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Abstract
Objective: Hereditary hypophosphatemias (HH) are rare monogenic conditions characterized by decreased renal tubular

phosphate reabsorption. The aim of this study was to explore the prevalence, genotypes, phenotypic spectrum, treatment

response, and complications of treatment in the Norwegian population of children with HH.

Design: Retrospective national cohort study.

Methods: Sanger sequencing and multiplex ligand-dependent probe amplification analysis of PHEX and Sanger sequencing

of FGF23, DMP1, ENPP1KL, and FAM20C were performed to assess genotype in patients with HH with or without rickets in all

pediatric hospital departments across Norway. Patients with hypercalcuria were screened for SLC34A3 mutations. In one

family, exome sequencing was performed. Information from the patients’ medical records was collected for the evaluation

of phenotype.

Results: Twety-eight patients with HH (18 females and ten males) from 19 different families were identified. X-linked

dominant hypophosphatemic rickets (XLHR) was confirmed in 21 children from 13 families. The total number of inhabitants

in Norway aged 18 or below by 1st January 2010 was 1 109 156, giving an XLHR prevalence of w1 in 60 000 Norwegian

children. FAM20C mutations were found in two brothers and SLC34A3 mutations in one patient. In XLHR, growth was

compromised in spite of treatment with oral phosphate and active vitamin D compounds, with males tending to be more

affected than females. Nephrocalcinosis tended to be slightly more common in patients starting treatment before 1 year of

age, and was associated with higher average treatment doses of phosphate. However, none of these differences reached

statistical significance.

Conclusions: We present the first national cohort of HH in children. The prevalence of XLHR seems to be lower in Norwegian

children than reported earlier.
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Introduction
Hereditary hypophosphatemia (HH) is a group of rare

diseases with disordered phosphate metabolism and

decreased renal tubular phosphate reabsorption (1). In

hypophosphatemic rickets (HR), the hypophosphatemia

is associated with rickets and osteomalacia, whereas

syndromes with hypophosphatemia combined with
osteosclerosis and ectopic calcifications, and not rickets

or osteomalacia, are also recognized (1).

HR can be classified as either dependent or indepen-

dent of the bone derived fibroblast growth factor 23

(FGF23) (1). FGF23 is a phosphate-regulating hormone (2),

acting on kidney tubuli cells to decrease expression of
nsed under a Creative Commons
nported License.
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sodium-phosphate co-transporter types IIa and IIc (NaPi-

IIa and NaPi-IIc) encoded by SLC34A1 and SLC34A3

respectively. Elevated levels of serum phosphate increase

the expression of FGF23 thereby decreasing the reabsorp-

tion of phosphate in the renal proximal tubule, while

hypophosphatemia normally down regulates the

expression of FGF23. FGF23 also down regulates the1-a-

hydroxylase (encoded by CYP27b1), thus inhibiting the

activation of 25OH vitamin D (25OHD) to 1,25(OH)2

vitamin D (1,25(OH)2D), and up regulates 24-hydroxylase

(encoded by CYP24a1), which inactivates 1,25(OH)2D

by conversion to 24,25(OH)2 vitamin D (3). In FGF23-

dependent HR, the physiological increase in serum

1,25(OH)2D in response to hypophosphatemia is blunted,

and the result is a serum level of 1,25(OH)2D that is low,

or inappropriately normal for the degree of hypo-

phosphatemia (4).

FGF23 dependent HR is caused by mutations in genes

involved in the FGF23 bone–kidney-axis, with levels of

intact FGF23 (iFGF23) being elevated or inappropriately

normal in the setting of hypophosphatemia when

suppressed FGF23 is to be expected (1). FGF23 dependent

HR includes X-linked dominant HR (XLHR) caused by loss-

of-function mutations in the phosphate regulating endo-

peptidase homolog, X-linked (PHEX) gene (5), autosomal

dominant HR caused by gain of function mutations in the

FGF23 gene (6), and three types of autosomal recessive HR.

ARHR1 is caused by mutations in the DMP1 gene,

encoding the dentin matrix protein 1 (7, 8), ARHR2

is caused by mutations in the ENPP1 gene encoding

the ectonucleotide pyrophosphatase/phosphodiesterase 1

(9, 10), whereas we have recently shown an association

between biallelic mutations in FAM20C and FGF23-

dependent ARHR3 in a Norwegian family (11). FAM20C

encodes a protein kinase, important in many phosphoryl-

ation processes. Phosphorylation of FGF23 by FAM20C

makes FGF23 less stable by inhibiting O-glycosylation by

GalNacT3 (12), and inactivating mutations in FAM20C

thus leads to increased levels of iFGF23 (11, 13). There is

also one report of FGF23 dependent HR caused by an

activating translocation leading to up-regulation of the

expression of the KL gene, encoding the anti-aging protein

a-klotho (14). In FGF23-independent HR, as seen in

hereditary HR with hypercalcuria (HHRH) caused by

mutations in the SLC34A3 gene (15, 16), the level of

iFGF23 is appropriately down-regulated (16).

Treatment of HR includes oral phosphate replacement

several times daily, combined with calcitriol to counteract

the secondary hyperparathyroidism (HPT) elicited by

the serum phosphate peak (17) and transient decrease
www.eje-online.orgwww.eje-online.org
in serum ionized calcium upon phosphate dosing.

Treatment is balanced to improve linear growth and

reduce skeletal deformities while simultaneously mini-

mizing the risk of complications to treatment such as

secondary and tertiary HPT, nephrocalcinosis, hyper-

tension, and renal failure (18).

We have conducted the first complete national study

of HH in children, to explore the prevalence, genotypes,

phenotypic spectrum, and response to and complications

of treatment.
Subjects and methods

Patient population

During 2009 all pediatric hospital departments in Norway

were contacted to identify children with HH. The number

of patients identified was compared to the number of

patients younger than 18 years registered in the Norwe-

gian Patient Registry (NPR) with the diagnosis code ‘E83.3

Disorders of phosphorus metabolism and phosphatases’

in the World Health Organization’s International Classi-

fication of Diseases version 10 (WHO ICD-10). Patients

were continuously recruited through the years 2009–2014.

The inclusion criteria for HH were serum phosphate

below the age dependent reference range in repeated

samples combined with tubular maximum reabsorption

rate of phosphate per glomerular filtration rate (TmP/GFR)

not due to primary HPT, HPT secondary to renal failure or

malabsorption, Fanconi syndrome or other tubulopathy,

vitamin D dependent rickets, vitamin D deficiency or

hypophosphatemia secondary to acute metabolic

derangements. A family history or genetic diagnosis was

supportive, but not required for inclusion.
Genetic analysis

Genomic DNA was purified from blood using the

QiaSymphony System (Qiagen). If the mutation status

was not already known, all exons and intron–exon

boundaries of PHEX were sequenced in the index case of

each family. If a disease causing mutation was not found,

and the inheritance pattern suggested a sporadic case or

X-linked dominant disease, multiplex ligand-dependent

probe amplification (MLPA) analysis of PHEX were

performed at the Molecular Genetics Laboratory, Royal

Devon and Exeter Foundation NHS Trust, Exeter, Devon,

UK. The PHEX MLPA analysis can identify mid-size

deletions and insertions not detected by regular Sanger

sequencing or chromosomal analysis.

www.eje-online.org
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All exons and intron–exon boundaries of FGF23,

DMP1, ENPP1, KL, and FAM20C were sequenced, in

successive order, in subjects without pathogenic PHEX

mutations.

In short, DNA targets were first amplified by PCR (list of

primers available upon request) using the AmpliTaq Gold

DNA Polymerase System (Applied Biosystems). PCR ampli-

cons were purified with 2 ml of ExoSapIT. Using the Big Dye

Terminator chemistry sequencing was performed on the

3730 DNA analyzer (Applied Biosystems) and analyzed

using the SeqScape Software (Applied Biosystems).

All mutations detected were compared to variants

previously reported in the SNP database (http://www.ncbi.

nlm.nih.gov/projects/SNP/index.html) and in the PHEX

database (http://www.pahdb.mcgill.ca/cgi-bin/phexdb/

phexdb_mutQ1.cgi?fieldZID_mut&valueZ).
Review of medical history

Information on age at diagnosis, clinical and biochemical

findings at diagnosis, treatment, and complications was

collected by review of the medical records of included

patients. Height was converted to z-scores according to

Norwegian growth charts (19). Delta z-score was calcu-

lated as the difference between z-score at last registered

consultation and z-score at diagnosis. Laboratory data

from each visit from the time of diagnosis to the time of

inclusion in the study, including serum levels of calcium,

phosphate, alkaline phosphatase, creatinine, parathyroid

hormone (PTH), 25OHD, and 1,25(OH)2D were also

recorded, as well as results from kidney ultrasound and

skeletal X-ray examinations. TmP/GFR was calculated

according to the formula provided by Barth et al. (20).

Blood tests were analyzed according to each hospital

laboratory’s current standard methods.
Genotype–phenotype associations in XLHR patients

The PHEX mutations were classified as either deleterious

or plausible according to earlier studies (21). Deleterious

mutations comprise those leading to a premature stop

codon, including nonsense mutations, splice-site

mutations, and insertions and deletions affecting reading

frame. Mutations classified as plausible were missense

mutations and deletions that did not affect reading frame.

The phenotypic features compared were age at diagnosis

and at the last registered consultation, height z-score at

diagnosis and at the last registered consultation, serum

levels of phosphate, ALP and PTH at diagnosis, skeletal

manifestations (clinical or radiological signs of rickets or
bowing) at diagnosis, and information on dental involve-

ment, nephrocalcinosis, and persistent bowing at the last

registered consultation.
Statistical analysis

The prevalences of HH and XLHR was calculated based on

the number of patients aged 0–18 years registered with

these diagnosis in 2009 and the total number of people in

Norway aged 0–18 years by 1st January 2010, obtained

from the official Statistics Norway database (22).

The data were analyzed with SPSS version 22.

Between-group comparisons were performed using non-

parametric tests; medians were compared using the Mann–

Whitney U test, and frequencies were compared with the

Fisher’s exact test.
Ethics and approvals

Written informed consent was obtained from all study

participants. The study was approved by the Regional

Committee for Medical and Health Research Ethics, Region

West, Norway (REK number 2009/1140).

Clinical Trial Registration (ClinicalTrials.gov) number:

NCT01057186.
Results

HH patient cohort

By 31st December 2009 we had identified a total of 23

children aged 0–18 years with HH in Norway, and all

except one were included in this study. Two additional

patients with HH, one with confirmed XLHR, were born

before 2009, but diagnosed after 2010. By the end of 2009

the National Patient Registry reported 32 children with

the ICD-10 diagnosis ‘E83.3 Disorders of phosphate

metabolism and phosphatases’, but four of these patients

had hypophosphatasia, and five had transient hypopho-

sphatemia in the course of malignancy, premature birth,

or other underlying condition. On 1st January 2010, the

number of inhabitants aged below 18 years was 1 109 156,

and this gives a prevalence of HH of w1 in 45 000

children. XLHR was confirmed in 18 children, giving a

prevalence of w1 in 60 000. During the period from 1st

January 2010 to 31st December 2014, we included another

four patients, two of which immigrated to Norway in 2014

and two patients born to XLHR mothers after 2010.

The total of 28 patients included comprised

18 females and ten males from 19 different families
www.eje-online.orgwww.eje-online.org
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(Supplementary Figure 1, see section on supplementary

data given at the end of this article). XLHR was confirmed

in 21 children. Twenty-two patients had a family history

of HR, while six were sporadic cases.
Genotypes in HH

We identified the likely pathogenic mutation in 15 of the

19 HH pedigrees (79%). PHEX mutations were found in

21 subjects from 13 different pedigrees (Supplementary

Table 1, see section on supplementary data given at the

end of this article), and three of the XLHR probands were

sporadic. Of the 13 different PHEX mutations detected,

nine had not been previously reported in the SNP or PHEX

databases (see section ‘Materials and methods’). The nine

novel mutations comprised one large duplication, two

single nucleotide deletions leading to frameshift and

premature stop codons, two triplet deletions leading to

loss of one or more codons, two missense mutations, one

nonsense mutation, and one splice site mutation. One

male patient with HHRH was found to be compound

heterozygous for a splicing mutation, c.757-1GOA, and an

intronic deletion mutation, c.925C20_926-48del, in the

SLC34A3 gene. The c.757-1GOA affects the conserved

splice donor site of intron 7, and is predicted to cause

aberrant splicing. The c.925C20_926-48del mutation has

been reported previously (15). Two patients with com-

bined heterozygous mutations in FAM20C are described

elsewhere (11). In four patients, two sporadic cases in
Table 1 Characteristics of the cohort of patients with hereditary h

All pat

Time of diagnosis
Sex (male/female) (n/n) 1
Family history of HH (n/N) 2
Age at diagnosis (years) 2.1 (0
Height (z-score) K0.9 (K
Skeletal diseaseb (n/N) 1

Treatment
Age at treatment start (years) 2.1 (0
Elemental phosphorus (mg/kg per day) 39 (
Alfacalcidol (ng/kg per day) 33 (

Last registered consultation
Age (years) 12.1 (1
Height (z-score) K1.4 (K
Delta z-score height (z-score) K0.1 (K
Dental involvement (n/N) 1
Nephrocalcinosis (n/N) 1
Persistent bowing (n/N) 1

n/N, number of patients with this characteristic/total number of patients.
aContinual variables are given as median (range).
bSkeletal disease: clinical or radiological signs of rickets, or skeletal axis deviati
cInformation missing for one patient.

www.eje-online.orgwww.eje-online.org
females and two males with affected mothers, we were not

able to identify a pathogenic mutation by standard Sanger

sequencing of PHEX, FGF23, DMP1, ENPP1 or KL, or by

PHEX MLPA.
Phenotypes in HH

The median age at diagnosis was 2.1 years (range 0.1–15.5

years), and 26 of the 28 subjects were diagnosed before the

age of 7 years (Table 1 and detailed information for each

subject is given in Supplementary Table 2, see section on

supplementary data given at the end of this article).

Median age at the last registered consultation was

12.1 years (range 1.3–18.3).

Phenotype in XLHR " The 21 XLHR children comprised

16 females and five males. Their median age was 0.9 years

(range 0.1–15.5) at diagnosis, and 10.8 years (range 1.3–

18.0) at the last registered consultation. Growth was

compromised, and Fig. 1 illustrates the height z-scores

for 19 of the 21 XLHR patients related to age at diagnosis

and at the last registered consultation. Males tended to

have a lower height z-score than females (Table 2), both at

diagnosis and at the last registered consultation, whereas

delta z-score did not differ between the sexes. In

accordance with an earlier study (23), we analyzed the

XLHR patients’ data depending on initiation of treatment

before or after 1 year of age. There was no significant

improvement in height z-score in either treatment group.
ypophosphatemiaa.

ients (nZ28) XLHR (nZ21)

0/18 5/16
2/28 18/21

.1 to 15.5) 0.9 (0.1 to 15.5)
6.5 to 1.0) K1.2 (K6.5 to 1.0)

7/28 13/21

.2 to 15.6) 1 (0.2 to 6.7)
28 to 61) 39 (0 to 74)
21 to 42) 34 (0 to 54)

.3 to 18.3) 10.8 (1.3 to 18.0)
6.31 to 0.8) K1.4 (K6.3 to 0.8)
3.1 to 2.0) K0.1 (K3.1 to 2.0)

3/28 9/21
1/28 9/20c

6/28 13/21

on.

http://www.eje-online.org/cgi/content/full/EJE-15-0515/DC1
http://www.eje-online.org/cgi/content/full/EJE-15-0515/DC1
http://www.eje-online.org/cgi/content/full/EJE-15-0515/DC1
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Figure 1

Growth in X-linked hypophosphatemic rickets. Ages at diag-

nosis and last registered consultation, and the corresponding

height z-scores for 19 of the 21 XLHR patients. The two outliers

represent two immigrant siblings who had not received any

medical care and did not start treatment until age 6 and

15 years respectively. The broken line represents the male

treated with growth hormone. Circles represent females and

squares represent males.
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One patient was treated with growth hormone (GH)

from the age of 11 years 10 months. His height z-score

improved from K2.9 at the last consultation before

initiation of GH to a final height of K1.9 S.D. at age

17 years (data not shown).

Clinical or radiological evidence of skeletal involve-

ment was found in 13 of 20 children (four out of five males
Table 2 Effect of gender and early start of treatment in X-linked

Stratified by

Male (nZ5)

Time of diagnosis
Age (years) 0.9 (0.5 to 15.5)
Height (z-score) K3 (K5.1 to 0.5) K
Skeletal diseaseb (n/N) 4/5

Treatment data
Age at treatment start (years) 1 (0.5 to 3.6)
Elemental phosphorus (mg/kg per day) 50 (32 to 64)
Alfacalcidol (ng/kg per day) 49 (37 to 54)

Last registered consultation
Age (years) 14.8 (6.5 to 16.3)
Height (z-score) K2.2 (K5.1 to K1.0) K
Delta z-score (z-score) 0 (K2.1 to 1.3) K
Dental involvement (n/N) 4/5
Nephrocalcinosis (n/N) 2/5
Persistent bowing (n/N) 4/5

n/N, number of patients with this symptom/total number of patients.
aContinual variables are given as median (range).
bSkeletal disease: clinical or radiological signs of rickets, or skeletal axis deviati
and nine out of 15 females) at diagnosis. The seven

patients without skeletal manifestations at diagnosis were

all familial cases, diagnosed before the age of 8 months

(median 4 months), and comprised six females and one

male. During the years after diagnosis, all of these had

episodes of rickets identified on clinical or radiological

examination, and a male and two of the females had

persisting skeletal axis deviations at the last registered

consultation. Overall, nine females and four males had

persisting axis deviation at the last registered consultation,

and correcting osteotomy had been performed in one

female and two males. The prevalence of dental involve-

ment was higher in male than female XLHR patients,

and in children who started treatment after the age of

1 year (Table 2).

Genotype–phenotype associations in XLHR " There

were no differences between the mutation status groups

in growth, dental involvement, persistent bowing, or

development of nephrocalcinosis (results not shown).

Treatment and complications in HH

The median age at the start of treatment was 2.1 years.

Twenty-six of the 28 patients were treated with oral

phosphate and vitamin D (alfacalcidol) supplements

(Table 1). Two patients were diagnosed at the time of

inclusion, and had not started any treatment at that point.

Treatment and complications in XLHR " Details of

medical treatment were available for 19 of the 21 XLHR
hypophosphatemic ricketsa.

gender Age at treatment start

Female (nZ16) !1 year (nZ10) O1 year (nZ9)

1.5 (0.1 to 6.5) 0.4 (0.1 to 0.9) 3.3 (0.7 to 15.5)
0.9 (K6.5 to 1.0) K0.8 (K3.0 to 1.0) K2 (K6.5 to 0.5)

9/15 3/10 9/9

1.1 (0.2 to 6.7) 0.6 (0.2 to 1.0) 3.6 (1.2 to 15.6)
32 (0 to 74) 59 (11 to 74) 35 (28 to 67)
28 (0 to 48) 42 (17 to 54) 26 (17 to 37)

7.9 (1.3 to 18.0) 11.1 (1.3 to 18.0) 8.4 (3.2 to 16.3)
1.4 (K6.3 to 0.8) K1.4 (K2.6 to 0.8) K2 (K6.3 to 0.3)
0.2 (K3.1 to 2.0) K0.4 (K3.1 to 2.0) 0 (K1.1 to 1.3)

5/15 2/10 7/9
7/15 7/10 2/9
9/15 5/10 7/9

on.

www.eje-online.orgwww.eje-online.org
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patients. In this group, the median age at the start of

treatment with oral phosphate and alfacalcidol was 1.0

year (range 0.2–15.6), and ten of 19 children started

treatment before the age of 1 year.

Information concerning development of nephrocalci-

nosis was available for 20 of 21 XLHR patients, and

nephrocalcinosis was diagnosed in nine of 20 (45%),

at a median age 4 years 6 months (range 1 year–5 years

5 months), after a median time in treatment of 1 year

5 months (range 8 months–4 years 5 months). The

median time in treatment for patients without registered

nephrocalcinosis was 7 years 2 months (range 0–14 years

7 months).

All nine XLHR patients who developed nephrocalci-

nosis did so within 5 years of treatment. Of the 11 patients

without nephrocalcinosis, only four had been treated for

5 years or more, and were included in further compari-

sons. The prevalence of nephrocalcinosis in this subgroup

was nine of 13 (69%). There was a trend toward a higher

average daily dose of phosphate (given as mg/kg per day

elemental phosphorus) during the years before the

diagnosis of nephrocalcinosis as compared to the daily

phosphate dose during the first 5 treatment years in

patients without nephrocalcinosis (Fig. 2A) (median

61.0 mg/kg per day (range 12.1–79.0) and median

44.8 mg/kg per day (range 13.8–64.7) respectively). More-

over, there was a tendency for earlier start of treatment in

children who developed nephrocalcinosis compared

with children that did not (median 0.5 year vs 1 year;

range 0.2–4.4 vs 0.6–3.6), and seven of nine children with

nephrocalcinosis and two of four children without
90A B

75

60

45

30

P
ho

sp
ha

te
 d

os
e 

(m
g/

kg
 p

er
 d

ay
)

15

0

60

45

30

s-
P

T
H

 (
pm

ol
/l)

15

0
NC – 0 25 50

Phosphate dose (mg/kg per day)

75 100NC +

Figure 2

Complications in X-linked hypophosphatemic rickets.

(A) Nephrocalcinosis: the average daily phosphate (given as

mg/kg per day elemental phosphorus) dose in patients who

developed nephrocalcinosis (NCC) and patients who did not

(NCK). The horizontal lines represent the median in each group.

(B) Hyperparathyroidism: the relationship between the maxi-

mum registered value of serum PTH and phosphate dose (given

as mg/kg per day elemental phosphorus) at the same time point.
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nephrocalcinosis had started treatment before 1 year of

age. There were no differences in the starting doses of

phosphate and alfacalcidol, average daily dose of alfacal-

cidol, serum level of PTH level at diagnosis, maximum

registered serum PTH, or maximum registered urine-

calcium/creatinine ratio (U-Ca/creatinine; results not

shown). Furthermore, the groups did not differ with

respect to the occurrence of skeletal symptoms at

diagnosis, dental involvement at diagnosis, persistent

bowing at the last registered consultation, or delta height

z-score (not shown).

Information concerning parathyroid state was avail-

able in 18 patients, of whom 16 had elevated levels of total

intact PTH at the time of diagnosis (Table 1 and

Supplementary Table 2a). All patients developed transient

HPT during treatment in the face of normocalcemia. As

seen in Fig. 2B, there was a positive association between

the maximum measured serum PTH and the daily dose

of phosphate (given as mg/kg per day of elemental

phosphorus). Tertiary HPT was diagnosed in one female

XLHR patient at 13 years of age. She had been treated with

phosphate and alfacalcidol from the age of 5 months, and

during the 12.5 years of treatment, the average phosphate

dose was 83.0 mg/kg per day (range 47.0–127.0 mg/kg

per day) and alfacalcidol dose 18.5 ng/kg per day (range

11.4–44.0 ng/kg per day). Treatment with calcimimetics

was started, and she has avoided the need of para-

thyroidectomy (24).

Treatment and complications in non-X-linked

HH " Nephrocalcinosis was diagnosed in one female

patient with no detected mutation in any of the known

genes at age 8 years 2 months after 6 years 4 months of

treatment with phosphate and alfacalcidol. Nephrocalci-

nosis was also demonstrated in the male patient with

HHRH, before start of treatment. Tertiary HPT was found

in one female patient with no established mutations in

any of the known genes. She had been treated for 14 years,

with an average dose of elemental phosphorus of

45.9 mg/kg per day (range 38–80 mg/kg per day) and

alfacalcidol 34.2 ng/kg per day (range 22–49.6 ng/kg per

day) the last 7 years before the development of perma-

nently elevated PTH combined with hypercalcemia. The

patient has responded well to treatment with a calcimi-

metic, and has so far not needed parathyroidectomy.
Discussion

We have presented the first national cohort of HH and

XLHR in children, describing the prevalence, genotypes,

http://www.eje-online.org/cgi/content/full/EJE-15-0515/DC1
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phenotypic spectrum, and response to and complications

of treatment in the Norwegian pediatric population. The

prevalence of XLHR in Norwegian children was one in

60 000. Earlier reports from regional cohorts, with a risk of

selection bias, have found the prevalence of XLHR to be

w1 in 20 000 (25, 26). Studies of large pedigrees of XLHR

patients have reported a low penetrance of skeletal

manifestations in hypophosphatemic female family

members, whereas all hypophosphatemic males had

skeletal manifestations of disease (27). Hence, there is a

possibility of undiagnosed XLHR in Norwegian females

from pedigrees without affected males. However, the ratio

of female to male patients in our cohort was 16:5, as

compared to the expected ratio of 2:1 for X-linked

dominant disorders; a large proportion of undiagnosed

females thus seems unlikely. Since our study included only

children already in contact with health care and asympto-

matic members of the pedigrees were not tested for

hypophosphatemia, we cannot rule out hypophosphate-

mic second-degree relatives (28). It is therefore possible

that the prevalence of HH and XLHR in the Norwegian

pediatric population may be higher than one in 45 000

and one in 60 000 respectively.

We identified the genotype responsible for HH in 79%

of pedigrees in this population-based cohort, and PHEX

mutations comprised 87% of the verified mutations. This

supports what has been found by others (29), and confirms

that XLHR is the most common variant of HR. Of 13 PHEX

mutations, nine (69%) had not been reported earlier

(ExAC Browser accessed 21.05.15, http://exac.broadinsti-

tute.org/gene/ENSG00000102174), demonstrating that

most mutations are private in this gene (28). We have

previously reported two male siblings with the first

identified association between compound heterozygous

mutations in FAM20C and FGF23 dependent hypo-

phosphatemia in humans (11). None of the patients had

mutations in FGF23, DMP1, ENPP1, or KL, confirming that

mutations in these genes rarely seem to be the cause of

HH. In four patients we did not find the likely disease

causing mutation. However, as illustrated by our finding

of FAM20C mutations (11), there are possibilities of

mutations in other genes associated with pathways

involving FGF23, phosphate reabsorption, and tissue

mineralization.

One adolescent male was compound heterozygous for

mutations in the SLC34A3 gene. He had no manifestations

of rickets, normal growth and bone mineral density, and

came to medical attention because of recurrent kidney

stones, accompanied by hypercalcuria, hypophosphate-

mia, suppressed PTH, and high 1,25(OH)2D. He had a
novel splicing mutation c.757-1GOA affecting the con-

served splice donor site of intron 7, predicted to cause

aberrant splicing, and a previously reported intronic

deletion mutation, c.925C20_926-48del (15). Earlier

studies have shown that about 10% of homozygous and

16% of compound heterozygous carriers of mutations in

SLC34A3 presented with renal calcifications, without

evidence of skeletal involvement (30, 31). Thus, our case

is consistent with a phenotypic and genotypic hetero-

genesity in SLC34A3 related conditions, including HHRH.

When comparing non-sense PHEX mutations with

missense PHEX mutations likely to reduce protein

function, we did not find differences in growth, severity

of skeletal or dental disease, or in the prevalence of

treatment complications based on the type of mutation.

Our findings confirm the results of another recent study

(21), whereas other studies have suggested an association

between truncating mutations and a more severe skeletal

phenotype (32, 33, 34). However, even in subjects with the

same genotype, the skeletal phenotype seems to be very

variable and individual (35, 36). This might reflect

influence from other genetic variants in mineralization

and phosphate metabolism. Interestingly, it was recently

reported that patients homozygous or heterozygous

for the FGF23 sequence variant c.C716T (p.T239M,

rs7955866) had significantly lower levels of serum

phosphate and lower renal TmP/GFR than patients

homozygous for the WT allele (37). Another research

group have reported a weak, but significant association

between the c.C716T variant of FGF23 and lower

TmP/GFR and lower plasma intact PTH in healthy children

and adults (38). In none of the studies, it was possible to

show significantly higher levels of serum iFGF23 in

subjects carrying the c.C716T variant.

Evaluation of phenotype in XLHR showed that growth

was compromised, and there was a tendency for lower

height z-scores in males than females. Also, we found a

trend for males having a higher proportion of skeletal and

dental manifestations than females. As discussed above,

some studies points to a milder phenotype in females,

with slight hypophosphatemia and mild or no overt

skeletal disease (39, 40). There are also reports of slightly

lower serum levels of phosphate (40, 41) and more severe

skeletal disease in male than female XLHR patients (42).

Other studies have reported no gender differences in

skeletal phenotype (35, 43), but more severe dental

phenotype in post pubertal males than females (35, 44).

Thus, our findings support the notion of a more severe

mineralization defect in males than females.
www.eje-online.orgwww.eje-online.org
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Dental involvement seemed to be less common in the

patients who started treatment before 1 year of age,

suggesting the importance of proper mineralization of

dentin prior to the eruption of teeth (45). On the other

hand, starting treatment before age 1 year did not lead to

an improved height z-score at the last registered consul-

tation. Some earlier studies have concluded that early start

of treatment had a positive effect on linear growth (23, 46).

In one study however, the height z-score was generally

higher in those who started treatment before the age of

1 year compared with those who started later, but declined

over time for those who started treatment early and

improved in those who started treatment later (46). We

found that treatment with phosphate and vitamin D

improved mineral homeostasis and rickets, but did not

fully correct skeletal axis deviation and to a lesser extent

correct the growth deficiency in HR. This adds support to

the theory that FGF23 may play a role in the normal

physiology of mineralized tissues independently phos-

phate regulation (18). Treatment with phosphate will lead

to transient increases in serum phosphate, which trigger

production and release of FGF23 (47) and PTH (48), further

aggravating the skeletal phenotype. Novel therapy with

FGF23 neutralizing antibodies has shown that inhibition

of excess FGF23 activity correct growth deficiency in mice

(49), and anti-FGF23 antibodies are currently being tested

in human XLHR (50, 51). It is possible that longitudinal

growth in HH patients reflects the individual severity of

and response to a disturbed FGF23 homeostasis, rather

than the severity of hypophosphatemia itself.

The patients who developed nephrocalcinosis had

started treatment earlier and had received higher daily

doses of phosphate, but did not have better growth

outcomes, than patients without nephrocalcinosis. Renal

function remained normal in all patients, except for

transient low-grade renal failure seen in the XLHR patient

with tertiary HPT. Our results strengthen the association

between higher phosphate doses and development of

nephrocalcinosis found in earlier studies (52, 53, 54, 55).

Early start of treatment as a risk factor for nephrocalcinosis

has been found by some (52), but not by others (23, 46, 56).

The prevalence of nephrocalcinosis in patients receiving

combination therapy with phosphate and calcitriol is

reported to be from 33 to 80% (median 59%) (23, 46, 52,

53, 54, 55, 56, 57, 58), but long term follow-up of mild

nephrocalcinosis in XLHR does not seem to affect renal

function (56). As discussed above, treatment with

phosphate and calcitriol has a certain positive effect on

growth, but only phosphate-treated patients develop

nephrocalcinosis (54, 55, 56). This again probably
www.eje-online.orgwww.eje-online.org
reflects that current treatment options are suboptimal,

both when considering skeletal outcome and the rate of

complications.

Elevated serum levels of PTH were found in ten of 15

XLHR patients before the start of treatment all patients

developed HPT during the course of treatment. Our

findings add to other reports of high normal or slightly

elevated levels of PTH in hypophosphatemic untreated

XLHR patients (59, 60, 61). In normal subjects, hypopho-

sphatemia will, through an increase in 1,25(OH)2D, reduce

PTH levels (62). Evidence also suggests an inhibitory

effect of FGF23 on PTH production (63). The explanation

for the inappropriate PTH response in untreated HR, and

the details of the interactions between phosphate, FGF23,

and PTH, still need further clarification.

Secondary HPT caused by oral phosphate supplements

can be counteracted by increasing the doses of calcitriol,

with the risk of developing hypercalcuria and nephrocal-

cinosis, or by reducing the phosphate dose, with the risk

of worsening rickets (64). However difficult, successful

management of HPT in XLHR is important, as HPT has

been associated with development of hypertension and

renal failure (24, 65), cardiac failure (66), and also brown

tumor in the mandible (67).

Two patients, one with XLHR, developed tertiary HPT

after long-term use of phosphate supplements. The XLHR

patient had received relatively high doses of phosphate

and relatively low doses of alfacalcidol for more than

10 years. Tertiary HPT has been reported in 36 cases of HR

(24, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75), and prolonged

treatment with high doses of phosphate supplements

seems to be a risk factor (68, 71). There are reports of

successful treatment of tertiary HPT with cinacalcet in

children (24, 76) and adults (77, 78), but safety concerns

have stopped further clinical trials investigating the effects

of cinacalcet in children (79). A recent report suggests the

vitamin D analog paricalcitol to suppress elevated PTH

secondary to treatment in XLHR (80). However, careful

monitoring of treatment, to ensure lowest efficient

phosphate dose is very important to heal rickets and at

the same time reduce the risk of tertiary HPT.

The observations from this study support recently

published guidelines on treatment and monitoring of HR

in children (64, 81). We recommend that combined

treatment with oral phosphate and activated vitamin D

(calcitriol or alfacalcidol) is started once the diagnosis has

been made. Most children respond well to a calcitriol dose

of 20–30 ng/kg per day (divided in two doses) or

alfacalcidol 30–50 ng/kg per day (single dose) and an

elemental phosphorous dose of 20–40 mg/kg per day

www.eje-online.org
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(divided in four doses) with reduced signs of rickets and

skeletal deformities. The starting doses of phosphate

should be kept low to reduce gastrointestinal side effects,

and to avoid complications clinical and biochemical

controls should be performed at least every 3 months,

and supplemented with skeletal X-rays every 2 years and

renal ultrasonography every 2–5 years. To avoid HPT, the

aim should not be normalization of serum phosphate, but

the lowest efficient dose that promote growth and heal

rickets. To minimize the risk of nephrocalcinosis, hyper-

calcuria, defined as U-Ca/creatinine ratio O0.87 mmol/

mmol should be avoided.

One strength of our study is related to the fact that

combined data from the NPR and all pediatric centers in

Norway allowed us to collect a complete national material

of childhood HH. This allowed for the estimation of a

national prevalence, and adds information to the litera-

ture on the epidemiology of hereditary HR. Moreover, we

have identified new mutations in known and novel genes,

expanding the genetic diversity of HH with and without

rickets. On the other hand, the study is limited by the size

of the cohort and the retrospective design, implying we

could not ensure uniform collection of information from

the clinical, biochemical, and radiological examinations.

Furthermore, we did not do genetic testing on normopho-

sphatemic, asymptomatic siblings, as predictive genetic

testing on children is not allowed in Norway according to

the Biotechnology Act. This means there is a possibility for

undiagnosed subclinical cases.

In conclusion, we have presented the first complete

national cohort of HH in children. The prevalence of

XLHR seems to be lower in Norwegian children than

reported earlier.
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