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Abstract

Background & Aims—Hepatocellular carcinoma (HCC) is the second most lethal cancer due to 

lack of effective therapies. Although promising, HCC molecular classification, which enriches 

potential responders to specific therapies, has not yet been assessed in clinical trials of anti-HCC 

drugs. We aimed to overcome these challenges by developing clinicopathological surrogate 

indices of HCC molecular classification.

Methods—HCC classification defined in our previous transcriptome meta-analysis (S1, S2, and 

S3 subclasses) was implemented in an FDA-approved diagnostic platform (Elements assay, 

NanoString). Ninety-six HCC tumors (training set) were assayed to develop molecular subclass-

predictive indices based on clinicopathological features, which were independently validated in 99 

HCC tumors (validation set). Molecular deregulations associated with the histopathological 

features were determined by pathway analysis. Sample sizes for HCC clinical trials enriched with 

specific molecular subclasses were determined.

Results—HCC subclass-predictive indices were: steatohepatitic (SH)-HCC variant and immune 

cell infiltrate for S1 subclass, macrotrabecular/compact pattern, lack of pseudoglandular pattern, 

and high serum alpha-fetoprotein (>400 ng/mL) for S2 subclass, and microtrabecular pattern, lack 

of SH-HCC and clear cell variants, and lower histological grade for S3 subclass. Macrotrabecular/
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compact pattern, a predictor of S2 subclass, was associated with activation of therapeutically 

targetable oncogene YAP and stemness markers EPCAM/KRT19. BMP4 was associated with 

pseudoglandular pattern. Subclass-predictive indices-based patient enrichment reduced clinical 

trial sample sizes from 121, 184, and 53 to 30, 43, and 22 for S1, S2, and S3 subclass-targeting 

therapies, respectively.

Conclusions—HCC molecular subclasses can be enriched by clinicopathological indices tightly 

associated with deregulation of therapeutically targetable molecular pathways.

Keywords

Histopathology; molecular subclass; predictive index; gene expression; clinical diagnostic

INTRODUCTION

Liver cancer, mainly hepatocellular carcinoma (HCC), is the second leading cause of cancer 

death worldwide, and its prognosis is still dismal (5-year survival rate generally below 15%) 

(GLOBOCAN 2012, globocan.iarc.fr). Underlying chronic liver disease, namely cirrhosis, 

serves as a fertile soil for de novo carcinogenesis, therefore early detection and complete 

removal or ablation of the tumors rarely prevents tumor recurrence [1]. Once the tumors 

reach advanced stage as a consequence of multiple rounds of de novo carcinogenesis, only 

one approved medical therapy is available, sorafenib, which extends patient survival by only 

3 months [2, 3]. The development of improved HCC therapies has been challenging as 

evidenced by the series of failed phase 3 trials of various molecular targeted agents [4]. It is 

increasingly emerging that this is attributable to the lack of predictive biomarker of response 

to enrich potential responders to detect therapeutic benefit in clinical trials [4].

Genomics studies in the past decade have elucidated numerous therapeutic targets, which 

can be mapped onto the framework of HCC molecular classification defined in our previous 

transcriptome meta-analysis of global HCC populations from Asia, Europe, and the U.S., 

including more than 600 patients (named S1, S2, and S3 subclasses) and independently 

validated [5–8]. The molecular hallmarks of the HCC subclasses have become increasingly 

targetable by newly developed therapies. For example, inhibitors of TGF-beta pathway (a 

hallmark of S1), glypican-3 (a marker of S2), and MET pathway (S1/S2) have been 

evaluated in recent early-stage clinical trials in HCC [9–11]. Alpha-fetoprotein (AFP), a 

marker of S2 tumors, was targeted by AFP genetic vaccine [12]. A Src/Abl inhibitor, 

dasatinib, showed preferential effect in S1-like hepatoma cell lines [13, 14]. We recently 

found that siRNA-based silencing of YAP oncogene (activated in S2 subclass) induced HCC 

tumor regression [15]. These studies collectively suggest that determination of HCC 

molecular subclass may serve as a broadly applicable predictive biomarker of response to 

these therapies.

Given that the latest clinical practice guidelines recommend tumor tissue biopsy in the 

setting of therapeutic clinical trials [16], tools to inexpensively and robustly determine the 

molecular subclasses and aberrations in clinical specimens are urgently needed. However, 

such molecular subclass/biomarker-enriched clinical trials have been rarely conducted 

because of financial constraints in the biomarker component of clinical trials. In addition, 
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although such molecular classification could refine clinical patient management by 

informing patient prognosis, it is still challenging to disseminate the information widely 

because the vast majority of HCC patients are diagnosed in developing, resource-poor 

countries, where the implementation of molecular biomarker assays is practically infeasible 

[8].

To overcome these challenges, here we aimed to develop and validate clinically readily 

available surrogates of HCC molecular classification based on robust clinicopathological 

information, which enables clinical trial enrichment for molecular targeted anti-HCC drugs. 

Furthermore, we implemented and evaluated a gene signature-based HCC molecular 

classification assay in an FDA-approved diagnostic platform applicable to clinical archived 

formalin-fixed, paraffin-embedded (FFPE) tissues [17]. The assay may be used to 

retrospectively corroborate the clinicopathological indices-based subclass prediction 

whenever funding and/or access to the assay facility become available in a real-world 

clinical setting. Of note, the assay provides objective readout unlike immunohistochemistry, 

which relies on molecular pathology expertise and somewhat subjective interpretation, using 

exactly the same material, i.e., FFPE tissue sections. Collectively, the information of HCC 

molecular classification will become globally accessible to facilitate therapeutic 

development and refined patient care.

PATIENTS AND METHODS

Patient cohorts

Archived FFPE tissues from 96 tumor foci from 88 HCC patients who underwent surgical 

resection between 1992 and 2012 at Toranomon Hospital were used for development of 

clinicopathological indices predictive of HCC molecular subclasses (training set) (Figure 

S1). The predictive indices were validated in an independent set of 99 HCC patients, for 

which the molecular subclasses were determined based on genome-wide transcriptome 

profiling in our previous study [5], and analyzable hematoxylin and eosin (H&E)-stained 

FFPE tissue sections were available (validation set). Hepatitis C virus (HCV) infection was 

determined by positivity of serum HCV antibody or RNA. Hepatitis B virus (HBV) 

infection was determined by positivity of the hepatitis B surface antigen (HBsAg). Alcohol 

abuse was defined as lifetime alcohol intake greater than 500kg. Non-alcoholic fatty liver 

disease (NAFLD) and non-alcoholic steatohepatitis (NASH) were diagnosed according to 

current practice guidelines [18]. The study, retrospectively analyzing archived tissues from 

previous treatment performed as routine clinical care, was approved and acquisition of 

written informed consent was waived by the institutional review board granted on the 

condition that all samples were anonymized. The study protocol conforms to the ethical 

guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the 

institution's human research committee (Program for the Protection of Human Subjects 

[PPHS]).

Histopathological analysis

Histopathological evaluation of representative H&E stained slides was independently 

performed by three pathologists (T.H., S.C.W. and M.I.F.), three hepatologists (P.T., N.G., 
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and Y.H.) and one liver surgeon (S.N.) with liver pathology training. All evaluators were 

blinded to information of the molecular subclass. Discrepant readings (observed in 17 

tumors, 9%) were reconciled by discussion of the six evaluators. Foci within the tumors 

were classified based on architecture and cytological features according to the World Health 

Organization Classification of Tumors of the Digestive System (4th edition) and related 

publications [19–21]. The following histological patterns and cytological variant were 

determined: microtrabecular pattern, macrotrabecular pattern, compact pattern, 

pseudoglandular pattern, clear cell variant, steatohepatitic HCC (SH-HCC) variant, and fatty 

change (Figure 1A). The trabecular pattern was characterized by cords of tumor cells 

separated by sinusoidal-like vascular spaces, which was further classified into the 

microtrabecular pattern if the cords were composed of up to 10 cells (mostly 3 to 5 cells) 

and the macrotrabecular pattern if the cords were thicker than 10 cells without endothelial 

cells between the cords. The compact pattern was characterized by extensive compression of 

the sinusoidal spaces resulting in its solid appearance. The pseudoglandular pattern was 

characterized by the presence of gland-like structures that represent dilated, abnormal bile 

canaliculi surrounded by a ring of tumor cells. The clear cell variant was characterized by 

uniform tumor cells with centrally located nuclei and prominent optically clear cytoplasm, 

attributed to glycogen accumulation, without obvious vesicles or other cytoplasmic 

structures [22–24]. The steatohepatitic HCC (SH-HCC) variant is a recently described HCC 

variant that is characterized by tumor cells showing ballooning degeneration-like appearance 

often accompanied by cytoplasmic lipid droplets, Mallory-Denk bodies, pericellular fibrosis, 

and/or inflammatory infiltrates [25–27]. Fatty change was characterized by tumor cells with 

large cytoplasmic lipid-containing vacuoles that displace the nucleus to the periphery and 

without the features of SH-HCC variant. Foci of tumor cells forming clear subnodules/

subcomponents with distinct histological patterns from other components within a tumor 

nodule were dissected and separately analyzed for transcriptome profiling. The histological 

features present in more than 30% of each profiled area were recorded and correlated with 

the molecular subclasses. Histological grading was determined according to the Edmondson-

Steiner grading system on an entire HCC nodule [28]. Steatosis and steatohepatitis in non-

tumor liver were determined by greater than 5% steatosis and presence of ballooning 

degeneration, respectively [29]. Immune cell infiltrate within the tumor was scored 0 to 2 

according to the mean number of infiltrating lymphocytes from 5 high-powered fields (0: 0 

to 5 cells, 1: 5 to 20 cells, 2: greater than 20 cells) [30]. A recently described HCC variant, 

chromophobe HCC as well as osteoclast-like cell were also assessed [31, 32].

Transcriptome-based determination of HCC molecular subclasses

To determine the S1, S2, and S3 subclasses, we implemented a classifier gene signature, 

originally comprised of 619 genes, in the digital transcript counting technology (Elements 

assay, NanoString), an FDA-approved clinical diagnostic platform capable of analyzing 

severely degraded FFPE RNA [17]. Because the number of gene probes is the major 

determinant of the assay cost, we first bioinformatically evaluated performance of the top 

informative HCC molecular subclass signature genes that fit the minimum unit of Elements 

assay (30 signature genes and 6 normalization genes). From among the 619 full HCC 

subclass signature genes already verified for their subclass predictive performance in our 

previously reported random resampling-based transcriptome meta-analysis of 9 independent 

Tan et al. Page 4

Liver Int. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HCC datasets [5], top 30 genes (10 genes for each subclass) with the largest Fisher’s inverse 

chi-square were chosen for the assay development (30-gene signature, Table S1). The 

subclass prediction was repeated with the 30-gene signature in the 9 independent HCC 

datasets (Table S2) using nearest template prediction algorithm as previously described [5], 

and concordance with the original prediction made by the 619-gene signature was evaluated. 

We observed an overall concordance of 85% (IQR: 80%–90%, range: 72%–94%) (Figure 

S2). Prediction concordance for S1, S2, and S3 subclasses were 79% (IQR: 74%–88%), 85% 

(IQR: 82%–93%), and 87% (IQR: 84%–89%), respectively. Based on these results, 

indicating that the 30-gene signature enables reasonably reproducible determination of HCC 

molecular subclass, we implemented the signature in the Elements assay platform.

Total RNA was isolated from three 10-micron-thick FFPE tissue sections by using High 

Pure RNA Paraffin Kit (Roche). Multiple histopathological foci co-existing in a tumor 

nodule were macro-dissected based on serial H&E stained section. Expression profiling was 

performed using 100ng to 500ng total RNA samples with nCounter Analysis System 

(NanoString). Raw scan data were extracted by nSolver software ver.1, and normalized by 

scaling with geometric mean of normalization gene probes by using NanoString normalizer 

module of GenePattern genomic analysis toolkit (www.broadinstitute.org/genepattern). The 

datasets are available at NCBI Gene Expression Omnibus (GEO) database (GSE59548, 

GSE10186).

Expression of HCC marker genes

Expression of previously documented stemness marker genes in HCC, KRT19 and EPCAM, 

as well as a marker gene of CTNNB1 exon 3-mutated HCC tumors, GLUL [33], were 

determined by reverse transcription quantitative polymerase chain reaction RT-qPCR in the 

training set. Total RNA was converted into cDNA using EcoDry Premix (Clontech 

Laboratories) on Matercycler Nexus Gradient (Eppendorf), and qPCR was performed using 

iQ SYBR Green Supermix (BioRad) on CFX384 Touch Real-Time PCR Detection System 

(Bio-Rad) following manufacturer’s instruction. Used primer sequences are summarized in 

Table S3. Gene expression level was calculated using delta-delta Ct method based on a 

housekeeping gene, RPL13A. Tumors were classified into high- or low-expression group 

based on one standard deviation above mean.

Bioinformatics analysis

Molecular pathway deregulations associated with the histopathological features were 

determined in the genome-wide transcriptome dataset of the validation set by surveying a 

comprehensive collection of 10,295 annotated pathway gene sets in Molecular Signature 

Database (MSigDB, www.broadinstitute.org/mdigdb) and a collection of liver cancer-related 

gene signatures in literature (Table S4) using Gene Set Enrichment Analysis (GSEA) [34]. 

Functionally co-regulated gene networks in association with the histopathological features 

were determined by using Planar Filtered Network Analysis (PFNA) algorithm [35]. Briefly, 

global gene co-expression network was first constructed by using the genome-wide profiles 

of the validation set based on Pearson correlation coefficient. Co-regulated gene modules 

(subnetworks) with significant and robust biological/functional links were subsequently 

determined on a hyperbolic surface [36, 37]. Gene modules associated with each of the 
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histopathological features were determined by using GSEA of the module member genes on 

gene list in the validation transcriptome dataset rank-ordered according to differential 

expression between tumors with the feature and the rest by using random permutation t-test 

implemented in GenePattern. Key regulatory genes in the gene modules associated with 

each of the histopathological features were determined by Key Driver Analysis (KDA), 

which prioritizes driver genes by measuring the impact on the down-stream genes such that 

the down-stream genes were defined by n-layer neighborhood in a co-expression network 

with optimal n that maximizes the enrichment statistic [38]. When adjustment for high-

dimensional multiple hypothesis testing was needed, Benjamini-Hochberg false discovery 

rate (FDR) <0.05 was regarded as statistically significant. All analyses were performed 

using GenePattern and R statistical language (www.r-project.org).

Statistical analysis

Categorical and unpaired continuous data were tested by Fisher’s exact test and Wilcoxon 

rank-sum test, respectively. Logistic regression was used to evaluate correlation between 

each HCC molecular subclass and the clinicopathological features (architectural patterns, 

cytological variants, tumor grade, microvascular invasion, presence of satellite lesions, 

tumor size, multiplicity, serum AFP level, AFP lens culinaris agglutinin-reactive fraction 3 

[L3], and des-gamma-carboxy prothrombin [DCP]), the HCC molecular markers (KRT19, 

EPCAM, and GLUL), and disease etiologies (HBV, HCV, alcohol, and NAFLD). Variables 

with p<0.05 in univariable analysis were further evaluated in multivariable logistic 

regression modeling with stepwise variable selection for the development of HCC molecular 

subclass-predictive indices using the regression coefficients. Given that the patency of 

sinusoidal-like spaces within a tumor could be artificially modified during the process of 

tissue fixation and processing, we combined the macrotrabecular and compact patterns into a 

single composite variable for the correlation analysis. Two sets of cut-off values for the 

HCC molecular subclass-predictive indices were determined based on receiver operating 

characteristic (ROC) curves in the training set to maximize either (i) positive predictive 

value (PPV) to examine the scenarios of clinical trial enrichment or (ii) sensitivity/

specificity to determine diagnostic performance of the indices in general, and applied to the 

validation set. Sample size required to detect a therapeutic response in clinical trials of anti-

HCC drugs targeting each of the HCC molecular subclasses was calculated based on alpha 

error of 0.05, power of 0.90, and treatment/control ratio of 1. Objective response rate (ORR) 

in molecularly determined targeted subclass was assumed to range from 50% to 70% based 

on published lung cancer trials enriched with EGFR gene mutations- or ALK gene fusion-

positive patients [39]. Given the scenario that HCC patients predicted to have the target 

subclass using the clinicopathological indices are enrolled into clinical trials, PPVs derived 

from the validation set were used to calculate proportion of patients with true targeted 

molecular subclass. Prevalence of S1, S2, and S3 subclasses were assumed to be 30%, 25%, 

and 45%, respectively, from the prevalence in the current training and validation sets and 

our previous study [5]. Number needed to treat (NNT) was calculated based on the same 

assumption on ORR and PPV. Two-tailed p-value <0.05 was considered as statistically 

significant. All analyses were performed using R statistical language.

Tan et al. Page 6

Liver Int. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Patients

Patients in the validation set were slightly younger and more frequently affected with HCV 

infection compared to the training set (Table 1). Three patients in the training set had a 

definite diagnosis of NAFLD/NASH as a sole etiology of HCC. Serum bilirubin was 

marginally higher in the validation set but still within the normal reference range. There was 

no significant difference in the proportion of tumors with AFP level greater than 400 ng/mL. 

More than 90% of the tumors were stage 0/A in both the training and validation sets.

Histopathological features of HCC tumors

The micro/macrotrabecular, compact, and pseudoglandular patterns, SH-HCC, clear cell, 

immune cell infiltrates, and fatty change were present in more than 5% of the tumors in both 

training and validation sets, ascertaining general applicability of the analyzed features 

(Table 2). Diagnostic concordance among the three pathologists was greater than 70% for all 

the histopathological features (Table S5). Discordant determination was resolved by 

discussion among all evaluators and a consensus diagnosis was reached. There was no 

significant difference in their prevalence between the training and validation sets except for 

the pseudoglandular pattern and the clear cell variant, which were more frequently observed 

in the training set. The microtrabecular pattern was the most prevalent feature observed in 

more than half of the tumors, followed by the macrotrabecular/compact pattern observed in 

approximately 40% of the tumors. SH-HCC was observed in approximately 20% in both 

training and validation sets. We confirmed correlation of the SH-HCC variant with presence 

of steatosis and steatohepatitis in background liver as reported in previous studies (Table S6) 

[40]. Presence of cirrhosis was not associated with the SH-HCC variant (p=0.52). Relatively 

higher immune cell infiltrates (score of 2) were observed in approximately 40% to 50% of 

the tumors. Osteoclast-like cells were observed in 6 and 2 tumors in the training and 

validation sets, respectively, and accumulated in S1 and S2 subclasses, representing higher 

grade tumors. Chromophobe HCC was not observed in the current patient series, which may 

be due to the earlier tumor stage (median tumor size 2.3cm and 2.2cm in the training and 

validation sets, respectively) compared to the tumors in the original report of the variant 

(median tumor size 5.7cm) [31]. Fatty change had similar occurrence in the two sets, 

whereas the clear cell variant was more prevalent in the training set. More than 80% of the 

tumors were of Edmondson-Steiner grade I or II.

Molecular deregulations associated with histopathological features of HCC tumors

The distinct histopathological features with significant correlation with the molecular 

subclasses suggest that molecular pathway deregulations are related to formation of the 

morphological features. The microtrabecular pattern is characterized by retained normal 

hepatocyte functions involved in a variety of metabolic pathways and enrichment of gene 

signatures implicated in better HCC prognosis and biologically less aggressive molecular 

subclasses, including the S3 subclass [41–43] (Table S4; Table S7). The macrotrabecular/

compact pattern was associated with accelerated cell cycle progression and cell 

proliferation, activation of an oncogene YAP recently implicated in HCC [44] as determined 

by induction of pathway target genes. The Yap target genes were similarly activated in the 
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S2 subclass (Figure S3), and induction of genes regulated by transcription factors, E2F1 and 

MYC. The S2 subclass signature together with published liver cancer signatures of 

biologically aggressive subclasses [41–43], stemness markers EPCAM/KRT19, MET 

activation, vascular invasion, and poor prognosis were strikingly induced. The S1 subclass 

signature and TGF-beta signature were also enriched to lesser extent. Two gene regulatory 

modules (no. 15 and no. 22) were associated with the macrotrabecular/compact pattern with 

key driver genes, PCNA and BIRC5 (also known as survivin), implicated in cellular 

proliferation in HCC (Table S8; Table S9; Figure S4A, B) [45]. The pseudoglandular pattern 

was associated with a gene signature of HCC tumor harboring CTNNB1 exon 3 mutations 

accompanied with overexpression of liver-specific WNT target genes such as GLUL [42, 

43]. BMP4, which is known to be involved in prostate gland formation under regulation by 

CTNNB1 pathway [46, 47], was identified as a key driver gene in a gene regulatory module 

(no. 56) associated with the pseudoglandular pattern (Table S8; Table S9; Figure S5). The 

SH-HCC variant was associated with activation of YAP oncogene and several kinases, 

including STK33, KRAS, and RAF, and pathways involved in collagen formation and 

extracellular matrix organization. In fact, CXCL12, ligand of a chemokine receptor CXCR4 

involved in hepatic fibrosis [48, 49], was identified as a key driver gene for the SH-HCC 

variant together with genes encoding collagens (COL1A2, COL3A1, and COL6A2) (Table 

S8; Table S9; Figure S6). A CXCR4 inhibitor, AMD3100, was recently reported to inhibit 

intra-tumoral fibrogenesis induced by a multikinase inhibitor, sorafenib [50]. The S1 

subclass signature was significantly induced in the SH-HCC variant together with signature 

of Chiang08 subclass Proliferation [43], further supporting our correlation analysis with 

logistic regression (Table 3). Clear cell variant was significantly associated with signatures 

of the S2 subclass, biologically more aggressive HCC tumors [41, 42], EPCAM/KRT19, and 

cholangiocarcinoma stem cell (Table S4; Table S7; Table 3). These findings collectively 

provide comprehensive overview of molecular deregulations, biomarkers, and/or potential 

therapeutic targets underlying the distinct histopathological features that can be further 

pursued in subsequent studies.

Determination of HCC molecular subclasses in the training set

We next determined the HCC molecular subclasses in the training set using a clinically 

applicable and inexpensive assay. From among 103 HCC tumor samples/foci from 95 

patients in the training set, 96 foci (93%) from 88 patients yielded good quality RNA for the 

expression profiling (Figure S1). By using the molecular subclass prediction model and 

algorithm from our previous study without any modification, 30 (31%), 27 (28%) and 39 

(41%) samples in the training set were classified into S1, S2, S3 subclasses, respectively 

(Table 2; Figure 1B). Prevalence of the predicted molecular subclasses was highly 

comparable to the results in previous studies by us and others [5, 6], indicating robust 

performance of the 30-gene signature assay. The highest serum AFP level in the S2 

subclass, which was identified in our previous study [5], was replicated in the training set of 

the current study (p<0.001) (Figure S7), further supporting validity of the assay.

Correlation of clinicopathological features with HCC molecular subclasses

We next sought to determine tumor-related clinicopathological variables associated with the 

molecular subclasses determined by the 30-gene signature assay. Univariable logistic 
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regression revealed several striking correlations between the clinicopathological features and 

the HCC molecular subclasses (Figure S8A, B, Table 3). The positive correlations of HBV 

infection and EPCAM overexpression with the S2 subclass identified in our previous study 

were confirmed [5]. Presence of the SH-HCC variant and higher immune cell infiltrates 

were significantly associated with the S1 subclass. Lack of the microtrabecular and the 

pseudoglandular patterns, presence of the macrotrabecular/compact pattern, the clear cell 

variant, and high serum AFP level were associated with the S2 subclass. Presence of the 

microtrabecular or the pseudoglandular pattern, absence of the macrotrabecular/compact 

pattern and the clear cell and the SH-HCC variants, and lower Edmondson-Steiner grade 

were associated with the S3 subclass. In multivariable modeling, both SH-HCC variant and 

immune cell infiltrates remained significant for association with the S1 subclass (Table 3). 

Association of the macrotrabecular/compact pattern and high serum AFP with the S2 

subclass remained significant. The microtrabecular pattern, absence of the SH-HCC and the 

clear cell variants were significantly associated with the S3 subclass. These results suggest 

that HCC molecular subclasses can be estimated reasonably well based on assessment of the 

clinicopathological features. We next assessed whether molecular subclass was associated 

with previously published markers of hepatocarcinogenesis [51, 52] (GLUL, GPC3, LYVE1 

and BIRC5) as implemented in the EASL guidelines [53]. We identified a positive 

association between GPC3 high expression and S2 subclass in both the training and 

validation sets. In the validation set, high expression of BIRC5 was associated with S1 

subclass, and high expression of LYVE1 and GLUL were associated with S3 subclass (Figure 

S8A, B). Additionally, we assessed the association between HCC molecular subclass and 

patient prognosis, but there was no significant association with survival or recurrence both 

in training and validation sets (Table S10). This is consistent with our previous observation, 

in which tumor-derived molecular information had no prognostic association, where the 

majority of the tumors are in early stage (BCLC 0/A) and recurrent tumors were clonally 

unrelated with the resected primary tumors [54].

Clinicopathological indices predictive of HCC molecular subclasses

Based on the significant correlations of the clinicopathological features with the molecular 

subclasses, we constructed a prediction index for each subclass using the regression 

coefficients from the multivariable logistic regression models (see footnote of Table 4). In 

the training set, the area under ROC curve (AUROC) for the S1, S2 and S3 subclasses were 

0.69, 0.87, and 0.85, respectively, based on which cut-off value for each predictive index 

was determined (Table 4; Figure S9). Each prediction index and corresponding cut-off value 

was evaluated in the validation set without making any modification. The validation set 

yielded comparable AUROC of 0.71, 0.79, and 0.73 for the S1, S2, and S3 subclasses, 

respectively. With the cut-off values optimized for PPV in the training set, S1, S2, and S3 

subclasses in the validation set were predicted with PPVs of 60%, 50%, and 71%, 

respectively. Based on the cut-off values for sensitivity/specificity, all subclasses were 

predicted with sensitivity greater than 80% and negative predictive value nearly equal to or 

greater than 80% (Table S11). Based on the PPVs in the validation set and ORRs ranging 

from 50% to 70% assumed from previously conducted phase 2 and 3 trials of molecular 

targeted agents in molecular subtype-enriched lung cancer patients [39], sample sizes 

required to detect therapeutic benefit were reduced by 59% to 79%, and NNTs were reduced 
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by 37% to 50% compared to a strategy enrolling “all comers” without enrichment for a 

specific molecular subclass (Figure S10, Table S12).

DISCUSSION

It is increasingly recognized that molecular biomarkers will play the key role in design and 

conduct of more cost-effective and expedited drug development and evaluation in clinical 

trials. Despite the urgent unmet need, predictive biomarker-enriched clinical trials are rarely 

conducted because pharmaceutical companies rarely fund the biomarker component of the 

trials. This issue could be resolved if clinically meaningful enrichment of specific molecular 

subtype is feasible by using clinically readily available predictive indices, which enable 

better powered clinical trial not to miss therapeutic benefit. This financial constraint is more 

relevant in resource-poor countries, where more than 80% of HCC patients are diagnosed. 

Our current study showed encouraging results as a proof of concept, demonstrating that 

clinical variable-based estimation of molecular subtype is a viable approach to meet this 

need. This strategy will also benefit other pathogen-induced cancers prevalent in developing 

regions of the world.

A byproduct of this study is a clinically applicable HCC molecular classification assay. 

Transcriptome-based clinical diagnostic development has been a challenging task due to 

poor reproducibility of the assay measurements due to artifacts introduced during the 

process of target gene amplification, which have required centralized reference laboratories 

to perform the assay for rigorous quality control [55]. The digital transcript counting 

technology without target gene amplification adapted in the current study is expected to 

overcome the issue. It is also worth noting that the assay is applicable even for severely 

degraded RNA isolated from real-world archived FFPE tissue sections [17]. The cost for 

clinical assay development is a prohibitive factor in developing companion biomarkers for 

each molecular targeted therapy, which will easily overtax currently available biomedical 

and financial resources. Broadly applicable biomarkers, such as our proposed molecular 

classification of HCC, could eliminate such efforts and enable more cost-effective drug 

development and biomarker-guided clinical trials.

Prognostic implication of histopathological features has been studied over the past decades 

in numerous studies [56]. However, no histopathological feature of HCC has been 

incorporated in the prognostic staging systems due to unsatisfactory reproducibility [57]. For 

example, prognostic association of the clear cell variant has been controversial despite its 

unambiguous pathological diagnostic criteria (Table S13). Similarly, we observed that 

prognostic association of HCC molecular subclasses in literature hugely varies across 

studies despite obvious presence of the subclasses [33]. Recent studies suggest that this is 

likely due to diversity of the disease stage represented in each study i.e. even if a tumor 

harbors a more aggressive molecular phenotype, the tumor has less chance to disseminate 

and impact patient survival if it is diagnosed at an earlier stage and successfully treated, 

whereas persisting liver cirrhosis and de novo HCC arisen from the cirrhotic liver have more 

influence on the prognosis independent of the successfully treated initial primary tumor [33]. 

The current study revealed surprisingly close correlation between histopathological features 

and molecular subclasses that links these independent observations on prognostic 
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association of histopathological or molecular features. This finding highlights the 

importance to assess prognostic implication of histopathological and molecular HCC tumor 

characteristics according to the disease stage to elucidate their clinical utility.

The incidence and prevalence of NAFLD/NASH are increasing worldwide [58]. 

Epidemiological studies suggest that there are carcinogenic mechanisms unique to NASH 

[59]. The SH-HCC variant is a unique feature tightly linked to the presence of steatosis and 

steatohepatitis in the background liver [40]. Formation of this variant may provide 

mechanistic insights into NASH-induced HCC development that involves specific molecular 

pathways such as CXCL12/CXCR4-related extracellular matrix production, due to the 

presence of and/or genetic susceptibility to NASH. Also, it will be of interest to evaluate if 

SH-HCC is associated with more disseminative phenotype as seen in the S1 tumors [5] 

when the patients are longitudinally followed up.

In conclusion, we have successfully developed clinically readily applicable 

clinicopathological predictive indices of HCC molecular classification. Histopathological 

features of HCC tumor are accompanied with distinct molecular pathway deregulations and 

could also serve as surrogate markers of HCC molecular subclasses. This observation 

demonstrates a proof of concept that can be further pursued with refined molecular 

classification or other types of molecular characterization in future studies. The 

clinicopathological indices as well as the clinically applicable assay will serve as tools that 

enable wider access to the molecular information for the clinical and translational research 

communities to further explore therapeutic implication of the molecular characteristics of 

HCC, and could potentially contribute to a substantial improvement of the dismal prognosis 

of HCC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GSEA Gene Set Enrichment Analysis

H&E hematoxylin and eosin

HBV hepatitis B virus

HCC hepatocellular carcinoma

HCV hepatitis C virus

KDA Key Driver Analysis
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Key points

• An HCC molecular classification test was implemented in a clinically 

applicable, FDA-approved assay platform, and successfully validated in an 

independent patient cohort.

• Clinicopathological indices predictive of HCC molecular classification were 

developed and validated.

• Deregulated molecular pathways tightly associated with specific 

histopathological features of HCC tumor were comprehensively cataloged, e.g., 

activation of oncogene YAP and stemness markers EPCAM/KRT19 in 

macrotrabecular/compact pattern and BMP4 overexpression, known to be 

involved in gland formation in kidney, in pseudoglandular pattern.

• The clinically applicable HCC molecular classification assay and predictive 

indices will facilitate further evaluation of clinical utility of HCC molecular 

subclasses and personalized therapeutic development.
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Figure 1. 
A. Histopathological features of HCC tumors. Architectural patterns and cytological 

variants analyzed for correlation with HCC molecular subclasses. B. HCC molecular 
subclasses and clinicopathological features in the training (left) and validation (right) 
sets. Black bars indicate positivity of the feature. HCC tumors with high immune cell 

infiltrate (score of 2) is shown by black bars. Red, blue and yellow colors in the horizontal 

bars above the heatmaps indicate S1, S2 and S3 tumors, respectively. Red and blue colors in 

the heatmaps indicate high and low gene expression, respectively.
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Table 1

Clinical characteristics of HCC patients in the training and validation sets.

Characteristic Training Set (88 patients) Validation Set (99 patients) P value

Age (y), median (IQR) 61 (56–66) 59 (52–64) 0.04

Male, n (%) 70 (80%) 78 (79%) 1.00

Etiology of chronic liver disease, n (%)

 - Hepatitis C virus 43 (49%) 70 (71%) <0.001

 - Hepatitis B virus 25 (28%) 23 (23%) 0.50

 - Alcohol 17 (19%) 18 (18%) 0.85

 - Non-alcoholic fatty liver diseases 3 (3%) 0 (0%) 0.10

Albumin (g/dL), median (IQR) 3.7 (3.5–3.9) 3.8 (3.5–4.1) 0.09

Bilirubin (mg/dL), median (IQR) 0.8 (0.7–1.2) 1.0 (0.8–1.4) 0.01

Platelet count x103 /mm3, median (IQR) 136 (97–173) 134 (84–204) 0.64

Child Pugh score*, median (IQR) 5 (5–6) 5 (5–6) 0.68

Child Pugh class, n (%) 0.11

 A 84 (95%) 87 (89%)

 B 4 (5%) 11 (11%)

Tumor size (cm), median (IQR) 2.3 (2.0–2.9) 2.2 (1.8–3.0) 0.63

Tumor number, n (%) 0.09

 Single 74 (84%) 73 (84%)

 Multiple 14 (16%) 14 (14%)

Presence of satellite lesions 12 (13%) 16 (16%) 0.54

α-fetoprotein (ng/mL), median (IQR) 16 (4.0–88.8) 37 (10–197) 0.009

  > 400 ng/mL, n (%) 7 (8%) 15 (15%) 0.17

AJCC stage, n (%)

 I/II 65/23 (74%/26%) 72/14 (82%/16%) 0.62

 IIIA 0 (0%) 2 (2%)

BCLC stage, n (%)

 0/A 12/75 (14%/85%) 23/59 (26%/67%) 0.12

 B 1 (1%) 6 (7%)

*
Child-Pugh score was unavailable for 1 patient in the validation set.

AJCC: American Joint Committee on Cancer, BCLC: Barcelona Clinic Liver Cancer.
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Table 2

Histopathological features and HCC molecular subclasses in the training and validation sets.

Training Set (96 HCC tumors) Validation Set (99 HCC tumors) P value

Histopathological feature

 Architectural pattern

  Microtrabecular 53 (55%) 53 (54%) 0.89

  Macrotrabecular/compact 38 (40%) 39 (39%) 1.00

  Pseudoglandular 31 (32%) 14 (14%) 0.004

 Cytological variant

  SH-HCC 19 (20%) 17 (17%) 0.71

  Clear cell 23 (24%) 7 (7%) 0.001

  Fatty change 17 (18%) 10 (10%) 0.15

 Edmondson-Steiner grade

  I 12 (13%) 21 (21%) 0.29

  II 66 (69%) 62 (63%)

  III 17 (18%) 16 (16%)

  IV 1 (1%) 0 (0%)

 Immune cell infiltrate score*

  0 15 (16%) 18 (18%) 0.08

  1 42 (44%) 28 (28%)

  2 39 (41%) 53 (54%)

 Microvascular invasion 9 (9%) 16 (16%) 0.20

Molecular subclass

  S1 30 (31%) 30 (30%) 0.46

  S2 27 (28%) 21 (21%)

  S3 39 (41%) 48 (48%)

*
Immune cell infiltrate score, 0: 0 to 5 cells, 1: 5 to 20 cells, 2: greater than 20 cells.

HCC: hepatocellular carcinoma, OR: odds ratio, CI: confidence interval, SH-HCC: steatohepatitic HCC, AFP: alpha-fetoprotein
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