNAp73-transfected TMD231 cells compared to siControl 

transfected cells (Fig. 3B).

Cell cycle analysis indicated that the TMD231 cell line had both diploid and aneuploid 

subpopulations and that carboplatin-treated TMD231 cells accumulated in S and G2/M in 

both subpopulations (Supplemental Fig. S3), which is consistent with previous reports that 

platinum agents lead to S and G2/M accumulation (31). Nutlin-3a alone did not induce cell 

cycle arrest in mutant p53 TMD231 cells (Supplemental Fig. S3). Additionally, TMD231 

cells treated with the 1:1 Nutlin-3a:carboplatin combination arrested in S and G2/M and also 

exhibited an increased sub-G1 apoptotic population (Supplemental Fig. S3).

Mdm2 can modulate the ability of cells to sense DNA damage through its direct binding to 

Nbs1 of the MRN DNA repair complex (24). Therefore, we next determined if increased 

levels of total Mdm2 correlated with increased levels of Mdm2 associated with the 

chromatin fraction. TMD231 cells were treated with 15 µM Nutlin-3a, 15 µM carboplatin, or 

1:1 combination for 6 hours, and the levels of Mdm2 in whole cell lysates and chromatin 

fraction lysates were determined by Western blot. Following Nutlin-3a or combination 

treatment, whole cell lysates showed increased levels of Mdm2 (Fig. 3C). In chromatin 

fractions isolated from the different treatment groups, association of Mdm2 with the 

chromatin was increased in combination-treated cells compared to the untreated or single 

agent-treated cells (Fig. 3D). These findings are consistent with the interpretation that the 

increased localization of Mdm2 to chromatin leads to inhibition of the MRN complex (24), 

and may decrease the ability of cells to sense carboplatin-mediated DNA damage leading to 

increased cell death. Time course studies indicated that γH2AX foci were significantly 

elevated in combination-treated versus single agent- and vehicle-treated cells by 48 hours 

post-treatment using confocal microscopy as a highly sensitive measure of γH2AX foci 

formation (Fig. 3E). Analysis of γH2AX via MILLIPLEX indicated significant increases in 

γH2AX by 72 hours post-treatment (Fig. 3F). Significant increases in Mdm2 were evident in 

TMD231 cells treated with Nutlin-3a and combination at all time points analyzed (Fig. 3G).

It is possible that blockade of the N-terminal p53-binding site of Mdm2 by Nutlin-3a could 

result in stabilization of mutant p53 (32). However, in TMD231 cells, there was no increase 

in mtp53 steady-state protein levels upon treatment with combination Nutlin-3a/carboplatin 
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compared to vehicle (Fig. 3A). Cycloheximide experiments indicated that mtp53 was highly 

stable and no differences in mtp53 stability were observed in vehicle- versus combination 

treated TMD231 cells (Supplemental Fig. S4). Therefore, Nutlin-3a did not have an effect 

on mtp53 protein levels.

Development of a fluorescence imaging model for early detection of orthotopic TMD231 
primary mammary fat pad tumors

To optimize an in vivo animal model to study human TNBC, we initially compared the 

growth kinetics and metastasis to the lung in Nod/Scid versus NSG mice. In contrast to Nod/

Scid mice, TMD231 tumors implanted in NSG mice grew more consistently, at a faster rate, 

and lung metastases were detected earlier following implant (Fig. 4A–B). The NSG strain 

was thus selected for subsequent studies. In NSG mice, TMD231 fat pad tumors were 

palpable by day 7 post-implantation, but the tumors were too small to be accurately 

measured by calipers until approximately day 14 or later, a time point at which tumor 

burden rapidly increases at both the primary and lung metastatic sites. To optimize the 

therapeutic window in the model, mice were randomized to treatment groups based on 

primary tumor size at day 7 using fluorescence imaging.

TMD231-CR transduced cells expressed high levels of E2-Crimson (Supplemental Fig. 

S5A–B), and fluorescence intensity was linearly related to the number of cells implanted in 

the mammary fat pad (Supplemental Fig. S5C–D). Further, sensitivity to Nutlin-3a and 

carboplatin in an in vitro proliferation assay, alone or in combination was similar to that 

observed in non-transduced TDM231 parental cells (Fig. 1B, Supplemental Table S1, and 

Supplemental Fig. S5E). Fluorescence intensity from tumors was detected in the mammary 

fat pad as early as 7 days post-implantation in nearly 100% of the mice, which is a time 

point before detection of metastatic foci in the lungs (Fig. 4A–B) and was used to block-

randomize mice into treatment groups at day 7 post-implantation (Supplemental Fig. S5F–

G). We also evaluated whether fluorescence imaging could be used to longitudinally 

monitor the appearance of metastatic foci in the lungs. However, the photon emission from 

tumor foci in the lungs could not be detected, most likely due to secondary inner-filtering 

and light scattering by tissue surrounding the foci. Therefore, H&E staining of lung tissue 

was used to quantify metastatic foci at the end of each study. Using this optimized model, 

we performed dose-finding studies for carboplatin to identify a dose and schedule to 

combine with Nutlin-3a. Carboplatin produced dose-related decreases in TMD231-CR 

growth and increased probability of survival using an endpoint of primary tumor volume 

≥1000 mm3 (Fig. 4C–D). The median survival was 41±3.6 days for vehicle, 44±4.3 days for 

1 mg/kg, 48±1.9 days for 3 mg/kg, and 58±0 days for 30 mg/kg of carboplatin (Fig. 4D). 

Based on these data, we elected to administer carboplatin at 20 mg/kg in the combination 

efficacy studies.

In vivo effects of combination Nutlin-3a/carboplatin treatment on growth of primary tumor 
and metastatic foci in the lung

Combination treatment significantly inhibited primary tumor growth compared to vehicle 

and single agent treatments (Fig. 5A). Body weights were transiently reduced by carboplatin 

and the combination of Nutlin-3a/carboplatin; however, by the end of the study, all body 
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weights were within a normal range (Fig. 5B). In addition, there were no visual signs of 

dehydration, diarrhea, or hemorrhaging of the gastrointestinal tract. Further, primary tumors 

excised at the termination of the study weighed significantly less from mice treated with 

combination therapy compared to vehicle and single agent treatments (Fig. 5C). 

Additionally, there was a significant reduction in Ki67 staining in primary tumors of 

combination treated mice as measured by whole slide digital imaging (Fig. 5D).

At termination of the study, the metastatic burden in the lungs was compared among the 

treatment groups (Fig. 5E–F). In contrast to mice treated with vehicle or single-agent, the 

combination treatment significantly decreased the metastatic burden as measured by H&E 

staining and whole slide digital imaging analysis (Fig. 5F). From the present data, it is not 

clear whether the combination treatment kills metastatic cells at the primary tumor site, 

inhibits the metastatic process, and/or leads to tumor cell death after the TMD231 cells 

metastasize to the lungs. In vitro invasion assays however, indicated that the combination 

treatment did not significantly affect cell invasion when compared to vehicle- or single 

agent-treatments (Supplemental Fig. S6).

To evaluate potential pharmacodynamic (PD) biomarkers of therapeutic response in vivo, 

NSG mice were implanted with TMD231-CR cells and treated for 3 consecutive days with 

vehicle, carboplatin, Nutlin-3a, or Nutlin-3a/carboplatin combination. The tumors were 

excised 2 hours after the last dose and tumor lysates examined by Western blot 

(Supplemental Fig. S7A–B). In PD study 1, tumors were lysed in 1% SDS to efficiently 

isolate nuclear-localized proteins (Supplemental Fig. S7A). Basal levels of p73α did not 

significantly change in any of the groups. While Mdm2 levels were overall higher in tumors 

from the Nutlin-3a treated group versus vehicle, it was not significant (p=0.08). In 

comparison to the carboplatin-alone treated group, Mdm2 levels were significantly higher in 

the Nutlin3a-alone and combination treated groups (p<0.05). Furthermore, p21 levels 

significantly increased in tumors from mice treated with the combination compared to 

vehicle (p<0.05). In PD study 2, the tumor samples were lysed in RIPA buffer since we have 

found that this extraction method is optimal for detection of the phosphoprotein γH2AX in 

tumor tissue (Supplemental Fig. S7B). Analysis of Western blots via densitometry indicated 

that while γH2AX increased in the single agent- and combination-treated tumors compared 

to vehicle-treated mice, statistical significance was not reached (p>0.05); mutant p53 levels 

remained unchanged across the treatment groups (Supplemental Fig. S7B). In addition, the 

levels of activated Caspase-3 and cleaved PARP were evaluated in tumor lysates derived 

from PD study 2. While activated Caspase-3 was detectable in 50% of the vehicle-treated 

tumors, activated Caspase-3 was detected in 100% of the tumors treated with Nutlin-3a, 

carboplatin, or combination (Supplemental Fig. S7C). Similar results were obtained in tumor 

samples probed for cleaved PARP with 100% of tumors having measureable levels of 

cleaved PARP following combination treatment while only 50–66% of tumors contained 

measureable levels of cleaved PARP following vehicle, Nutlin-3a, or carboplatin treatment 

(Supplemental Fig. S7D).
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Effects of combination Nutlin-3a/carboplatin treatment on survival and normal tissue 
toxicity in vivo

To confirm therapeutic effects on tumor growth and evaluate effects of treatment on 

hematopoiesis, a sensitive indicator of normal tissue toxicity, a second orthotopic study was 

conducted. Similar to the previous study (Fig. 5), the combination treatment led to 

significantly reduced tumor volumes when compared to vehicle and single agent treatments 

(Fig. 6A) with only a transient decrease in body weights during therapy (Fig. 6B). 

Significant reductions in metastatic burden following combination treatment were also 

observed (Fig. 6C). Survival was evaluated using the day post-implant at which the primary 

tumor volume reached ≥800 mm3 as the survival endpoint. In contrast to single-agent 

therapy, the Nutlin-3a/carboplatin combination significantly increased the probability of 

survival (Fig. 6D). Median survival was 40±1.5 days for vehicle, 40±8.1 for Nutlin-3a, 

47±2.6 for carboplatin, and 54.3±0.9 days for the combination (Fig. 6D). Bone marrow 

cellularity was determined at 5 days and ≥14 days post-treatment. At 5 days post-treatment, 

total bone marrow cell counts (Fig. 6E, left panel) were significantly reduced in 

combination-treated mice relative to the other groups. However, by 14–28 days post-

treatment (Recovery), bone marrow cellularity had recovered to control levels (Fig. 6E, right 

panel).

Normal tissue toxicity was further examined in a third study. Total bone marrow cell counts 

were analyzed following a 2-week recovery period post treatment in all groups, and the 

frequency of hematopoietic progenitor cells in the bone marrow was evaluated. While 

complete blood counts and hematopoietic progenitors were significantly decreased in 

samples from mice treated with carboplatin alone or the combination compared to vehicle or 

Nutlin-3a alone, there were no differences between carboplatin alone and combination 

groups (Fig. 6F–I). Furthermore, no indications of normal tissue toxicity were noted at the 

tissue level upon analysis of H&E staining of liver, spleen, and femur bone marrow smears, 

evaluated by a board-certified pathologist (G.E. Sandusky; personal communication).

Discussion

The objective of the present study was to evaluate the outcome of modulating Mdm2 

function in the context of current chemotherapeutic approaches for TNBC as well as assess 

Mdm2 as a therapeutic target. TNBCs are highly refractive to therapy and the development 

of multi-targeted treatments that exhibit an acceptable toxicity profile are needed. 

Approximately 60% of basal TNBCs bear mutations in p53 (15) and ~90% of mutations in 

p53 occur in the DNA binding domain. The MDA-MB-231 (mtp53 R280K), the MDA-

MB-231 derivative TMD231 (mtp53 R280K) and the MDA-MB-468 (mtp53 R273H) cells 

used in our study all have missense mutations within the DNA binding domain of p53 (33). 

The mtp53 R280K mutation in the MDA-MB-231 and the TMD231 cells has been reported 

to have gain-of function properties (34); however, its exact role is still not well understood. 

Gain-of-function mutant p53 may antagonize other tumor suppressing capabilities of cells. 

In some cell types mtp53 can sequester p73, which leads to a blockade of p73-mediated 

downstream signaling (35). Xu and colleagues demonstrated that mutant p53 (mtp53) 

(R282W and R110P) exhibit a misfolded/aggregated state which leads to increased 

Tonsing-Carter et al. Page 13

Mol Cancer Ther. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aggregation of mtp53 with p73 causing inhibition of p73 function (35). It is not known if the 

gain-of-function ability of mutant p53 in the MDA-MB-231 and TMD231 (R280K) cells 

plays a similar role in co-aggregation with p73 and will be addressed in future studies. 

However, a sufficient pool of “free” p73 must exist for exposure of TNBC cells in vitro to 

combination Nutlin-3a/carboplatin treatment led to a synergistic inhibition of cell 

proliferation, which was dependent, at least in part, on p73α-mediated signaling (Figure 

3B).

Previous studies have demonstrated that mutant p53 cancer cells can harbor nucleotide 

excision repair defects, rendering them highly sensitive to platinum agents (30). 

Furthermore, ongoing clinical trials for metastatic TNBC are including platinum agents in 

their treatment regimens (4, 36–38). In an orthotopic humanized breast-to-lung model, 

treatment with Nutlin-3a/carboplatin significantly inhibited primary tumor growth, and 

metastatic foci in the lung were fewer in number and smaller in size relative to treatment 

with vehicle or single-agent therapy. Pharmacokinetic studies have demonstrated efficient 

delivery of Nutlin-3a to the lungs, which was comparable to plasma levels (39). In addition, 

carboplatin is routinely used to treat non-small cell lung cancer, providing further rationale 

for the utility of this combination therapy to treat metastatic foci in the lung (40, 41). The 

p53 family member p73α has functions similar to p53 (17, 18, 42, 43), but is regulated 

differently by Mdm2. While p53 and p73α can both interact with Mdm2 in the same N-

terminal hydrophobic pocket (12), Mdm2 does not ubiquitinate p73α (44–46). Rather, 

Mdm2 sequesters p73α thereby preventing downstream p73α-mediated signaling (45). 

Blockade of the binding of Mdm2 to p73α by Nutlin-3a increases the pool of p73α available 

to transcriptionally activate pro-apoptotic gene expression and promote apoptosis in mutant 

p53 and p53 null cells (12). TMD231 cells transfected with p73 siRNA were more resistant 

to carboplatin and Nutlin-3a/carboplatin compared siRNA control-transfected cells. 

Additionally, decreases in p73α protein levels via siRNA knockdown correlated with 

decreased Mdm2 protein in TMD231 cells. These data are consistent with previous reports 

indicating that p73α can directly bind to the Mdm2 promoter and increase Mdm2 gene 

expression (12, 47).

It has been previously demonstrated that Mdm2 binds directly to Nbs1 of the Mre11/Rad50/

Nbs1 (MRN) complex, co-localizes with Nbs1 to DNA damage foci, and inhibits the DNA 

damage response (24, 25). While our studies do not demonstrate a direct interaction of 

chromatin-associated Mdm2 with the MRN complex, increases in Mdm2 associated 

chromatin following Nutlin-3a or combination Nutlin-3a/carboplatin are consistent with 

studies of Eischen and colleagues. They demonstrated that Nutlin-3a–induced increased 

levels of Mdm2 directly inhibit DNA damage response signaling and delayed DNA break 

repair in p53-null MEFs and in ovarian cancer cell lines that lacked p53 or that contained 

mutant p53 (48). Combination treatment and dosing strategies that reduce the amount of 

required chemotherapeutics are important clinically to decrease normal tissue toxicity as 

well as prevent the emergence of secondary malignancies caused by therapies that damage 

DNA. In MCF10A epithelial and human fibroblast cells, the combination treatment 

decreased cell growth in vitro compared to carboplatin alone but did not decrease cell 

growth beyond that of Nutlin-3a alone. In addition, the TMD231 cells were more sensitive 
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to the combination treatment than these other cell types. Jiang et al. previously reported that 

Nutlin-3 could protect renal cells from cisplatin-based therapy (49). To what extent 

Nutlin-3a provides chemoprotective effects in the present model will require further study.

The dosing schedule employed in the present breast-to-lung orthotopic model support the 

use of intermittent dosing schedules for Mdm2 inhibitors, particularly in the context of 

cytotoxic therapy. Bone marrow toxicity is one of the principal side effects of 

chemotherapeutic drugs and was monitored closely in the present in vivo studies. While 

there was a decrease in hematopoietic progenitor cells in the bone marrow of carboplatin- 

and Nutlin-3a/carboplatin-treated mice, the inclusion of Nutlin-3a did not lead to further 

increases in carboplatin-mediated toxicity. Analysis of normal tissues (liver, spleen, and 

bone marrow smears) by H&E indicated there were no obvious effects of the combination 

therapy on tissue integrity. Thus, combination Nutlin-3a/carboplatin treatment shows 

promise of efficacy with minimal effects on normal tissue toxicity compared to carboplatin-

alone.

The optimized breast-to-lung orthotopic model described here can be used to test novel 

combination platinum-based regimens and further increase our understanding of how to 

therapeutically potentiate DNA damage in TNBC at primary and metastatic sites. The 

present studies demonstrate the promise of Mdm2 as a therapeutic target in combination 

with current therapeutic approaches for TNBC, and may lead to new clinical therapies for 

TNBC and metastases.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Nutlin-3a sensitizes TNBC cells to carboplatin-mediated DNA damage in vitro
(A–D) Dose-related inhibition of growth by carboplatin, Nutlin-3a, and the 1:1 combination 

in MDA-MB-231, TMD231 and MDA-MB-468 TNBC cells and MCF-7 breast cancer cells 

following 5 day proliferation assays. (E–H) IC50 values of carboplatin and Nutlin-3a were 

determined at the indicated dose-ratios and analyzed by isobolograms. Individual isobole 

points which lie below the diagonal line of additivity indicate synergism, points on the line 

indicate additivity, and points above the line indicate antagonism. Each point represents the 
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mean of three experiments. Vertical and horizontal lines indicate ±1 SD and are absent when 

less than the size of the point.
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Figure 2. Potentiation of carboplatin-mediated DNA damage by Nutlin-3a increases cell death 
and differentially affects normal cells
(A–C) Dose-dependent reduction in colony forming units (CFUs) by Nutlin-3a (A), 

carboplatin (B), and in the 1:1 combination (C) (***p<0.001 vs V (vehicle), Holm-Sidak 

post hoc test, n=3). (D) Time-course of the number of viable TMD231 cells following 

treatment with vehicle (Veh), 15 µM Nutlin-3a (Nut), 15 µM carboplatin (Carb) or 1:1 

combination (Combo) (***p<0.001 combination vs Vehicle, Holm-Sidak post hoc test, 

n=3). Inset: Number of viable cells following carboplatin and combination treatment 

(*p<0.05 vs carboplatin alone, Student’s t-test, n=3). Vertical lines indicate ±1 SD and are 
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absent when less than the size of the point. (E) Effects of 15 µM of Nutlin-3a, carboplatin, or 

1:1 combination in TMD231, MCF10A mammary epithelial, and human fibroblast cells on 

the number of viable cells, expressed as % of vehicle control, following 5-days of treatment. 

The y-axis was plotted on a log scale to better illustrate the comparisons. (††† p<0.001 vs 

TMD231 treated with 15 µM Nutlin-3a, ‡‡‡ p<0.001 vs MCF10A and fibroblasts treated 

with 15 µM carboplatin, $$$ p<0.001 vs MCF10A and fibroblasts treated with combination, 

***p<0.001 vs TMD231 treated with 15 µM Nutlin-3a and carboplatin alone, Holm-Sidak 

post hoc test, n=3). (F) Activated Caspase-3/7 fold-induction in TMD231 cells treated with 

Vehicle (Veh), 15 µM Nutlin-3a (Nut), 15 µM carboplatin (Carb), or the combination (1:1 

combo) for 3 days (***p<0.001 vs Veh, Nut, and Carb, Holm-Sidak post hoc test, n=3). (G) 

Cleaved PARP fold-induction in TMD231 cells treated with Vehicle (Veh), 15 µM 

Nutlin-3a (Nut), 15 µM carboplatin (Carb), or the combination (1:1 combo) for 3 days 

(***p<0.01 vs Veh, Student’s t-test, n=3, ±SEM). (H) Total apoptosis/necrosis in TMD231 

cells treated with Nutlin-3a (N), carboplatin (C), or the combination (NC) at the indicated 

doses and dose-ratios (**p<0.01 vs Veh, N, and C, Holm-Sidak post hoc test, n=3).

Tonsing-Carter et al. Page 22

Mol Cancer Ther. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Effects of single agent and combination treatment on Mdm2 and dependency of 
treatment-mediated cell death on p73α

(A) TMD231 cells were transiently transfected with siControl or sip73 siRNA and treated 

with Vehicle (Veh), 15 µM Nutlin-3a (Nut), 15 µM carboplatin (Carb), or 1:1 combination 

(Combo) for 24 hours and levels of Mdm2, MdmX, p73α, p53, p21, PUMA, and GAPDH 

determined by Western blot. Densitometry for each protein was quantified by ImageJ and 

shown below each protein relative to siControl Vehicle-treated cells. (B) TMD231 cells 

transfected with sip73 or siControl (siCon) were treated with 15 µM Nutlin-3a (Nut), 15 µM 

carboplatin (Carb) or Nutlin-3a/carboplatin (Combo) for 3 days and IC50 values for 

inhibiting cell growth were determined after methylene blue staining (*p<0.05, vs siControl, 

Student’s t-test, n=5 independent experiments). (C–D) Cells were not treated (Untx) or 

treated with Vehicle (Veh), 15 µM Nutlin-3a (Nut), 15 µM carboplatin (Carb), or 1:1 

combination (Combo) for 6 hours. Mdm2 levels of (C) whole cell lysates (WCL) and the 

(D) chromatin fraction (Chromatin) were determined by Western blot. β-actin (WCL) and 

H2AX (chromatin) served as loading controls. Densitometry is shown above the blots. Data 
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are representative of 2 independent experiments. (E) γH2AX foci formation treated with 

Vehicle (Veh), 7.5 µM Nutlin-3a (Nut), 7.5 µM carboplatin (Carb), or 1:1 combination 

(Combo) (**p<0.01 vs Vehicle, ***p<0.001 vs Vehicle, ††p<0.01 vs Nut, †††p<0.001 vs 

Nut, #p<0.05 vs Carb, ###p<0.001 vs Carb at same time point, Holm-Sidak post hoc test, 

n=5 fields per group). (F) γH2AX levels normalized to β-Tubulin following Vehicle (Veh), 

15 µM Nutlin-3a (Nut), 15 µM carboplatin (Carb), or 1:1 combination (Combo) in TMD231 

cells (**p<0.01 vs Vehicle, ***p<0.001 vs Vehicle, ## p<0.015 vs Nut, ###p<0.001 vs Nut, 

and @p<0.01 vs Carb at the same time point, Holm-Sidak post hoc test, n=3 independent 

repeats). (G) Mdm2 levels normalized to β-Tubulin following Vehicle (Veh), 15 µM 

Nutlin-3a (Nut), 15 µM carboplatin (Carb), or 1:1 combination (Combo) in TMD231 cells 

(**p<0.01 vs Vehicle, ***p<0.001 vs Vehicle, @@@p<0.001 vs Carb, and ††p<0.01 vs 

Nut at the same time point, Holm-Sidak post hoc test, n=3 independent repeats).
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Figure 4. Metastatic breast-to-lung orthotopic model optimization and carboplatin dose-finding 
studies
Female Nod/Scid or NSG mice were implanted with 1×106 TMD231 cells in the mammary 

fat pad. (A) Longitudinal tumor growth in both mouse strains measured with calipers 

(±SEM). Inset: Number of lung metastatic foci in mice sacrificed at the indicated time points 

as determined by H&E staining (±SEM). (B) Representative microscopic images of H&E 

stained lung sections: normal mouse lung (i), days 18 (ii), 26 (iii), and 32 (iv) post-

implantation of TMD231 cells. (C–D) NSG mice were implanted with 1×106 TMD231-CR 

cells and dosed with Vehicle (Veh), 1, 3, or 30 mg/kg carboplatin i.p. 3× per week for 2 

weeks. (C) Dose-related decreases in tumor volume produced by carboplatin (***p<0.001 vs 

Vehicle, Holm-Sidak post hoc test, n=8–9 per group, ±SEM). (D) Dose-related increases in 

survival produced by carboplatin (***p<0.001 vs Vehicle, $$ p<0.01 vs 3 mg/kg, Holm-

Sidak post hoc test, n=8–9 per group).
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Figure 5. Carboplatin in combination with Nutlin-3a significantly decreases primary tumor 
growth and lung metastases
(A) Longitudinal tumor growth of mice administered Nutlin-3a (Nut), carboplatin (Carb) or 

the combination (Combo) (3× weekly for 2 weeks) (***p<0.001 vs all other groups, Holm-

Sidak post hoc test, n=7–9 per group, ±SEM). (B) Body weights following drug treatment 

(±SEM). (C) Primary tumor weight at study termination (***p<0.001 vs all other groups, 

Holm-Sidak post hoc test, n=7–9 per group, ±SEM). (D) Ki67 staining positivity of primary 

tumors using whole slide digital imaging (*p<0.05 vs all groups, Holm-Sidak post hoc test). 

(E) Representative H&E stained lung sections (magnification 20×). (F) Metastatic burden as 
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measured by the proportion of the lungs positive for H&E staining at study termination 

using whole slide digital imaging (**p<0.01 vs all groups, Holm-Sidak post hoc test, n=5 

per group).
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Figure 6. Carboplatin in combination with Nutlin-3a significantly decreases primary tumor 
growth and increases survival with minimal normal tissue toxicity
(A) Primary tumor volumes over time in Vehicle (Veh), 200 mg/kg Nutlin-3a (Nut), 20 

mg/kg Carboplatin (Carb) and Nutlin-3a/carboplatin (Combo) treated mice. Treatment was 

administered 2 times weekly for 4 weeks (***p<0.001 vs Vehicle, $$ p<0.01 vs Nutlin-3a 

and carboplatin, n=12 per group at initiation of study, ±SEM). Note: Bone marrow was 

analyzed in some mice at 5 days post-treatment (n=4 per group); the remaining mice (n=8 

per group) were monitored until the survival endpoint (≥800 mm3) was met, at which time 

bone marrow was analyzed. (B) Body weights following drug treatment (±SEM) (C) 
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Metastatic burden as measured by H&E followed by whole slide digital imaging (*p<0.05 

vs Veh, Holm-Sidak post hoc test, n=4 per group). (D) Probability of survival (***p<0.001 

vs all other groups, n=8 per group). (E) Total bone marrow cells per femur determined either 

five days after the completion of treatment, (left panel, **p<0.01, Veh vs Combo, n=4 per 

group), or, after a period of recovery and when a mouse met the survival endpoint for tumor 

size (right panel, Veh vs Combo, n.s. (nonsignificant) p>0.05). Recovery phase varied 

depending on treatment group (Veh and Nut: 14 days, Carb: 18 days, and Combo: 28 days). 

(F–I) Normal tissue toxicity analysis of (F) total number of colony forming units (CFUs), 

(G) white blood cells (WBCs), (H) platelets (PLTs), and (I) red blood cells (RBCs) (*p<0.05 

vs Vehicle, **p<0.01 vs Vehicle, n.s. p>0.05 carb vs combo, Holm-Sidak post hoc test, 

n=7–8 per group).
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