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The impact of risk factors on the amount of time taken to reach an endpoint is a common parameter of interest.

Hazard ratios are often estimated using a discrete-time approximation, which works well when the by-interval

event rate is low. However, if the intervals are made more frequent than the observation times, missing values will

arise. We investigated common analytical approaches, including available-case (AC) analysis, last observation car-

ried forward (LOCF), andmultiple imputation (MI), in a settingwhere time-dependent covariates also act asmediators.

We generated complete data to obtainmonthly information for all individuals, and from the complete data, we selected

“observed” data byassuming that follow-up visits occurred every 6months.MI proved superior to LOCFandAC analy-

ses when only data on confounding variables were missing; AC analysis also performed well when data for additional

variables were missing completely at random.We applied the 3 approaches to data from the Canadian HIV–Hepatitis

C Co-infection Cohort Study (2003–2014) to estimate the association of alcohol abuse with liver fibrosis. The AC and

LOCF estimates were larger but less precise than those obtained from the analysis that employed MI.

available-case analysis; last observation carried forward; marginal structural models; missing data; multiple

imputation; survival analysis

Abbreviations: AC, available-case; APRI, aspartate aminotransferase:platelet ratio index; CCC, Canadian HIV–Hepatitis C Co-

infection Cohort; HCV, hepatitis C virus; HIV, human immunodeficiency virus; LOCF, last observation carried forward; MCAR,

missing completely at random; MI, multiple imputation; MSM, marginal structural model.

Many researchers are interested in studying influences on
the amount of time taken to reach a certain endpoint, often
death. When studying time-dependent exposures, additional
challenges are posed by time-dependent covariates that act
simultaneously as confounders and mediators. Three types
of bias can arise in this context: bias due to confounding, if
one doesn’t control for a variable that is a common cause of
the exposure and outcome (1); blocking of the total effect by
conditioning on an intermediate variable (2); and collider strat-
ification bias, which can occur when one conditions on an in-
termediate variable in situations where there is an unmeasured
variable that causes both the outcome and that intermediate
variable (3). The most commonly used method of addressing
these challenges is the marginal structural model (MSM) (4),
frequently fitted via inverse probability weighting.

When fitting MSMs for time-to-event data, a discrete-time
approximation is often used (4–8); the resulting odds ratio

will be a good approximation of the hazard ratio if the per-
interval event rate is low (9). Using shorter time intervals in
order to have fewer events per interval is a means of improving
the discrete-time approximation.However, this poses a key chal-
lenge if the desired interval frequency exceeds that of the actual
observation times, by inducing a considerable missing-data
problem. It is not unusual to see analyses in which the last ob-
servation carried forward (LOCF)method is used to impute data
for between-visit covariates in a discrete-time setting.While it al-
leviates the issue ofmissing data, this approachmay induce bias.

Andersen and Liestøl (10) noted attenuation of regression
coefficients in Cox proportional hazards models when time-
varying covariates were measured infrequently. In fitting a
marginal structural Cox model, the possibly outdated covar-
iates are not included in the outcome model but rather are
used in the weighting models, where the impact of measure-
ment error is unpredictable (11).
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In this paper, we examine the impact of the LOCF tech-
nique and compare it with 2 alternative approaches: the
available-case (AC) approach and multiple imputation (MI).
We demonstrate these approaches using data from the Cana-
dian HIV–Hepatitis C Co-infection Cohort (CCC) Study to
examine the impact of alcohol abuse on time to development
of liver fibrosis, as measured by the aspartate aminotransfer-
ase:platelet ratio index (APRI), in a population coinfected
with human immunodeficiency virus (HIV) and hepatitis C
virus (HCV).

MISSING DATA: TYPES AND APPROACHES TO

MITIGATE ITS EFFECTS

Missing data are common in studies whose subjects are fol-
lowed over time, but they can also occur in other settings—for
example, if participants refuse to answer a subset of questions
on a questionnaire. There are 3 classes of missing data: missing
completely at random (MCAR), missing at random, and miss-
ing not at random (12). In MCAR data, the probability of a
measurement’s being missing is independent of both observed
and unobserved measurements. Under MCAR, estimates from
most standard analysis approaches are unbiased.However, there
will almost surely be a loss of statistical power. In the “missing
at random” situation, the probability of a measurement’s being
missing depends on observed data but not on the unobserved
data. In the last case, missing not at random, the value of the
missing measurement itself predicts the probability of data
being missing; in general, this can only be corrected by making
strong, untestable assumptions about the distribution of the
missing values or the missingness mechanism.
There are several approaches to missing data. Here, we

consider 3: AC analysis (i.e., analyzing only the observed
data), LOCF, and MI.

AC analysis

It is not uncommon for analysts to remove records with
missing values; for many analytical software programs, this
is the default approach. Unless data are MCAR, AC analyses
can yield seriously biased estimators. When the data are
MCAR, the estimators will not exhibit bias but can suffer
from low precision.

Last observation carried forward

The LOCF method simply uses the last recorded value to
impute the missing value(s). This approach preserves the sam-
ple size but can yield biased estimators, even under MCAR;
the direction of the bias varies across settings (13–15).

Multiple imputation

MI is a Monte Carlo method in which missing values are re-
placed inm repeated simulations (16). MI is commonly used in
standard regression settings but is less frequently applied in
MSMs, despite some evidence to suggest its utility (17).
To fully describe MI, we must first introduce some termi-

nology. Let Q be the estimator of interest, such as the causal
log odds ratio from the MSM. Y denotes the outcome and is

partitioned into 2 parts, Ymis and Yobs. Q̂ ¼ Q̂ðYmis; YobsÞ will
estimate Q if complete data are available. U =U(Ymis, Yobs) is
the squared standard error of the estimator. Assume that in the
presence of complete data, ðQ̂� QÞ= ffiffiffiffi

U
p

∼ Nð0; 1Þ.
InMI,m > 1 independent imputations are used to fill in Ymis,

indexed by l. The imputation-specific estimates are Q̂ðlÞ ¼
Q̂ðYobs; Y ðlÞ

misÞ and UðlÞ ¼ UðYobs; Y ðlÞ
misÞ; l = 1, . . ., m. The

overall estimate of Q is given by �Q ¼ PQ̂ðlÞ
=m (i.e., the sim-

ple average of the estimates resulting from each of them analy-
ses of the completed data sets), and the standard error for �Q is

T ¼ ð1þ m�1ÞBþ U, where B ¼ PðQ̂ðlÞ��QÞ2=ðm� 1Þ is the
between-imputation variance and U ¼ PUðlÞ

=m is the within-
imputation variance. An overview of MI by chained equations
is provided in the Web Appendix, available at http://aje.
oxfordjournals.org/.
Unlike the complete-case approach, MI preserves the sam-

ple size by ensuring that no individuals are dropped from the
study due to incomplete measurement, a feature also shared
by the LOCFmethod. However, unlike LOCF (or an AC anal-
ysis), MI can yield an unbiased treatment effect estimator
provided that data are missing at random and the models
used to perform the imputation are correctly specified.

SIMULATION STUDY

We conducted a simulation study to examine the perform-
ance of 3 different analytical approaches to missing data in
MSMs for time-to-event data performed via weighted pooled
logistic regression. We used the “gold standard” analysis of
complete data, AC analysis (observed data), and LOCF and
MI to impute missing values in our simulated data sets.
The bias, standard error, and root mean squared error of the
treatment effect estimator were used as metrics to compare
the 3 analytical approaches.

Methods

Data generation. We used the data-generating algorithm
proposed by Young et al. (18). Let n be the number of sub-
jects and M the maximum possible number of observation
times. T is the failure time, and Ym′ is an indicator for failure
by time m′. Treatment during the interval [m′, m′ + 1) is
denoted Am′; Lm′ is the binary time-varying confounder mea-
sured at the start of interval [m′, m′ + 1); and T0 is the coun-
terfactual survival time if an individual is never exposed.
Survival data consistent with a Cox MSM can then be gener-
ated according to the following procedure.
Step 1: T0 is drawn from an exponential distribution with

rate λ0 = 0.01. That is, λ0 represents the rate of events (e.g.,
liver fibrosis) in the absence of exposure. Set L−1 = A−1 = Y0 =
0. For each m′, we follow steps 2–4.
Step 2: Generate confounder Lm′ from a binomial distribu-

tion with

logit½PðLm0 ¼ 1j�Lm0�1; �Am0�1; Ym0 ¼ 0Þ�
¼ β0 þ β1I½T0 < c� þ β2Am0�1 þ β3Lm0�1;

where c = 30 as in the study by Young et al. (18).
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Step 3: Generate the treatment Am′ from a binomial distri-
bution with

logit½PðAm0 ¼ 1j�Lm0�1; �Am0�1; Ym0 ¼ 0Þ�
¼ α0 þ α1Lm0 þ α2Lm0�1 þ α3Am0�1:

Step 4: For generating the event indicator Ym′ and survival
time T, we have

• If T0 >
Rm0þ1
0 expðφAjÞ dj, then Ym′+1 = 0

• If T0 �
Rm0þ1
0 expðφAjÞ dj, then Ym′+1 = 1 and T ∈ (m′,

m′ + 1] with

T ¼ m0 þ ðT0 �
Zm0

0

expðφAjÞ dj expð�φAm0 ÞÞ;

where φ is the (marginal) causal treatment effect. Thus, we
modify the counterfactual treatment-free survival to account
for observed treatment and see whether the resulting survival
time lies within the interval [m′, m′ + 1).

Parameter valueswere chosen based on the example provided
byYoung et al. (18). Specifically, β = (β0, β1, β2, β3) = (log(3/7),
2, log(0.5), log(1.5)), and α = (α0, α1, α2, α3) = (log(2/7), 0.5,
0.5, log(4)); 500 data sets were considered for each scenario.

Three different valueswere considered for the treatment effect
(φ = 0, −log(3), log(2)), so as to consider the null case, a situa-
tion where survival time is decreased by the exposure, and a sit-
uation where it is increased by the exposure. SeeWeb Figures 1
and 2 for a causal diagram of the data-generating procedure.

Conventionally, it has been seen as desirable to have short in-
tervals with fewer events, as this enables the analyst to apply
pooled logistic regression to approximate the hazard ratio in
an MSM instead of using a Cox regression model. Thus, com-
plete data were generated using the above algorithm to obtain
monthly information for all individuals. However, we assumed
that participants were followed up only every 6 months, and
therefore we “pretended” to see only every sixth observation
of the time-dependent confounder throughout the simulation
study. Thus,we kept every sixth observation in avector of length
of the total number of intervals and deleted the between-visit
observations; data wereMCAR. In initial simulations, only data
on confounders were missing. This assumption is not unreason-
able, since formanyexposures (particularlypharmacological ex-
posures), records are available to confirm treatment between
follow-up visits. Additionally, we considered situations where
data on both the confounding variables and the exposure var-
iables were missing and where, in addition to missing 5 out
of 6 visits, outcome data were missing for a random 15% of the
sample.

Analysis. Four analyses were undertaken. First, we ana-
lyzed the complete data. This type of analysis provides results
in the ideal setting in which observations are made at the same
intervals as those used in the analysis, that is, at a monthly fre-
quency. Second,we analyzed available data only.With this ap-
proach, we analyzed the data from every sixth observation and
ignored the visits at which confounders were not measured.
Third, we analyzed the data using LOCF to impute the missing
values. Finally, in the fourth analysis we used MI to fill in the

missing values: MI was carried out with the use of the mice
function in R (R Foundation for Statistical Computing, Vienna,
Austria) (19), with logistic regression used tomodel themissing
data, since all variableswere binary. The imputationwas carried
out with the data in long format, where each row of the data set
represented a person-visit; the subject identification number and
interval number were included in the model to account for the
clustering in the data. All available information at the current
visit was used in the imputation model. Thus, when only con-
founding information was missing, the current and previous-
interval treatment, previous-interval confounder, interval
number, and subject identification number were all included as
linear terms in the model. Note, however, that the indicator var-
iable I[T0 < c] was not included in the imputation model; while
this indicator is part of the data-generating mechanism, the
treatment-free survival, T0, is an unmeasured quantity. In the
simulationswhere treatment informationwasmissing, the logis-
tic imputation model for treatment depended linearly on the
current and previous-interval confounding variable, previous-
interval treatment, interval number, and subject identification
number.Missing outcomeswere imputed using a logistic impu-
tationmodel thatwas linear in termsof the current- andprevious-
interval confounding variables, current- and previous-interval
treatment, interval number, and subject identification number.

MSM parameters were estimated via inverse probability
weighting, thereby creating a pseudopopulation in which ex-
posures were not predicted by the time-dependent confound-
ers included in the weighting models.

Let �Ak ¼ ðA0;A1; : : :; AkÞ denote exposure history over
intervals 0–k, and similarly let L denote all relevant con-
founding preexposure variables in each interval. Further, let
Yk = 1 if a subject experiences the event in interval k and
Yk = 0 otherwise; similarly, Ck = 1 if the subject was lost to
follow-up by interval k and Ck = 0 otherwise. In our simula-
tions, stabilized weights,

swik

¼
Qk

t¼0prðAt¼aitj�At�1¼�ai;t�1;Ct�1¼Yt�1¼0ÞQk
t¼0prðAt¼aitj�At�1¼�ai;t�1;�Lt�1¼�li;t�1;Ct�1¼Yt�1¼0Þ;

are used, wherewe take �A�1 ¼ 0: In the absence of any censor-
ing or loss to follow-up, an unbiased estimator of the marginal
effect of the exposure on the outcome can be obtained by re-
gressing the binary outcome on (some function of) the exposure
history and any baseline covariates used in the numerator of the
stabilized weights, weighting each person-observation by swik.

If censoring is purely administrative, as in our simulation
study, no changes to the modeling procedure outlined above
are required. If, however, censoring depends on measured co-
variates (as in the analysis presented in the following section),
wemay treat censoring like another time-varying exposure, pro-
vided there are no unmeasured confounders for both treatment
andcensoring.Wemustupdate theweights in the following fash-
ion, taking the subject-specific weight to be swik × sw0

ik, where

sw0
ik

¼
Qk

t¼0prðCt¼0j�At�1¼�ai;t�1;Ct�1¼Yt�1¼0ÞQk
t¼0prðCt¼0j�At�1¼�ai;t�1;�Lt�1¼�li;t�1;Ct�1¼Yt�1¼0Þ:
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For each of the 4 analyses, we report and compare bias, vari-
ability, and the combined measure of the root mean squared
error.

Results

FromTables 1–3, it is evident that variability tends to dom-
inate bias in all analyses. This is perhaps unsurprising, since
the data are MCAR and the assumed follow-up scheme is in-
dependent of all individual-level covariates. In the setting
where only confounding variables are unobserved, MI per-
forms very well. This pattern does not hold across the other

2 scenarios. When the exposure was also missing, none of the
3 approaches was uniformly the best. MI appeared to suffer
when data on the outcome were missing, particularly in com-
parison with the AC analysis; however, this seemingly sur-
prising finding can be explained: Because the data were
MCAR, the AC analysis would be expected to be unbiased
but inefficient.While theMI analysis imputes, on average, the

Table 1. Simulation Results Based on Complete Data Generated

Using Young et al.’s (18) Algorithm, Assuming That Every Sixth

Confounder Measurement Is Observed and the Remaining

5 Measurements Are Missing

φ, Sample
Size (n),

and Statistic

Analytical Approach

Complete
Data

Available-
Casea

LOCF
Multiple

Imputation

0
100

Bias 0.012 0.067 0.069 0.089

SD 0.302 0.659 0.282 0.258

rMSE 0.302 0.663 0.290 0.273

500

Bias −0.035 −0.309 0.033 0.059

SD 0.332 2.235 0.318 0.294

rMSE 0.334 2.256 0.320 0.300

−log(3)

100

Bias −0.018 0.061 0.055 0.068

SD 0.165 0.276 0.151 0.139

rMSE 0.166 0.282 0.161 0.155

500

Bias 0.012 0.067 0.069 0.089

SD 0.302 0.659 0.282 0.258

rMSE 0.302 0.663 0.290 0.273

log(2)

100

Bias 0.000 0.056 0.068 0.083

SD 0.141 0.230 0.126 0.117

rMSE 0.141 0.237 0.144 0.144

500

Bias 0.031 0.086 0.093 0.108

SD 0.129 0.262 0.136 0.116

rMSE 0.132 0.275 0.164 0.159

Abbreviations: LOCF, last observation carried forward; rMSE, root

mean squared error; SD, standard deviation.
a Some estimates were excluded when calculating the performance

statistics (bias, SD, and rMSE) because of an excessively high (≥10)
odds ratio; for each (φ, n) pair, the following numbers of estimates were

excluded: (0, 100): 0; (0, 500): 0; (−log(3), 100): 8; (−log(3), 500): 0;
(log(2), 100): 1; (log(2), 100): 0.

Table 2. Simulation Results Based on Complete Data Generated

Using Young et al.’s (18) Algorithm, in Which Every Sixth

Measurement of Both the Confounder and the Exposure Are

Observed and the Remaining 5 Measurements Are Missing

φ, Sample
Size (n),

and Statistic

Analytical Approach

Complete
Data

Available-
Casea

LOCF
Multiple

Imputationb

0
100

Bias 0.013 0.090 0.046 0.002

SD 0.305 0.637 0.528 0.225

rMSE 0.305 0.643 0.530 0.225

500

Bias −0.005 0.050 0.062 0.003

SD 0.139 0.238 0.231 0.131

rMSE 0.139 0.243 0.239 0.131

−log(3)

100

Bias −0.037 −0.043 0.885 0.898

SD 0.354 0.699 0.639 0.265

rMSE 0.356 0.700 1.092 0.936

500

Bias −0.023 0.017 0.852 0.912

SD 0.170 0.287 0.280 0.163

rMSE 0.172 0.288 0.897 0.926

log(2)

100

Bias 0.043 0.161 −0.422 −0.574

SD 0.284 0.666 0.509 0.208

rMSE 0.287 0.685 0.662 0.611

500

Bias 0.039 0.097 −0.437 −0.575

SD 0.123 0.250 0.173 0.140

rMSE 0.129 0.268 0.470 0.592

Abbreviations: LOCF, last observation carried forward; rMSE, root

mean squared error; SD, standard deviation.
a Some estimates were excluded when calculating the performance

statistics (bias, SD, and rMSE) because of an excessively high (≥10)
odds ratio; for each (φ, n) pair, the following numbers of estimates

were excluded: (0, 100): 0; (0, 500): 0; (−log(3), 100): 13; (−log(3),
500): 0; (log(2), 100): 1; (log(2), 100): 0.

b Some estimates were excluded when calculating the performance

statistics (bias, SD, and rMSE) because of an excessively high (≥10)
odds ratio; for each (φ, n) pair, the following numbers of estimates

were excluded: (0, 100): 8; (0, 500): 2; (−log(3), 100): 6; (−log(3),
500): 5; (log(2), 100): 6; (log(2), 100): 1.
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correct number of outcomes, they are frequently imputed “too
early” in a simulated participant’s lifetime. In all analyses,
the confounder imputation models are imperfectly specified,

since the latent variable, I[T0 < c], is not available to the an-
alyst. Finally, the data were imputed in “long format,” which
does not take full advantage of the longitudinal nature of the
data; because of the exceptionally high rate ofmissingness and
the very small number of variables (the simulated data con-
tained only 1 confounder, an exposure, and an outcome), the
imputation procedure failed with the data in “wide format” (a
common problem when predictors in the imputation model are
collinear). There is therefore no method that emerges as a clear
winner:When the imputation procedure is not taxed by too high
a rate of missing information, it performs well. When data are
MCAR, results from AC analysis are unbiased but inefficient.
Of course, in practice, if the event rate in anAC analysis is high,
this analytical approachwill be undesirable, since the odds ratio
will serve as a poor approximation of the hazard ratio.

THE ASSOCIATION OF ALCOHOL ABUSE WITH LIVER

FIBROSIS: AN ANALYSIS OF DATA FROM THE CCC

STUDY

The CCC Study

Data were obtained from the CCC Study, a cohort study of
a Canadian population coinfected with HIV and HCV. Re-
cruitment began in 2003; to date (2014), 1,153 patients have
been enrolled from 17 sites across Canada. Eligible patients
were at least 16 years of age with documented HIV infection
and chronic HCV infection or evidence of HCV exposure. At
each of the follow-up visits, which are scheduled to take place
every 6 months, participants fill out a questionnaire, supple-
mentary information is extracted from their medical records,
and blood tests are performed by the research personnel
(20). The primary objective of this cohort study is to inves-
tigate the association between antiretroviral therapy and pro-
gression to end-stage liver disease among persons coinfected
with HIV and HCV; the researchers have also examined the
contributions of social factors, toxicities, and immunologi-
cal factors that may modify the progression of liver fibrosis
(20–22).

Outcome, exposure, and confounding variables

We examined the marginal association between alcohol
abuse and the development of liver fibrosis as measured by an
APRI score of at least 1.5, using the methods described above
to address information from missed visits. APRI is a non-
invasive surrogate for liver fibrosis and is defined as 100 ×
(aspartate aminotransferase/upper limit of normal)/platelet
count (109/L) (23, 24). APRI ≥1.5 has been validated as a
marker of significant liver fibrosis in coinfected patients
(23, 25).

Alcohol abuse is highly associated with liver fibrosis, and
therefore it was chosen as the exposure to demonstrate the po-
tential impact of the various approaches for handling missing
data. Alcohol abuse was defined as self-reported alcohol intake
of more than 2 drinks per day or binge drinking (>6 drinks at
any one time). Alcohol abuse may be predicted by factors
such as previous injection drug use and smoking, while also
being a cause of future injection drug use and smoking; injec-
tion drug use and smoking may themselves also predict liver

Table 3. Simulation Results Based on Complete Data Generated

Using Young et al.’s (18) Algorithm, in Which Every Sixth

Measurement of Both the Confounder and the Exposure Are

Observed, the Remaining 5 Measurements Are Missing, and Data on

15% of Outcomes Are Missing

φ, Sample
Size (n),

and Statistic

Analytical Approach

Complete
Data

Available-
Casea

LOCFb Multiple
Imputationc

0
100

Bias 0.009 0.072 0.057 0.129

SD 0.293 0.579 0.746 0.662

rMSE 0.293 0.584 0.748 0.674

500

Bias 0.004 0.076 0.048 0.118

SD 0.135 0.250 0.356 0.338

rMSE 0.135 0.261 0.359 0.358

−log(3)

100

Bias −0.030 −0.025 0.225 0.023

SD 0.360 0.730 0.953 0.925

rMSE 0.361 0.730 0.979 0.925

500

Bias −0.019 0.046 0.281 0.199

SD 0.163 0.277 0.399 0.458

rMSE 0.164 0.281 0.488 0.500

log(2)

100

Bias 0.054 0.145 −0.163 0.209

SD 0.286 0.638 0.640 0.789

rMSE 0.291 0.654 0.660 0.816

500

Bias 0.029 0.087 −0.203 0.188

SD 0.123 0.267 0.250 0.493

rMSE 0.126 0.281 0.322 0.527

Abbreviations: LOCF, last observation carried forward; rMSE, root
mean squared error; SD, standard deviation.

a Some estimates were excluded when calculating the performance
statistics (bias, SD, and rMSE) because of an excessively high (≥10)
odds ratio; for each (φ, n) pair, the following numbers of estimates
were excluded: (0, 100): 1; (0, 500): 0; (−log(3), 100): 13; (−log(3),
500): 0; (log(2), 100): 0; (log(2), 100): 0.

b Some estimates were excluded when calculating the performance
statistics (bias, SD, and rMSE) because of an excessively high (≥10)
odds ratio; for each (φ, n) pair, the following numbers of estimates
were excluded: (0, 100): 0; (0, 500): 0; (−log(3), 100): 2; (−log(3),
500): 0; (log(2), 100): 1; (log(2), 100): 0.

c Some estimates were excluded when calculating the performance
statistics (bias, SD, and rMSE) because of an excessively high (≥10)
odds ratio; for each (φ, n) pair, the following numbers of estimates
were excluded: (0, 100): 1; (0, 500): 1; (−log(3), 100): 13; (−log(3),
500): 3; (log(2), 100): 1; (log(2), 100): 1.
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fibrosis. Similarly, CD4-positive T lymphocyte (CD4 cell)
count and HIV viral load may also act as both time-dependent
confounders and mediators. MSMs are thus an appropriate
modeling choice for accounting for such factors, which act as
both confounding variables andmediating variables. SeeWeb
Figure 3 for a simplified causal diagram of the CCC data.

Statistical analysis

Investigation of the association between alcohol abuse in
the past 6 months and liver fibrosis was undertaken using
MSMs, fitted via pooled logistic regression with inverse
probability weighting to account for covariate imbalances
in both the exposure and the censoring. The following vari-
ables were used to create a model with which to estimate the
denominator of the stabilized weights for both the treatment and
censoring models: baseline age, baseline ln(APRI), sex, an
indicator for aboriginal ethnicity, an indicator for being HCV
RNA-positive at baseline, duration of HCV infection, an
indicator for being hepatitis B surface antigen–positive at
baseline, lagged alcohol abuse, lagged CD4 cell count (per
100 cells/µL), lagged HIV viral load (log copies/mL), an in-
dicator for lagged injection drug use, an indicator for lagged
receipt of antiretroviral treatment, and an indicator for lagged
smoking. The numerator model included only the variables
that were time-invariant. The exposure model was fitted using
binomial logistic regression, whereas the censoring model
was fitted using a multinomial logistic regression model to
account for censoring via 1) HCV treatment, 2) death, or
3) other causes. All variables were included as linear terms;
see Web Table 1 for additional details.
MI was carried out in such a way as to recognize the lon-

gitudinal nature of the data. In particular, the data were im-
puted in a “wide format,” with 1 row of data per participant
(in contrast to the “long format,”where each row corresponds
to 1 person-visit). The imputation models were built forward
in time, imputing from the first missing interval to the last, to
acknowledge the temporally ordered structure of the data.
Predictors in the imputationmodels included all relevant var-

iables from the previous intervals as well as all time-invariant
covariates. For example, CD4 cell count in interval j was im-
puted on the basis of previous CD4 cell counts, HIV viral load,
use of/interruptions in antiretroviral treatment, injection drug
use, smoking status, alcohol abuse, and all time-invariant vari-
ables. The APRI scores were also used in the imputation mod-
el, and APRI scores were themselves imputed. The imputation
model also included an indicator of whether APRI was greater
than or equal to 1.5 in the observed data. Following imputation,
the event time was recalculated and was taken to be the first in-
stance in which either the imputed APRI or the observed APRI
was greater than or equal to 1.5. Continuous variables were im-
puted via predictive mean matching, and categorical variables
were imputed via logistic regression, using all other covariates
as linear terms without interactions in the logistic models.
We considered the impact of the number of imputations on

the stability of the resulting estimates, varying the number of
imputations from 5 to 25 in increments of 5. We found that
estimates were similar whether we used 20 imputations or 25,
so we chose the lower of these numbers to reduce the com-
putational burden of the analysis (which was considerable

because of the large sample size and the approach used to
compute confidence intervals; see below).
We used a nonparametric bootstrap to derive confidence

intervals for the treatment effect estimate which fully ac-
counted for the variability of the missing-data procedure and
the estimation of the weights. The resampling process was
performed on the individual, rather than on the visit.

Results

A total of 1,107 participants in the CCC Study had not re-
ceived HCV treatment at baseline, among whom 224 had
baselineAPRI≥1.5 andwere not included in anyof the analy-
ses. A total of 843 participants had observed baseline APRI

Table 4. Risk of Liver Fibrosis Associated With Alcohol Abuse in the

Canadian HIV–Hepatitis C Co-infection Cohort Study, 2003–2014a

Analytical Approach
and Variable

Odds Ratio
95% Confidence

Interval

Available-case

Alcohol abuse 1.55 0.91, 2.38

Age at baselineb 1.03 0.93, 1.19

Baseline ln(APRI) 7.29 4.15, 19.61

Female sex 1.85 0.98, 2.84

Aboriginal ethnicity 0.64 0.21, 1.07

HCV RNA-positive at baseline 1.42 0.86, 4.79

Duration of HCV infectionb 1.00 0.89, 1.25

HBsAg-positive at baseline 0.99 0.00, 1.91

LOCF

Alcohol abuse 1.74 0.65, 2.77

Age at baselineb 0.99 0.84, 1.18

Baseline ln(APRI) 6.20 1.98, 12.02

Female sex 1.30 0.90, 2.97

Aboriginal ethnicity 0.86 0.33, 1.36

HCV RNA-positive at baseline 1.56 0.73, 2.26

Duration of HCV infectionb 1.00 0.91, 1.16

HBsAg-positive at baseline 0.88 0.00, 1.18

Multiple imputation

Alcohol abuse 1.32 1.11, 1.69

Age at baselineb 0.99 0.85, 1.09

Baseline ln(APRI) 4.86 3.02, 8.12

Female sex 1.26 0.89, 1.57

Aboriginal ethnicity 1.02 0.63, 1.48

HCV RNA-positive at baseline 1.12 0.94, 2.09

Duration of HCV infectionb 1.00 0.97, 1.09

HBsAg-positive at baseline 1.15 0.68, 2.09

Abbreviations: APRI, aspartate aminotransferase:platelet ratio

index; HBsAg, hepatitis B surface antigen; HCV, hepatitis C virus;

LOCF, last observation carried forward.
a The hazard ratio is approximated by the odds ratio obtained from

a weighted pooled logistic regression.
b Age and duration of HCV infection were scaled so that the

coefficient was associated with a change of 5 years.
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scores less than 1.5 and were used in the LOCF analysis,
while the MI analysis also included those participants with
missing baseline APRI, bringing the sample size up to 883.
The AC analysis included only 750 participants. There were
951 missed visits, and 4,216 records were observed in total.

The average estimated coefficients from the inverse weight-
ingmodels in theMI analysis can be found inWeb Tables 1–4.
Previous alcohol abuse and previous smoking proved to be the
strongest predictors of current alcohol abuse, while previous
alcohol abuse and aboriginal ethnicity were the strongest pre-
dictors of censoring for reasons other than death or HCV treat-
ment initiation; unsurprisingly, APRI score was the strongest
predictor of initiating HCV treatment. These broad patterns
were also observed in the AC and LOCF analyses.

Table 4 gives hazard ratios, approximated by the odds ra-
tios from pooled logistic regression, for the association of al-
cohol abuse (and baseline covariates) with liver fibrosis,
accompanied by 95% bootstrap confidence intervals. The
odds ratio associated with alcohol abuse was largest under
both AC and LOCF analysis, though it was not significantly
associated with liver fibrosis in either case. The odds ratio as-
sociated with alcohol abuse was smallest in the MI analysis;
however, its confidence interval was also the narrowest and
excluded 1. Results obtained following truncation of the
weights are provided in Web Table 5.

DISCUSSION

MI has been suggested in numerous contexts to be a useful
tool for addressing missing data (17, 26, 27). It can be imple-
mented with greater ease than many likelihood-based ap-
proaches such as the expectation-maximization algorithm,
while offering substantial reductions in bias over naive meth-
ods such as ACor LOCF analysis. Our work suggests that this
may be the case for MSM analyses of time-to-event out-
comes; however, AC analyses may also prove a reasonable
choice when data are sparse due to infrequently scheduled
follow-up visits (and thus MCAR).

MI was demonstrated to be a reliable approach to address-
ing missing confounder information for longitudinal data in
situations where analyses are performed using MSMs fitted
by inverse probability weighting in a pooled logistic regres-
sion.Whereas ACmethods omit a potentially large number of
person-visits and LOCF will omit anyone with missing base-
line information, imputation can lead to increased precision
by preserving all person-visits. MI proved less reliable in
simulations where the exposure, confounders, and outcome
were all subject to missingness. Care must be taken to eval-
uate the imputation models and to ensure that a sufficient
number of imputations are used.

Our simulation results can be compared with those of Vourli
and Touloumi (28), who also recently studied the impact of
missing confounder information on CoxMSMs under a variety
of settings. As in our study, the authors found that MI did not
perform particularly well when there was a high proportion of
missed visits, even when the missingness mechanism was
completely at random (28). Viourli and Touloumi also consid-
ered LOCF and an approach based on inverse-probability-of
(not being)-missing weighting. LOCF performed poorly in all
scenarios, whereas the inverse weighting approach performed

better than MI in some circumstances (28). The authors did
not investigate settings where, in addition to missing confound-
ing information, missingness was present in both the exposure
and the outcome.

In our analysis of the impact of alcohol abuse on the devel-
opment of liver fibrosis, only the MI approach yielded a con-
fidence interval that excluded 1. In this example, exposure
was determined by the cohort participants, likely on the basis
of their current circumstances rather than on information col-
lected by researchers. However, there are situations in which
the exposure is determined based on mismeasured or out-
dated covariates, such as the last available measurement. In
this very particular case, the analyst should use LOCF so that
the variables used in the treatment allocation process are
those used to construct the inverse probability weights (R. P.
Kyle, McGill University, personal communication, 2015
(unpublished manuscript)).

Unlike our simulations, where missingness was com-
pletely at random, our analysis of the CCC Study filled in in-
formation from missing scheduled visits, a more complex
form of missingness than that in the simulation study. We
performed careful diagnostics of our imputations which sug-
gested that the models were good. Unfortunately, the data in
the CCC did not closely match the scenarios considered in the
simulation study. Young et al.’s algorithm (18) generates an
outcome that is distinct from covariates, which is not reflec-
tive of the CCC setting, where the continuous variable APRI
was used to define event status. There are currently no data-
generation protocols that mimic the CCC setting and permit
direct calculation of the true marginal hazard ratio in closed
form. Proposing an algorithm that more closely represents re-
alistic cohort settings is an important direction for future re-
search. Finally, we note that the discrete-time approximation
(i.e., pooled logistic regression), often used for computational
reasons, is no longer strictly required, since many software
programs now support the use of weights in an extended Cox
model (9, 29).
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