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Abstract

The ability of proteins to sense membrane tension is pervasive in biology. A higher resolution 

structure of E. coli MscS, the channel of small conductance, identifies alkyl chains inside pockets 

formed by the transmembrane helices (TMs). Purified MscS contains E. coli lipids and 

fluorescence quenching demonstrates that phospholipid acyl chains exchange between bilayer and 

TM pockets. Molecular dynamics and biophysical analyses show that the volume of the pockets 

and thus the number of lipid acyl chain within them decreases upon channel opening. 

Phospholipids with one acyl chain per head group (lysolipids) displace normal phospholipids (two 

acyl chains) from MscS pockets and trigger channel opening. We propose the extent of acyl chain 

interdigitation in these pockets determines the conformation of MscS. Where interdigitation is 

perturbed by increased membrane tension or by lysolipids, the closed state becomes unstable and 

the channel gates.
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Introduction

Organisms use lipid bilayers, impermeable to ions and polar molecules, to 

compartmentalize. The exchange of molecules with the outside world occurs in a controlled 

manner via channels and transporters. In general transporters respond to the presence of 

their substrates and energy, whereas channels respond to specific stimuli. Mechanosensitive 

channels gate in response to changes in the tension in the membrane bilayer. 

Mechanosensors are found in bacteria, archaea1,2 and in eukaryotes3, where they fulfill a 

variety of essential roles. The role of the human piezo channels in cardiovascular disease has 

recently attracted attention4. However, the best studied mechanosensitive channels are MscS 

and MscL from E. coli5-7, which open in response to increased turgor pressure to save the 

cell from rupture during osmotic shock8-10.

In addition to an open (conducting) and a closed (non-conducting) state, sub-conducting 

(partly open) states have been observed for MscS11-14. An open state can be generated in 
vitro by addition of lyso-phosphatidylcholine (LPC 18:1) to liposomes or spheroplasts15,16 

or by application of pressure in a patch pipette17. Mechanosensitive channels, in particular 

MscS, have become influential models in probing pressure-sensing2,7,18. An open19 and a 

closed20 structure of the MscS in conjunction with site-directed mutagenesis has led to a 

model of how the protein changes during gating19.

MscS has four transmembrane helices (TM1, 2, 3a and 3b, Fig 1A,B), TM1-2 pack together 

in an antiparallel arrangement approximately perpendicular to the plane of the membrane 

and TM3a lines the central pore (Fig 1A,B). TM3b, predicted to be located at the interface 

between lipids and cytosol is approximately parallel to the membrane. Rotational symmetry 

results in the cytoplasmic domains of MscS forming a large enclosed space with portals 

through which solutes pass. In the closed state20 the TM3a helices are tightly packed 

creating a hydrophobic seal12,21. Upon gating TM3a helices move akin to a camera iris 

opening the pore whilst TM1-2 rotate 50° around the pore19. ‘Voids’ exist between TM3a,b 

and TM1-219,20. The volume of voids differs between the open and closed structures19,20. 

MscS structures lacking ‘voids’ have been generated by continuous wave EPR16 and 

computation22. Pulsed EPR studies on the MscS protein in both detergent solution23 and 

lipid bilayers24 as well as crystal structures of MscS solubilized in different detergents25 and 

from different organisms25,26 all possess ‘voids’ between the TMs. Such voids are seen in 

other membrane proteins27,28.

Molecular insights into how lateral tension within the lipid bilayer is sensed have been 

elusive but must account for the role of the lipids2,29,30. Our understanding has been 

profoundly changed by the observation that eukaryotic K+ ion channels are modulated by 

membrane tension31,32. Regulation of ion channels by membrane tension may be general 

and one of nature’s oldest mechanisms31,33,34. MscS (and MscL) in a bilayer are sufficient 

for tension sensing35,36. In the study of the human TRAAK K+ channel, whose function is 
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modulated by membrane tension32, changes in membrane tension were transmitted by 

changes in lipid protein interactions5,37.

We set out to probe how pressure is sensed by MscS. We develop a model that has reversible 

lipid interdigitation in the protein voids as the central feature. We suggest the model may 

have broader validity.

Results

Lipids pack the ‘voids’ in MscS

MscS D67C single-cysteine mutant was covalently modified as described38 to give MscS 

D67R1 (R1 denotes MTSSL cysteine adduct). A MscS D67R1 crystal23 diffracted to 3.0 Å 

resolution (Table 1, Supplementary Fig. 1). The protein structure is essentially identical to 

the 3.45 Å A106V open structure19. We have located a few additional residues and spin 

labels which match the measured PELDOR distances23 (Supplementary Fig. 1A, B). 

Difference (Fo-Fc) electron density at the transmembrane helices was fitted as alkyl chains 

(Fig 1B, Supplementary Fig. 1C) but was not sufficiently unambiguous to differentiate 

between lipid and detergent39. Two alkyl chains penetrate into the ‘pocket’ formed by the 

arrangement of TM1-TM2 and TM3b in the heptamer whilst the third chain packs against 

TM3b (Fig 1A). This is the first experimental evidence that the ‘voids’ in MscS are 

‘pockets’ that contain lipids or lipid-like molecules.

After detergent extraction and purification of the native MscS heptamer up to five putative 

lipids bound to MscS heptamer in the gas phase were resolved in non-denaturing mass 

spectrometry40 (Fig 2A). A series of peaks were observed with mass differences between 

620 to 790 Da, ruling out DDM (510 Da) or LDAO (230 Da) adducts; detergents used in 

sample preparation. The lowest mass species is a lipid adduct of protein, not the protein 

alone (seen for other membrane proteins40). The mass range of small molecule adducts is 

consistent with the two major types of E. coli phospholipid (PL), phosphatidylethanolamine 

(PE) and phosphatidylglycerol (PG), but not cardiolipin (CL).

Two independent preparations of DDM-purified MscS D67R1 had their lipids extracted and 

analyzed by mass spectrometry (Fig 2B). ES-MS and subsequent MS fragmentation detected 

seven lipid species, six were assigned (Fig 2B). PG ionizes more readily than PE (Fig 2B) 

preventing quantitative analysis, however, changes in the relative counts of species between 

samples are indicative of changes in the relative proportions of the phospholipids. PG 30:1 

and in particular PE 14:0/14:0 and PE 16:1/14:0 were enriched relative to their natural 

abundance in E. coli 41. The differences in phospholipid composition in the protein sample 

were not a feature of E. coli, were independent of detergent, but specific to MscS 

(Supplementary Fig. 2A-D).

Lipid extract from purified MscS was examined in thin layer chromatography (TLC) were 

stained with primuline to differentiate lipid from detergent and with ninhydrin to identify PE 

(ninhydrin does not stain PG or CL phospholipids) (Fig 2C). The plates show PE is indeed 

the predominant phospholipid. A previous SEC-ICP-MS study 42 estimated 2.6 to 3 

unidentified phospholipids per MscS monomer. Based on TLC we estimate around 0.5 PE 
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molecules per monomer (consistent with non-denaturing MS analysis, Fig 2A). A protein 

sample that had been in detergent for several months and subjected to multiple freeze-thaw 

cycles showed a lower PE: protein ratio (Fig 2C, Supplementary Table 1). We suggest that 

the precise lipid content may reflect differences in the purification and storage procedure.

The lipids exchange between the pockets and bilayer

We performed multi-scale molecular dynamics (MD) simulations (1 μs coarse grain (CG-

MD) and 100 ns atomistic (AT-MD), 5 replicates of each) on both the closed20 and open 

structures (D67R1 mutated in silico to native) in a 4:1 POPE:POPG lipid bilayer model. The 

protein structure was restrained to prevent collapse of the pockets and distortion of TMs. In 

all simulations lipids migrate to fill the TM pockets with more lipids in the lower than upper 

half of the pocket (Fig 3A, B and Supplementary Fig. 3A, B). Strong local membrane 

curvature is observed around MscS in both states (Fig 3A, B) consistent with the proposal 

that the local membrane environment around MscS is highly distorted43. The distortion of 

the membrane bilayer around MscS (Figure 3A,B, Supplementary movie 1 and 2) highlights 

the limitations of a simple geometric representation of the bilayer as a flat sheet and 

illustrates the importance of characterizing the exact disposition of the lipids in order to 

understand tension transmission. Previous simulations identified a smaller degree of 

curvature44 but these simulations were shorter (< 10 ns) and used a simpler POPC lipid 

bilayer. The N-terminal 24 residues of MscS, which are disordered, are excluded from 

models but may play some role. The tapered shape of MscS is manifested in the different 

protein cross sectional areas at periplasmic and cytoplasmic membranes (Fig 3A,B, Fig 1 

and Supplementary Fig. 1D). The volume of the transmembrane pore in the open structure 

has increased due to the outward movement of the TM3a helices towards to TM1-2 (Fig 

1C)19 which has concomitantly compressed the inter-helical pockets (Fig 1C, 

Supplementary Fig. 1D).

CG-MD shows that as MscS opens the lipid content of the pocket decreases by 

approximately one lipid per pocket (Fig 3A, B, C and Supplementary Fig. 3A, B), the loss 

occurs between TM2 and TM3a (Supplementary Fig. 3D). The pockets (upper and lower 

regions) are more accessible to lipids of the cytosolic membrane leaflet (Fig 3A, B and 

Supplementary Fig. 3A, B). The lipids in the pockets are mobile and in continuous contact 

with the bulk membrane bilayer (Supporting movie 1 and 2), in particular the cytosolic 

leaflet (Fig 3A, B, C).

The simulations suggest that one lipid contact (per subunit) persists in the lower part of the 

pocket (Fig 3C). In the open state, these lipids are almost exclusively PE and overlap with 

alkyl chains in the crystal structure (Supplementary Fig. 3C). Protein proximity to these PE 

phospholipids remains essentially constant during the final 50 ns of AT-MD in agreement 

with CG-MD findings, consistent with the detection of PE phospholipids (Fig 2A, B, C). AT-

MD shows that the zwitterionic headgroups of these phospholipids are coordinated primarily 

to charged residues on the loop that connects TM1-2 (Supplementary Fig. 3Fi). In the closed 

structure, TM3a helices are tightly packed and there is no lipid penetration of the pore 

(Supplementary Fig. 3Fii,iii) whereas in the open structure, the PE alkyl chains run parallel 
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to the TM3b helix and terminate by contacting L105 and L109 (the pore-sealing residues) by 

penetrating between adjacent TM3a helices; linking the bilayer through TM1-2 to TM3a.

Single Trp mutants were introduced into a tryptophan-free mutant of MscS, W16Y W240F 

W251F (MscS YFF) previously shown to be stable and functional, albeit with a reduced 

pressure sensitivity in patch clamp analysis45. A103W, V107W, and L111W on TM3a and 

L115W, A119W and L123W on TM3b were chosen as they line the pockets (Fig 1A, 3D). 

Except L115W which was unstable and eliminated from analysis, the mutants were 

functional (Supplementary Fig. 4A, B). M47W, on the surface of TM1 (lipid exposed), 

Q203W and native W240 on the cytosolic domain (no lipid contact) and L105W on TM3a 

(faces into pore, away from the pockets and thus lipids) were chosen as controls. MscS 

mutant channels were reconstituted by dilution46,47 into lipid bilayers at a molar ratio of 

100:1 (lipid:MscS monomer), with either non-brominated fatty acid chains, 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC), or lipids that were brominated in the middle of the fatty 

acid chains, 1,2-di-(9,10-dibromo)stearoyl-sn-glycero-3-phosphocholine (BrPC) or small 

membrane patches in which BrPC forms bilayers with similar properties to DOPC48,49.

When incubated with brominated lipids strong quenching was observed for the residues that 

face into the pockets (Fig 3D, E, Supplementary Table 2). The strongest quenching was 

observed with A119W but A103W and V107W also exhibited strong quenching (Fig 3E); 

these result indicate that the tryptophan is close the Br atom on the lipid. L123W, which lies 

closer to the periphery of TM3b, exhibited weak quenching possibly because it is close to 

the phospholipid head group region and consequently far from the Br atoms at the 9,10 

positions of BrPC. Similarly, the less strongly quenching observed with the positive control 

M47W on TM1 (Fig 3E and Supplementary Table 2) may be explained by its proximity to 

lipid head groups as M47W. The three negative controls L105W, Q203W and W240 

exhibited very weak or no quenching.

DOPC is not the natural lipid context for E. coli MscS, but has been used successfully36,50. 

L111W, A119W and L123W were retested in 4:1 PE:PG (E. coli like lipid composition) and 

yielded essentially the same results (Fig 3F). These data demonstrate that the cavities 

predicted from crystal structures permit exchange of phospholipids.

MscS is controlled by changes in protein lipid interactions

MscS opened with LPC 18:1 had a reported a single-channel conductance of 1 ± 0.2 nS (200 

mM KCl, 90 mM MgCl2, 10 mM CaCl2, 10 mM HEPES)16, similar to that obtained when 

trans-bilayer pressure differences were used to open8,36. LPC has been proposed to work by 

increasing leaflet curvature, mimicking the patch clamp pressure induced opening15,16. We 

reconstituted A119W and M47W MscS into DOPC and then added brominated LPC 18:1 to 

a final concentration of 33% (mole LPC: mole DOPC). Blue native gel analysis showed the 

MscS heptamer remained intact (Supplementary Fig. 4B). Comparison of spectra obtained 

before and after addition of LPC indicated quenching (Fig 4A). Dequenching was observed 

when both mutants were reconstituted into BrPC and non-brominated LPC added (Fig 4A). 

Thus LPC exchanges reversibly with lipids in the pockets. As DDM-solubilised MscS 

incubated with LPC 14:0 partially dissociates (Supplementary Fig. 4C) gel filtration was 

used to select heptameric protein. Mass spectrometric analysis of the lipid extract from the 
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heptameric fractions of MscS shows that LPC 14:0 remains associated with protein and has 

displaced the E. coli PE lipids (Fig 4B, Supplementary Fig. 4C,D,E).

There are no reports of MscS reconstituted into 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC) planar lipid bilayers possibly because this system offers no simple 

way to establish a pressure gradient. However the planar bilayer technique offers defined 

access to each side of the membrane for additives (e.g. lysophospholipids). In the absence of 

LPC, spontaneous currents were seen after reconstitution of MscS into the planar lipid 

bilayer; 70 % stable opening (Supplementary Fig. 5A), 30 % fast flickering (Supplementary 

Fig. 5B). The Unitary Conductance, G, was 1.2 ± 0.1 nS, (n = 25; Supplementary Fig. 5A, 

B), identical (within error) to that reported for MscS in patch clamp analyses14,36,50-52. 

Spontaneous openings were observed when MscS was reconstituted into liposomes50. 

Physical chemistry considerations favor the large cytoplasmic domain remaining on the cis 
side. Current-Voltage (I-V) curves obtained with the MscS reconstituted in a planar lipid 

bilayer showed the same rectification at negative potential (Supplementary Fig. 5C) as was 

observed where the orientation of channel was known (embedded in patches of the inner 

membrane)36,50,52. These data establish the validity of planar lipid bilayer system to probe 

MscS.

Lyso-PC 18:1 (3 μM) added to the cis compartment (cytoplasmic leaflet) activated MscS and 

yielded a unitary conductance of G = 0.8 ± 0.2 nS (n = 25) (Fig 4C); the openings are clearly 

distinguishable from the spontaneously opened channel. Around 20 % of openings are 

multiple sub-conducting states and short flickering events, while 80 % were free of 

flickering (n = 25) for 15 to 20 minutes (until bilayer ruptured, an effect presumably of 

LPC). Stable opening was observed after LPC 18:1 addition to the bath with inside-out 

patches of MscS16 (equivalent to cis side). Addition of LPC 18:1 (final concentration 3 μM) 

to the trans compartment (periplasmic leaflet) opened MscS with the same conductivity as 

from the cis side (G = 0.8 ± 0.2 nS, n = 25), but with frequent closures (Fig 4D). LPC 14:0 

(10 μM) added to the cis compartment gave similar results as LPC 18:1 but with stability of 

30 to 45 min (Fig 4E). Over these longer traces multiple open channels were observed 

(Supplementary Fig. 5D). The addition of LPC 14:0 to the trans compartment resulted in 

channel opening (G = 0.8 ± 0.2 nS) with frequent gating (of variable duration) not sustained 

opening (Fig 4F). The statistically significant lower conductance with LPC 18:1 and LPC 

14:0 (G = 0.8 ± 0.2 nS) compared to spontaneous opening (G =1.2 ± 0.1 ns) indicates that, at 

least in this system, LPC creates a sub (not fully) conducting state. D67C behaved as native 

in both planar lipid bilayers (Fig 5C) and in downshock assays23. D67R1 exhibited different 

behavior in planar lipid bilayers with no spontaneous opening and fluctuating and 

inconsistent behavior upon addition of LPC 14:0. MTSSL added to E. coli expressing D67C 

MscS (following a published approach53), results in native behavior in downshock assay 

(Supplementary Fig. 4F) suggesting the modified protein remains functional and that the 

spin label particularly effects LPC gating.
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Discussion

A model for pressure sensing by MscS

The arrangement of the TM helices MscS creates pockets open to lipid bilayer (Fig 1A, 

3A,B)19,20,25,26. The pockets are wedge shaped; the wider end at inner leaflet and the ‘sharp 

and narrow end’ in the outer leaflet. The TM1-2 helices create large hydrophilic grooves that 

span the bilayer. Truly empty pockets between the TM1-2 helices and TM3a-b are 

incompatible with a stable structure22,44 and waters are unlikely to fill hydrophobic pockets. 

Doubts exist therefore on the validity of crystallography as means to explore MscS function. 

Pulsed EPR of MscS, both in detergent solution and reconstituted into bilayers, has 

supported the the presence of pockets23,24. We have shown specific phospholipids remain 

associated with MscS (Fig 2A,B,C). A 3.0 Å crystal structure and MD show that 

phospholipid (or lipid-like) molecules fill these pockets (Fig 1 and 3A,B). The profile of the 

pockets suggested that lipids most easily gain access from the cytoplasmic face and this is 

observed in the MD simulations (Fig 3A,B, Supplementary Fig. 3A, B and Supporting 

movie 1, 2). The role of the disordered residues (1-26) in these interactions is unknown; an 

important caveat to these results. That acyl chains fill hydrophobic grooves or pockets in 

membrane proteins is well known54 and fluorescence quenching confirms that lipids 

exchange with lipids in the pockets (Fig 3E,F). MD calculations also show lipids in pockets 

to be dynamic, both within each state and in differences between states (Fig 3A,B,C and 

Supplementary Fig. 3A,B,D).

The fitting of a two state Boltzmann model to the observed plot of tension against open 

probability of MscS embedded in liposomes was used to derive a gating free energy of 29 kJ 

mol−1 and a change in cross-sectional area of 8.4 ± 0.4 nm2 36. The structural data however 

gives cross sectional area change of 3 nm2 and this results in a poor fit to the experimental 

tension data (Supplementary discussion & Supplementary Fig. 7). A second approach used 

protein cross sectional area at the midpoint, change in protein shape and the second 

derivative of pressure profile to derive an equation for MscL gating55. When parameters 

from the structural analysis of MscS are put into this formula the open structure is calculated 

to be more stable by 60 to 70 KJmol−1 (Supplementary discussion), a result that we think 

unrealistic. These approaches, rooted in sound physical principles, assume that protein-lipid 

and lipid-lipid interactions do not change in response to pressure. We propose that, for 

MscS, the energy that arises from changes in lipid partition between the pockets and the 

bilayer is a previously missing component of tension sensing models.

The composition of the annular membrane and the specific interactions of lipids with MscS 

are known to be key to transmission of the mechanical stimulus33,56. Structural transitions of 

MscS upon gating19,20 showed that the pockets are radically altered. Reliably estimating the 

change in volumes of the pockets is non trivial. Using 2.5 Å probe determines that upon 

opening each pocket is reduced by approximately 1200 Å3; modifying the probe radii gave 

different results, but consistently showed a reduction in pocket volume. The loss of one lipid 

with two acyl chains was observed upon gating in molecular dynamics simulations (Fig 3C).

We propose that the conformational state of MscS is determined by the availability of lipids 

to fill the pocket; the closed structure, with larger pockets, needs at least one more 
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phospholipid molecule per monomer than the open state to be stable (Fig 3A, B). 

Biophysical measurements have established that lateral tension, not pressure per se, is the 

trigger for opening MscS36,57. Lateral tension exerts a ‘pull’ on lipid acyl chains inside the 

protein pockets (which are in exchange with the bilayer), as tension increases the 

equilibrium position of lipid molecules favors the bilayer not the pockets. This re-

organisation of the lipids within and around the protein destabilises the closed structure. 

MscS gates to the open form with smaller pockets that need less lipid (Fig 5A); when the 

tension decreases the process reverses. (An equivalent formulation is at low tension lipids 

enter into pockets favoring the closed form, whereas at higher tension the reduction in lipids 

in the pockets allows the protein to adopt the open state.) This ‘lipid moves first’ model is 

consistent with the exchange of lipids that we observed. Our model is the energy from re-

organization of the acyl chains (i.e. between pockets and bilayer) (Fig 5A) is central to MscS 

tension sensing.

We do not favor a ‘protein moves first’ model as it would require strongly bound lipids as 

force transducers at the mobile elements of MscS (TM1,2,3a). MD and biophysics showed 

the phospholipids to be in exchange (not tightly bound). Further a distinguishing features of 

MscS gating, the rotational motion of TM1-219, does not fit with lipids pulling the protein 

laterally.

LPC, a conical lipid, had been proposed to operate by changing curvature in one leaflet 

mimicking the curvature of patch clamping58. This proposal means that insertion on 

opposite (wrong) side of a bilayer would lead to bilayer curvature in the ‘wrong’ sense; that 

is curvature opposite to patch clamping58. The curvature model of LPC action predicts that 

LPC will only open the channel when added to the side of MscS where curvature mimics 

patch clamping. We observe that LPC14:0 open MscS with the same conductivity 

irrespective of side of addition; inconsistent with a curvature mechanism. LPC has recently 

been suggested to directly create tension in the bilayer50 consistent with addition from either 

leaflet. However, we observe that an LPC opened structure has statistically significant lower 

conductance (Fig 4 C,D,E,F) than that opened by pressure36 or that occurs spontaneously 

(Supplementary Fig. 5A, B); in short LPC creates a sub-conducting state.

The packing of the headgroups around the protein circumference54 limits the number of acyl 

chains that could intercalate into the pockets (Fig 3A,B). However, lysolipids, with one (not 

two) acyl chain per headgroup will, we suggest, be unable to stabilize the closed structure as 

efficiently as a normal phospholipid (Fig 5B). We propose this causes the sub-conducting 

state observed in single channel experiments (Figure 4,C,D,E,F). LPC can displace 

phospholipids from the pockets (Fig 4A,B) a requirement for this model of LPC action. 

Stable openings were observed when LPC is added at the cytoplasmic side, but opening with 

frequent closures were observed when LPC 18:1 (even more so LPC 14:0) was introduced 

from the periplasmic side (Fig 4D,F). Our biophysical data showing exchange of LPC with 

phospholipids (Figure 4A) cannot identify whether exchange occurs exclusively from the 

cytoplasmic face or from both faces. While MD calculations of bilayers with LPC added 

were beyond the scope of this paper, the origin of lipids in the pockets is primarily the 

cytoplasmic bilayer leaflet (Fig 3A,B and Supplementary Fig. 3A,B). Taken together we 

hypothesize that LPC will interact with the pockets most effectively from the cytoplasmic 
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face (Fig 5B) and this underpins the difference in behavior depending on the side of LPC 

addition. The gating of MscS by LPC is thus a special case of our general model in which it 

is lipid interdigitation that controls the channel’s behavior. Lipid-induced changes in 

structure have been seen in pore forming toxins where host lipids activate the toxin59.

Conclusion

Eukaryotic channels are now known to be modulated by pressure7,31,32. The sensitivity of 

TRAAK channel to membrane tension was shown to result from movement of a specific 

lipid in and out of a binding site in the TM helices37. In TRAAK there is a significant 

change in the cross sectional area of the protein but lipid re-organisation was noted a 

component of the TRAAK gating energy. In our model it is the lipid re-organisation (lipids 

shifting between interacting with protein via the pockets and with the bulk lipid of the 

bilayer phase) that changes the relative stabilities of these conformational states that in turn 

controls mechanosensation. We do not identify a specific key binding site as was seen in 

TRAAK37. It has been proposed that many mechanosensitive channels are activated by 

introduction of lysolipids (or equivalents) and that other sensory channels, with ostensibly 

different gating signals, may share this property34,60. We predict that where different 

conformational states of a membrane protein differ in their capacity for sequestering 

phospholipids, changes in membrane tension or introduction of lysolipids will modify 

(alongside other factors) the transition between the states.

Online Methods

Materials and Methods

Material—n-Dodecyl-β-D-maltopyranoside (DDM) and n-decyl-β-D-maltopyranoside 

(DM) anagrade were obtained from Anatrace Inc or Glycon (Germany). Isopropyl-β-D-

thiogalactoside (IPTG) was obtained from Formedium and (tris(2-carboxyethyl)phosphine 

(TCEP) from Thermo Scientific Ltd. The S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-

yl)methyl methanesulfonothioate (MTSSL) spin label was obtained from Toronto Research 

chemicals, Toronto. Phospholipids, E. coli Polar Extract, PC, PE, PG, LPC 18:1 and LPC 

(14:0) were purchased from Avanti Polar Lipids. All other chemicals unless otherwise stated 

were obtained from Sigma. Mutants were generated with the Stratagene QuickChange™ 

protocol as described previously12,19.

Biophysics

Purification and crystallization: MscS D67R1 single-cysteine spin-labeled mutant was 

expressed, purified, spin labeled and crystallized as reported previously23. The extent of spin 

labeling efficiency was quantified by using a fluorescence method described previously38. 

Briefly, the protein was concentrated by using Vivaspin concentrators (www.sartorius.com) 

with a 100 kDa cut-off, to 9-13 mg mL−1 in 0.05% DDM, 50 mM sodium phosphate, pH 

7.5, and 300 mM NaCl. Crystals of MscS D67R1 grew to a full size of 0.3 mm × 0.1 mm × 

0.1 mm, in two days. The best crystals (visual inspection) were obtained by using 0.07 M 

Nacitrate, pH 4.5, 0.07 M NaCl, 23% v/v PEG 400, as precipitant. Prior to data collection, 

crystals were transferred into a solution containing 0.07 M sodium citrate, pH 4.5, 0.07 M 
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NaCl and 30% v/v PEG 400. Data for MscS D67R1 were collected at 100 K on a single 

crystal on ID14-4 at the European Synchrotron Radiation Facility (ESRF) (Grenoble, 

France) and indexed, integrated and merged by using MOSFLM / SCALA61 as implemented 

in CCP462 (Table 1). The resolution of the data used in refinement were determined 

following the procedure of Diederichs and Karplus 63,64 as it is implemented in the PDB 

REDO server65. This method has been shown to give more accurate models despite using 

weak data that are normally excluded by resolution cutoffs based on R-merge or I/σI criteria. 

Data and structure deposited with code 5aji. Pocket volumes were measured with with the 

CASTp server66

LPC treatment of purified MscS: Lyso-PC 14∣:0 was dissolved in 0.05% DDM, 50 mM 

sodium phosphate, pH 7.5, and 300 mM NaCl and added to 30% molar ratio (LPC 14:0 / 

WT MscS monomer) purified in the same buffer WT MscS in an eppendorf tube. The tube 

was placed on the rocker at RT for 5 min and subsequently sonicated for another 5 min, for 

further incubation. The MscS containing tube and LPC 14:0 was kept on ice for a couple of 

minutes. The last three steps were repeated two more times. The sample was subjected to gel 

filtration (Superpose 6 column, GE healthcare) and run in a buffer containing 0.05% DDM, 

50 mM sodium phosphate, pH 7.5, and 300 mM NaCl, without LPC 14:0.

The fractions of the peak corresponding to the heptamer of WT MscS were collected and 

concentrated using 100kDa cut off filters and then subjected to further lipid analysis.

Pore volume determination: The software Pore-Walker67 was used for the determination of 

the pore diameter for MscS D67R1 and closed (2OAU) structures. For D67R1, the spin label 

was removed and the residue set back to native before analysis. In this calculation, only 

residues that were well resolved in both structures were taken into account and were aligned 

to the C-terminal end at residue 278, forming a total length pore axis of around 105 Å (e.g. a 

total number of 35 steps with each step being 3Å long). Pore disc surfaces were calculated 

for each step and subsequently integrated along the full length of the pore axis, resulting in 

the determination of the total pore volume using OriginPro 8.0.

Lipid volume determination: Lipid volumes were calculated for both truncated and full 

lipids from existing x-ray structures in the PDB database (Supplementary Table 3). Lipids 

with PE and PG headgroups were included in our analysis, because only these lipid-types 

were detected in the E. coli expression strain (Supplementary Fig. 2A). Volume calculations 

were made with Molspace (http://www.compbiochem.org/Software/molspace/Home.html) a 

plug-in of the VMD software routine68.

Quenching of tryptophan fluorescence: Purification of the MscS tryptophan mutants 

followed in general the protocol established earlier42,45. Membranes were solubilised by 

incubation for 1 h at 4°C in 0.9% DDM (Glycon, Germany) containing 50 mM sodium 

phosphate, pH 7.5, 300 mM NaCl, 10% glycerol, 50 mM imidazole, 0.2 mM 

phenylmethylsulfonylfuoride (PMSF, Sigma). Aggregates were removed by centrifugation at 

3000g for 10 min and filtration using 0.2 μm syringe filter. MscS was then bound through its 

C-terminal His6-tag to a pre-packed 0.5 mL nickel-nitrilotriacetic (Ni-NTA) agarose column 

(Sigma) and washed with 20 mL of washing buffer (50 mM sodium phosphate, pH 7.5, 

Pliotas et al. Page 10

Nat Struct Mol Biol. Author manuscript; available in PMC 2016 May 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.compbiochem.org/Software/molspace/Home.html


containing 0.05% DDM, 300 mM NaCl, 10% glycerol and 50 mM imidazole). After storage 

overnight at 4°C, MscS was eluted with elution buffer (washing buffer containing 300 mM 

imidazole). Peak fractions were separated on a Superdex 200 10/300 GL size exclusion 

column (GE Healthcare) at 0.5 mL min−1 using a buffer containing 0.03% DDM, 50 mM 

sodium phosphate, pH 7.5, 150 mM NaCl. All mutants studied here purified as heptamers as 

judged by the size exclusion chromatogram and proved to be functional in vivo as assessed 

by osmotic downshock assays after induction with IPTG69.

Quenching experiments of tryptophan fluorescence were performed as described46. 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC; Avanti, Alabaster) was brominated by the 

stepwise addition of bromine (Sigma) to a solution of the lipid in chloroform cooled on ice 

until a faint yellow colour of unreacted bromine persisted. Bromination of 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine (DOPE; Avanti, Alabaster) and 1,2-dioleoyl-sn-glycero-3-

phosphoglycerol (DOPG; Avanti, Alabaster) was performed by the same method. After a 

further 30 min, chloroform was removed under a nitrogen stream followed by several rounds 

of dissolving and evaporation. The brominated lipid 1,2-di-(9,10-dibromo)stearoyl-sn-

glycero-3-phosphocholine (BrPC) was kept for several hours in a desiccator, dissolved again 

in chloroform and stored at −20 °C until further use. Bromination of DOPC was confirmed 

by NMR and mass spectrometry (Supplementary Fig. 6). Films of lipids were formed in 

thin-walled glass tubes by drying the desired amount of DOPC or BrPC as chloroform 

solutions under a nitrogen stream. The remaining chloroform was completely removed by 

keeping the glass tubes under vacuum at 4°C in a desiccator overnight. 2 μmol of DOPC or 

BrPC were then suspended under a nitrogen atmosphere in 1.6 mL of buffer A containing 40 

mM HEPES, pH 7.2, 100 mM KCl, 1 mM EGTA, and 15 mM sodium cholate by warming 

the tube for 20 s in warm water, vortexing for 5 min, and subjecting to ultrasonication for 10 

min (Fisher scientific, model FB15046). MscS (1.27 nmol, determined by UV/Vis 

spectroscopy using an extinction coefficient of ε280nm(MscS 1W) = 15.9 mM−1cm−1) was 

added to lipid solution (100 μL, 127 nmol lipids) and incubated for 15 min at room 

temperature. MscS and lipids (25 μL) were added to measuring buffer B (600 μL, as buffer 

A but without sodium cholate) in a 4×4 mm stirred quartz cell (Hellma, Germany). 

Measurements were performed after 5 min incubation (in the case of L105W after 15 min 

incubation because of slower equilibration) in a FLS920 fluorescence spectrometer 

(Edinburgh Instruments) with excitation at 295 nm and emission from 300 to 420 nm at 

20°C. Excitation and emission slits were set to 3 nm and 7 nm, respectively, and polarizers 

at 90° and 0°, respectively70. The emission at 340 nm was used for analysis of quenching. 

This wavelength was chosen to avoid some effect of tyrosine fluorescence at low 

wavelengths (300-320 nm), strong scattering at low wavelengths (<305 nm), Raman 

scattering (327 nm), and higher noise at longer wavelengths caused by low tryptophan 

fluorescence intensities. The emission at 340 nm was corrected with samples containing 

lipids but no MscS. Fractional quenching was calculated from the fluorescence intensities at 

340 nm as FrQ=(F0-F)/F0, where F0 is the intensity for the sample containing 100% non-

brominated lipids and F for 100% brominated lipids. Experiments with mixtures of 80% 

DOPE and 20% DOPG or their brominated forms were performed in the same way than 

with DOPC or BrPC. Brominated LPC (made as described for BrPC) or LPC were added 

(0.33 mol/mol of total lipid) to A119W MscS samples reconstituted in DOPC in the same 
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way as described above. MscS was reconstituted in BrPC following the same procedure as 

described for DOPC.

The function of the studied mutant forms of MscS was assessed by an osmotic downshock 

assay as described earlier69. The MscS constructs in the vector pTrc99A with an added C-

terminal His-tag were transformed into the Escherichia coli strain MJF61271 and an 

overnight culture was grown in LB medium supplemented with 25 μg/ml ampicillin at 37°C. 

The next day the culture was diluted 100 times to fresh medium and grown to an OD650nm of 

0.4. The cultures were then diluted 10 times into a LB medium with an additional 0.5 M 

NaCl and grown until an OD650nm of 0.3. For each sample two of these cultures were grown 

where one of them was supplemented with 0.3 mM IPTG at an OD650nm of 0.2. All samples 

were diluted 20 times into LB medium (shock) and into LB + 0.5 M NaCl (control). After 

serial dilutions into similar media, samples were grown on plates and colonies were counted 

the next day. Survival was quantified as counted colonies for shock samples relative to 

control samples.

Analysis of lipid content

Native Mass Spectrometry: Native mass spectra were acquired using a Q-TOF 2 

instrument (Micromass) equipped with a Z-spray source and modified to allow the 

transmission of high molecular weight species72. Aliquots of MScS in dodecyl-β-D-

maltopyranoside (DDM) were buffer exchanged using biospin-6 columns (Bio-Rad) first 

into 200 mM Ammonium acetate 0.02% DDM and then into 200 mM ammonium acetate 

0.05% lauryldimethylamine-oxide and electrosprayed from gold coated nano-spray 

capillaries in the positive ion mode73. Optimised instrument parameters include collision 

cell pressure capillary voltage 1500 V, sample cone 200 V, extractor 10 V, backing pressure 

8.79×10−3 mbar, collision cell pressure 0.31 MPa, collision energy 150 V and argon was 

used as the collision gas. All spectra were calibrated externally using a solution of cesium 

iodide (25 mg/mL). Spectra were acquired for around 100 scans then processed (summed 

then smoothed) using MassLynx V4.1 (Waters). Masses were calculated using software 

developed in house.

ES-MS and ES-MS-MS lipidomic analysis: Lipid removal from purified recombinant 

proteins was achieved by 3 successive vigorous extractions with ethanol to fully denature the 

proteins (final 90% v/v)74. The pooled extracts were dried with nitrogen gas in a glass vial 

and re-extracted by using a modified Bligh and Dyer method75. To obtain a complete lipid 

extract from E. coli cells, cells were washed with PBS, suspended in PBS (100 μL), 

transferred to a glass tube containing chloroform:methanol (1:2, 375 μL) and vortexed. The 

sample was agitated vigorously for a further 10-15 min, made biphasic by the addition of 

CHCl3 (125 μL) and water (125 μL), vortexed again and centrifuged at 1000g at room 

temperature for 5 min. The lower organic phase was transferred to a new glass vial, dried 

under nitrogen and stored at 4°C.

Lipid extracts were dissolved in chloroform : methanol (1:2, 15 μL) and acetonitrile : 

isopropanol : water (6:7:2, 15 μL) and analyzed with a Absceix 4000 QTrap, a triple 

quadrupole mass spectrometer equipped with a nanoelectrospray source. The samples were 
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delivered using a Nanomate interface in direct infusion mode (~125 nL min−1). The extracts 

were analysed in both positive and negative ion modes using a capillary voltage of 1.25 kV. 

MS-MS scanning (daughter, precursor and neutral loss scans) were performed using 

nitrogen as the collision gas with collision energies between 35-90 V. Each spectrum 

encompasses at least 50 repetitive scans.

Tandem mass spectra (MS-MS) were obtained with collision energies as follows; 35-65V, 

PE in negative ion mode, parent-ion scanning of m/z 196; 20-35V, PS in negative ion mode, 

neutral-loss scanning of m/z 87; and 40-90V, for all glycerophospholipids (including PA, PG 

and CL) detected by precursor scanning for m/z 153 in negative ion mode. MS-MS daughter 

ion scanning was performed with collision energies between 35-90V. Assignment of 

phospholipid species was based upon a combination of survey, daughter, precursor and 

neutral loss scans, as well as previous assignments76. The identity of phospholipid peaks 

was verified using the LIPID MAPS: Nature Lipidomics Gateway (www.lipidmaps.org).

Thin-layer chromatography of lipid extracts: For quantitation, lipid was extracted from 

purified MscS according to the method of Bligh and Dyer75. Briefly, purified MscS was 

mixed with chloroform:methanol (1:2, 375 μL) v/v for 5 min. Chloroform (125 μl) was 

added and mixed, followed by the addition of 1 M KCl (125 μL). After vortexing for 1 min, 

the mixture was centrifuged at 310g for 5 min. The lower phase containing lipids was dried 

under a nitrogen stream and dissolved in methanol (50 μL). The extracted lipids were 

spotted on SILICA 60 plates (Macherey-Nagel) and separated in a TLC tank pre-saturated 

with chloroform:methanol:1M KCl (10:10:3) v/v/v. The plate was air-dried and then stained 

with 0.05% primuline in acetone:water (80:20 v/v) to visualize lipids. Spots (lipid/detergent) 

were viewed with a UV transluminator. Plates were then tested specifically for PE by 

staining in 0.1% ninhydrin in acetone:water (80:20 v/v) followed by heating until pink PE 

spots developed. The molar ratio of PE:MscS was determined by densitometric analysis of 

the lipid spots using the software Bio-rad Image Lab Software and compared with that of 

known POPE standards.

MD simulations

CG–MD Simulations: Protein structures were converted to a coarse-grained (CG) 

representation using MARTINI v2.177. During the CG simulations an elastic network model 

was applied to the protein Cα atoms78 using a distance cutoff of 7 Å and a force constant of 

10 kJ mol−1 Å−2. Simulations were performed using Gromacs v4.5.579 (www.gromacs.org). 

Self-assembly simulations (50 ns) were used to produce five replicates of a 4:1 POPE:POPG 

lipid bilayer. Each PE:PG bilayer was aligned with the transmembrane (TM) domain of the 

protein, and lipids overlapping the protein were removed. The system was solvated by 

approximately 18,000 water particles, charge neutralized, and the ionic concentration set to 

~0.15 M NaCl. Each of the five CG-MD simulations was run for 1 μs.

CG to Atomistic Conversion and Equilibration: The final coordinate sets from the CG 

simulations systems were converted to atomistic representations using a published 

protocol80, yielding a system of ~300,000 atoms. Atomistic MD simulations were performed 

using the GROMOS9681 53a6 force field and the SPC water model82. Simulations employed 
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semi-isotropic pressure coupling with the Parrinello–Rahman barostat83 and the Berendsen 

thermostat84 at 310 K. The LINCS algorithm was used to constrain bond lengths85. Long-

range electrostatic interactions were modelled using the particle mesh Ewald method86 and a 

cutoff of 10 Å was used for van der Waals interactions. Each atomistic system was simulated 

for 100 ns. Visualization used in-built and custom scripted features for VMD 1.9.168.

Analysis: To allow a degree of equilibration of protein–lipid interactions, only the latter half 

of each simulation trajectory was analyzed, i.e. from 0.5 to 1 μs of the CG and from 50 to 

100 ns of the AT-MD simulations. The analysis of lipid contacts with MscS used a sampling 

time of 0.25 ns for AT and 2.5 ns for CG simulations. Contacts were assessed for the full 

TM domain (residues 27 to 128) and for the lower part of the pocket (TM helix 3, residues 

106 to 122). Lipid metrics per residue were averaged across all 7 polypeptide chains and 

time in a given trajectory. Significant differences between states were calculated using the 

two-tailed Student’s t-test, employing the null hypothesis of no difference and rejecting this 

when p ≤ 0.01.

Single-channel planar lipid bilayer recordings—Planar lipid bilayer recordings of 

single MscS channels were carried out by using bilayers of 1, 2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC, Avanti Polar Lipids) formed across an aperture (~70 μm in 

diameter) in a 25-μm thick polytetrafluoroethylene (Teflon) film (Goodfellow, Cambridge), 

which separated the apparatus into cis and trans compartments87. Bilayers were formed by 

first pre-treating the aperture with hexadecane in n-pentane (1 μl, 10 mg mL−1) on each side. 

Both compartments were then filled with the electrolyte solution (200 mM KCl, 90 mM 

MgCl2, 10 mM CaCl2, 10 mM HEPES, pH 7.5) and DPhPC in n-pentane (5 μl, 5 mg mL−1) 

was added to both sides to allow membrane formation when the electrolyte was raised above 

the aperture. The MscS channel was reconstituted by adding 1 μL of a 50 μg mL−1 of 

solution of MscS in 0.05 % DDM, to the cis compartment of a planar bilayer apparatus 

containing 1 mL of electrolyte. This brought the detergent concentration below the CMC 

causing protein aggregation and precipitation; at the same time, a few channels 

spontaneously inserted into the lipid bilayer. Fifteen minutes after the addition, assuming 

that one or a few channels had spontaneously inserted into the lipid bilayer, LPC was added 

to the cis or the trans compartment for channel activation, which was manifested by a jump 

in the ionic current (from 0 pA). We used LPC 14:0 (CMC 43 μM at room temperature88), 

LPC 18:1 and (LPC 18:0 at RT is 0.4 μM at room temperature88). Two independent 

preparations of DDM-purified WT MscS were used for the planar lipid bilayer recordings. 

Electrical currents were measured with two Ag/AgCl electrodes that were connected to the 

headstage of a patch-clamp amplifier (Axopatch 200B, Molecular Devices) operating in 

voltage-clamp mode. The cis compartment was connected to the grounded electrode and the 

trans compartment was connected to the working electrode. The data were filtered by an 

analogue low-pass 4-pole Bessel filter at 2 kHz, and digitally sampled at 10 kHz (Digidata 

1440A digitizer, Molecular Devices). The data were analyzed and prepared for presentation 

with pClamp (version 10.2, Molecular Devices). In control experiments, LPC 14:0 and 18:1 

were added to lipid bilayers at different concentrations and bilayers were stable to LPC 

however, higher concentrations resulted in bilayer rupture.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pockets that are formed between the TM helices that change upon gating
A: The 3.0 Å structure of the D67R1 MscS heptamer shown in cartoon representation on left 

with a space fill diagram showing the alkyl chains shown on right.

B: The voids between the TM helices undergo large changes upon gating. The pockets 

(highlighted by black box) in the closed (left) structure20 are larger than when compared to 

the open structure (right). The higher resolution of the new structure has allowed to visualize 

for the first time bound molecules in the pockets (see also Supplementary Fig. 1C).

C: Surface view of the closed (2OAU) and open (D67R1) MscS structures. The open and 

closed diameters of the pore, which arises from the displacement of the TM3a helices are 

shown by disks placed along the channel axis.
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Figure 2. Lipids pack in the pockets created by the TM helices
A: Native mass spectroscopy of wild type MscS, the expected theoretical weight of the 

heptamer is 223,727 Da. If this value is subtracted from the resolved first peak value of 

224,344 Da (brown dot), then it results in around 620Da, consistent with a small lipid 

(brown dot in Fig 2A). Subsequent differences between peaks reveal additional lipid 

adducts.

B: ES-MS of phospholipid extracted from a sample of DDM-solubilized MscS.

C: Thin layer chromatogram of extracted lipids from DDM-solubilized MscS. Lipid 

separation was carried out in the solvent system chloroform:methanol:1M KCl (10:10:3, v/v/

v ). Spots on the TLC plate were visualized by staining first with a) 0.1% ninhydrin and b) 

0.05% primuline, both in acetone:water (80:20, v/v). The samples loaded are Lane [1], 

MscS-DDM (238 μg)*, [2] MscS-DDM (280 μg), [3] MscS-Fos-14 (305 μg)*, [4] POPG (5 
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μg), [5] POPE (2.4 μg), [6] E. coli lipids (8 μg), [7] DDM (5 μg), [8] Fos-14 (10 μg). The 

result is typical of three separate experiments. Lanes 1 & 3 were freshly purified, lane 2 was 

several months old. *mass refers to quantity of MscS protein loaded; others refer to mass of 

lipids. Note that PG, known to be present from mass spectrometry in preparations 1 & 2, is 

not visible due to the overlap with the DDM, which is much more abundant in the detergent-

solubilized material.
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Figure 3. Lipids exchange between the pockets and the bilayer
A cut away slice showing snapshots (at 100 ns) of atomistic simulations of the closed (A) 

and open (B) conformation of MscS in POPE:POPG (4:1) phospholipid bilayers. Movies of 

the lipid bilayer (with protein removed) are available as Supplementary files (movie 1 and 

movie 2).

C: Comparison of the number of lipids that remain within 6 Å of the TM (i.e. residues 27 to 

128, light bars) and the lower pocket (TM3b region, residues 106 to 122 (darker shaded 

bars) of closed (blue bars) and open state (magenta bars) MscS throughout the latter 0.5 μs 
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of the CG-MD simulations. Error bars indicate one standard deviation of number of lipid 

contacts. A larger number of lipids are in rapid exchange between the pockets and bilayer 

(Supplementary Fig. 3E).

D: Single-tryptophan mutants of MscS probed with brominated phospholipids and the 

degree of quenching is shown by color shading.

E: Typical raw data of quenching experiments (selected mutants). Emission spectra are 

shown from MscS in 100% DOPC (black) or 100% BrPC (red).

F: Quantitative results of BrPC quenching in form of the fractional quenching by brominated 

lipid for TM3b mutants in DOPC (black bars; s.d. shown as error bar from n= 17 

reconstitutions) and 80% DOPE:20% DOPG (white bars; s.d. shown as error bar from n = 4 

reconstitutions)).
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Figure 4. MscS conformational state can be altered by perturbing the interactions between the 
phospholipid and the protein
A: A119W (left) and M47W (right) were reconstituted into DOPC (top row) or BrPC 

(bottom row) shown in black. Brominated LPC (top) or non-brominated LPC (bottom) was 

added (green) causing quenching or dequenching, respectively.

B: ES-MS of phospholipid extracted from DDM-solubilised MscS after treatment with LPC 

14:0. Survey scan in positive ion mode (465-500 m/z) showing the 490 m/z of the LPC 14:0. 

Survey scan in negative ion mode (600-1000 m/z) of MscS after treatment with LPC 14:0 

(inset). Only LPC 14:0 [M+Na+] 490.3 was observed.
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C: Typical current recordings of single MscS channels in planar lipid bilayers. The applied 

potential was at +20 mV. Right panels: corresponding all-points amplitude histograms. In 

this experiment 3 μM LPC 18:1, was added to the cis compartment.

D: As 4C but with 3 μM LPC 18:1 added to the trans compartment.

E: As 4C but with 10 μM LPC 14:0 added to the cis compartment.

F: As 4C but with 10 μM LPC 14:0, added to the trans compartment. Inset: recording at 

expanded time scale.
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Figure 5. A model for mechanosensation
A: MscS is depicted as a simplified a line diagram, PE and PG molecules are shown with 

black headgroups, those inside the pockets are highlighted (for easy visualization) with a 

green headgroup. The phospholipids partition in the pockets and the lipid bilayer. As 

pressure is applied, the lateral tension increases and as a result the phospholipids repartition 

(blue arrows) from the protein pockets to the bilayer destabilizing the closed structure. The 

protein responds by undergoing a conformational change (orange arrow) to the open form.
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B: LPC (shown as a single chain with a yellow headgroup) enters first the bilayer then the 

pockets from the cytoplasmic side and as result the lipid content (acyl chains) falls inside the 

protein pockets destabilizing the closed structure. The protein undergoes a conformational 

change to a sub conducting state.

C: Single channel bilayer recordings show that MscS D67C exhibits similar conductivity as 

WT protein when opened by addition of LPC 14:0 to the cis side (Fig 4E).
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Table 1

MscS D67R1

Data collection

Space group P212121

Cell dimensions

 a, b, c (Å) 126.5, 149.0, 174.0

 α, β, γ (°) 90, 90, 90

Resolution (Å) 64.2 – 2.99 (3.07 – 2.99)a

R merge 0.082 (1.002)

I / σI 6.7 (1.1)

Completeness (%) 99.5 (99.8)

Redundancy 3.5 (3.6)

Refinement

Resolution (Å) 64.2 – 2.99

No. reflections 66747

Rwork / Rfree 24.4 / 26.3

No. atoms

 Protein 13733

 Ligand 203

 Water

B factors

 Protein 114

 Ligand 103

 Water

r.m.s. deviations

 Bond lengths (Å) 0.008

 Bond angles (°) 1.2

Data collected on 1 crystal.

a
Values in parentheses are for highest-resolution shell.
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