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Abstract

Identification of gene-environment interaction (GXE) is important in understanding the etiology of
complex diseases. Based on our previously developed Set Based gene EnviRonment InterAction
test (SBERIA), in this paper we propose a powerful framework for enhanced set-based GxXE
testing (eSBERIA). The major challenge of signal aggregation within a set is how to tell signals
from noise. eSBERIA tackles this challenge by adaptively aggregating the interaction signals
within a set weighted by the strength of the marginal and correlation screening signals. eSBERIA
then combines the screening-informed aggregate test with a variance component test to account
for the residual signals. Additionally, we develop a case-only extension for eSBERIA
(coSBERIA) and an existing set-based method, which boosts the power not only by exploiting the
G-E independence assumption but also by avoiding the need to specify main effects for a large
number of variants in the set. Through extensive simulation, we show that coSBERIA and
eSBERIA are considerably more powerful than existing methods within the case-only and the
case-control method categories across a wide range of scenarios. We conduct a genome-wide GXE
search by applying our methods to Illumina HumanExome Beadchip data of 10,446 colorectal
cancer cases and 10,191 controls and identify two novel interactions between NSAIDs and MINK1
and PTCHD3.
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Introduction

Common diseases such as cancer, diabetes and cardiovascular diseases result from a
complex interplay of genetic (G) and environmental (E) factors. For most of these diseases,
several environmental factors and a rapidly increasing number of genetic factors have been
identified [Hindorff et al., 2009]. However, so far there have been very few findings of
gene-environment interactions (GXE). Some exceptions include an observed interaction
between smoking and the GSTM1 deletion and a tag SNP in NAT2 in bladder cancer
[Garcia-Closas et al., 2005; Rothman et al., 2010], ADH7 variants and alcohol consumption
in upper aerodigestive cancers [Hashibe et al., 2008], GRIN2A variants and coffee
consumption in Parkinson's disease [Hamza et al., 2011] and our recent finding of GATA3
variants and processed meat consumption in colorectal cancer [Figueiredo et al., 2014].
Several aspects could contribute to the lack of GXE findings, including, for the
environmental factors, measurement error and lack of optimal data harmonization across
studies. In addition, the statistical power to detect an interaction is much smaller than to
detect a main effect, requiring approximately four times as many subjects are needed to
detect a main genetic effect of comparable size [Smith and Day, 1984].

To enhance the power to detect GXE, many methods have been proposed and can be broadly
categorized into two groups. The first, which encompasses most existing methods, is
focused on increasing the power to detect GXE for a single variant. These methods include
the case-only test [Chatterjee and Carroll, 2005; Piegorsch et al., 1994], the empirical Bayes
method [Mukherjee and Chatterjee, 2008], and the Bayesian Model Averaging method [Li
and Conti, 2009]. Within this category, two types of screening methods have also been
proposed to reduce the multiple testing burden in genome-wide GXE search: correlation-
based screening [Murcray et al., 2009] and marginal association-based screening
[Kooperberg and LeBlanc, 2008].

Toward this end, several recent methods have been developed to use and combine existing
screening and testing approaches, such as the hybrid method [Murcray et al., 2011], Cocktail
method [Hsu et al., 2012] and EDGx [Gauderman et al., 2013].

The second group of methods aims at increasing power by performing a set-based GxE test.
A set-based test can enhance the power not only by aggregating multiple GxE signals in the
same set, but also by greatly reducing the multiple-testing burden. As large-scale sequencing
studies are increasingly being conducted, there is a great interest in testing GXE on rare
variants, which makes set-based methods necessary. Tzeng et al. (2011) developed a method
to test for interaction between a set of variants and an environmental variable for a
continuous outcome using the set-based genetic similarity method [Tzeng et al., 2011]. Lin
et al. (2013) proposed a set-based GXE test called GESAT by extending the SNP-set Kernel
Association Test (SKAT) to the GXE setting for both continuous and categorical outcomes
[Lin et al., 2013]. GESAT assumes random GxE effects following a mean 0 distribution
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with variance 2. Testing GXE for a set of variants is equivalent to testing a zero variance of
2

T .

When aggregating signals in a set-based test, it is a thorny issue to determine which are the
signals and what are the directions of the signals, as not all variants in a set have GxE and if
those that have GXE, the directions can be positive or negative. Differing from a typical set-
based association test, the set-based GxE tests have the advantage that there exist screening
statistics that are informative in revealing the strength and direction of interaction signals but
still independent of the interaction test. In an earlier work, we proposed SBERIA to take
advantage of this desirable feature of GXE by exploiting the established correlation and
marginal screening to determine which variants to choose and the direction of their effects,
while aggregating genotypes within a variant set [Jiao et al., 2013]. As the screening
statistics are independent of the interaction test, conventional logistic regression can be used
to test the hypothesis without resorting to permutation to adjust for the data adaptive weight.

Although we showed that SBERIA provided attractive power compared to benchmark
methods, it also has limitations. SBERIA requires specifying a p-value threshold to
determine which variants to include in the aggregation. In practice, it can be difficult to find
a cutoff that achieves optimal power. In addition, SBERIA gives each variant a weight of 1,
-1 or 0, which does not take into account the difference in signal strengths among variants.
Furthermore, SBERIA excludes the variants that are not selected based on screening.
However, since the screening is not perfect, those variants can still contain useful
information. Hence, power could potentially be increased by combining SBERIA with other
tests to retrieve some or all of the remaining signals.

In this paper, we aim to address the aforementioned limitations of SBERIA. We propose a
new method, enhanced SBERIA (eSBERIA), using more nuanced variant weights instead of
1, -1, and 0 and combining SBERIA with the variance component test to achieve a more
powerful and robust performance. In addition, we propose a case-only version of the new
test (coSBERIA). In the single variant GXE test, the case-only test has been shown to be
more efficient than the conventional case-control test by exploiting the G-E independence
assumption [Chatterjee and Carroll, 2005]. In set-based GXE tests, the case-only analysis is
even more advantageous because it not only exploits the G-E independence assumption, but
also avoids the need to include a large number of G's as main effects. We compared
eSBERIA and coSBERIA with existing methods through extensive simulations under a wide
range of scenarios. We also applied our methods to Illumina HumanExome Beadchip data
with 10,446 colorectal cancer cases and 10,191 controls from the Genetics and
Epidemiology of Colorectal Cancer Consortium (GECCO) to identify novel genome-wide
gene-based interactions.

Notation and Models

Suppose there are N subjects and their disease status is denoted by D; (=0 or 1) for subject i,
i=1, ..., N. Assume E; is the environmental factor X; = (Xi1,...Xig)is a vector of q potential
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confounder covariates, and G;j = (Gjy,...Gjp) is a vector of p genetic variants. The interaction
model between the set of p variants and the environmental factor is:

logit (71’1) =ayg+FE;01+Gijas+X;a3+FE;G; 8, ()

where logit(.) is a logit link function, 7; = P(D; = 1), ag is the intercept, a; is the coefficient
for the main effect of Ej, ay is the px1 vector of coefficients for G;, as is the gx1 vector of
coefficients for Xj, EiGj = (EiGjy,...EiGjp), and B = (ﬂl,...,ﬂp)T is the px1 vector of interaction
coefficients. The null hypothesis for interaction effects is Hg : B = 0.

SBERIA uses the screening statistics (G and E correlation screening or marginal association
screening of G with disease risk, whichever is more significant) as a guide to aggregate the
genotypes. Specifically, SBERIA first selects variants for which the strength of the
screening signal is greater than a threshold. For the selected variants, a weighted sum of
their interaction terms is computed, where the weight=1 if the screening statistic is positive
and —1 otherwise. As the screening statistics, both marginal association [Dai et al., 2012]
and G and E correlation [Murcray et al., 2009] are independent of the interaction test,
conventional logistic regression can be used to test the interaction without requiring
permutation [Jiao et al., 2013].

As described in the Introduction, SBERIA can be improved in several aspects. Suppose E; is
a binary variable (we will focus on binary environment variables in this paper; the extension
to a continuous E is trivial). First we test the marginal association of each variant in the set
Gijj (j=1 to p) with Dj and the correlation between each variant with E; using logistic
regression without conditioning on other variants and GXE interactions. Note that covariates
can be straightforwardly adjusted for in the logistic regression model. Depending on the
context of the studies, investigators may want to adjust for covariates such as study, age,
sex, and principal components to account for population sub-structure when calculating the
screening statistics. For each variant j, we denote the marginal-screening statistic by M; and
the correlation-screening statistic by C;. Then we fit the following logistic regression:

logit (m;) =ap+ay Ei+Gias+Xsa3+pE;Gyw, (2

where w = (w1,... v?/p)T is the weight vector and w; = M; if [M; |>| Cj and otherwise wj = C;.
The hypothesis of interest is Hp : p = 0 and the Wald statistic to test this hypothesis is

p/se (p), Where 5 is the maximum likelihood estimator. It can be seen that the larger the
magnitude of the screening statistics, the higher is the weight assigned to the corresponding
variant. This weighting scheme is inspired by the previous findings that marginal and
correlation screening statistics are good indicators for the strength of interaction signals
[Hsu et al., 2012; Kooperberg and LeBlanc, 2008; Murcray et al., 2011; Murcray et al.,
2009]. In addition, the direction of the screening statistics can also inform the direction of
the interaction signals [Jiao et al., 2013]. As the screening statistics are independent of the
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interaction test, the regular Wald test is valid without requiring permutation [Jiao et al.,
2013].

However, these screening statistics may not capture the signals of all the interaction effects,
because various factors such as the type of interaction (qualitative vs. quantitative), limited
sample size and rare variants could make the signals for the interaction sometimes difficult
to capture. To account for residual effects that may have been missed by (2), we adopt a
similar idea to that in Sun et al. (2013) to test for the remaining signals [Sun et al., 2013].
Specifically, we used the following variance component SKAT statistic:

p n 2
Z’wtj {ZEiGij (Di - ﬁ’z)} y  (3)
j=1 i=1

where wij is the weight for the jth variant and #, is the predicted value for Dj from model (2).
The weight wtj can be equal or different for each variant. SKAT sets the default weight to be
the density of a Beta distribution with shape parameters 1 and 25 for a given MAF, which is
denoted by Beta(MAF;1, 25). This weight function is powerful when the effect of the
variant is inversely proportional to the MAF. For simplicity of presenting the main idea of
eSBERIA, we use the SKAT default weight, Beta(MAF;1, 25), in the simulation and the real
data application, nothing that investigators can easily plug in a different weight function. As
the aggregated interaction effect p in (2) has been adjusted for in (3), the SKAT statistic and
the Wald test for Hy : p = 0 are independent (see the proof in Appendix) so the p-values
from the two tests can be combined via Fisher's method.

As mentioned before, the case-only GXE test for a single variant boosts the power by
exploiting the gene-environment independence assumption. Thus, it is expected that the
case-only test would also increase power for a set-based GXE test. Another unique
advantage of the case-only test for set-based GXE is that it does not require specifying main
effects for G. As pointed out above, including main effects for a large number of variants
can potentially lead to convergence issues [Lin et al., 2013], which is particularly an issue
for rare variants and usually requires sophisticated statistical methods such as regularization
or variance component tests to solve. Because case-only test does not estimate the main
effects for G, it naturally circumvents the issue.

Similar to eSBERIA, we propose to combine the SBERIA and SKAT tests for the case-only
test. First, we fit the following case-only model:

logit {P (Ez:1|Dz:1)} :a0+Xial+TGiM, 4

where M = (Ml,...l\/lp)T is the weight vector and M; is the marginal association screening
statistic. The hypothesis of interest is Hy : z=0. Note that we do not include the correlation
screening here in the weight because it is not independent from the case-only interaction test
[Dai et al., 2012; Hsu et al., 2012], and the inclusion of correlation screening will lead to an
inflated type | error.
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Then we use the following SKAT to test for the remaining interaction effects within cases:
P n 2
~E|D=1
D wty {ZGij (= —#7"7) } ©
j=1 i=1

where wt? is the default SKAT weight for the jth variant and #71°=" is the predicted value
for E; in cases from model (4). Again, the p-values from the SBERIA test and SKAT test are
combined by Fisher's method.

Methods for comparison

Simulation

We will compare the performance of eSBERIA with SBERIA [Jiao et al., 2013] and
GESAT [Lin et al., 2013], both of which have been shown to be more powerful than the
benchmark methods such as the likelihood ratio test and the minimum p-value method under
a wide range of scenarios. Thus, we do not include those benchmark methods in the
comparison in this paper. We also evaluate the performance of the case-only tests. The case-
only approach essentially tests the association between the binary E variable and the set of
genetic variants in cases. Therefore, previous set-based methods such as Sun et al. (2013) for
testing the association between disease risk and a set of variants can be applied without
additional modification. We have shown previously that the burden test does not perform
well in GXE settings because it is not reasonable to assume the interaction effects of all the
variants in a set are in the same direction [Jiao et al., 2013]. Hence, in addition to
CoSBERIA, we will consider the case-only version of SKAT-O test [Lee et al., 2012] and
denote it by coOSKAT-0. SKAT-O test was a popular test proposed for set-based marginal
association test of rare variants. Like coOSBERIA, coSKAT-O is also a combination of the
burden test and the SKAT variance component test. By taking advantage of the screening
statistic, we expect cCOSBERIA to be more powerful than coSKAT-O.

The increasing popularity of set-based methods is driven mainly by the need for increasing
power when testing the associations between rare variants from sequencing studies and
outcomes of interest. Thus, in this paper we focus on evaluating the performance of various
set-based GXE methods in the rare variant setting.

In the simulation, the disease status was generated based on the following model:

p p
logit{P (D;=1)} =ao+yEi+Y _a;Gy+> BiEGyj,i=1,...n; (g
j=1 j=1

where ag = exp(—5) denoting a relatively rare disease; y=log(1.2) is the effect size for the
environmental factor E;; E; is assumed to be a binary variable with frequency 0.3; p is the
number of variants in the set; Gj; is the genotype of variant j in sample i; ¢j's and /4's are the
main effects and interaction effects, respectively. For each simulated dataset, we generated a
large population based on model (6) and randomly selected 2000 cases and 2000 controls.
All parameters and variables were randomly generated for each simulated dataset. For each
scenario, we generated 2,000 simulated datasets.
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Type | error rate

Power

We generated datasets under the null model of no interaction between any variant in the set
and E. Specifically, we generated p (=10, 20, 40) variants Gj; (j=1 to to p) with MAF;
~Uniform(0.001, 0.05) under Hardy-Weinberg equilibrium. The main genetic effects g in
(6) were generated as aj ~ Normal(0,log(1.5) / 2) A4's in (6) were set to 0. All five methods
(SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-O) were used to test the interaction
between the set of variants and E based on the generated dataset and the results (p-values)
were recorded. The type I error was estimated based on significance level @ =0.05. Case-
only approaches are known to yield inflated type I error when the gene-environment
independence assumption is violated. Hence, we also conducted simulations where E; and

Gjfsare correlated: logit (P (Ei=1)) =logit (0.3) +Z§:1)‘J (Gij — 2MAF;) \where ) =
Normal(0,log(1.5)/2)* Bernoulli(0.5)

We used five models to generate datasets for the evaluation of power.

1. Model 1: p (=10, 20, 40) variants Gj; (j=1 to p) were generated with MAF; ~
Uniform (0.001, 0.05) under Hardy-Weinberg equilibrium. We set a background
main effect for each variant as o; ~ Normal(0,log(1.5) / 2). The interaction effects
f4's in (6) were generated as ¢*|log10(MAF;)|* Bernoulli(Pcaysal) *{1-2*
Bernoulli(Ppegative) } Where Pcaysal =0.2, 0.5, 0.8 and Ppegative =0.5, 0.5. In other
words, every variant had probability P.,,sa1 Of having interaction effect, and if the
variant had the interaction, the direction of the interaction effect had probability
Pnegative Of being negative. IN addition the rarer variants had larger effect sizes [Wu
etal., 2011]. For the variants with an interaction effect, the main effects were set as
0, representing a synergistic interaction model. In order to see differences among
methods, ¢ was chosen such that the resulting power was neither too high nor too
low. Hence the value of ¢ can be different for different scenarios and the actual
power is not comparable across scenarios but for each scenario the methods are
directly comparable.

2. Model 2: The same simulation settings were used as in Model 1 except that for the
variants with interaction effects (4 # 0), the corresponding main effects were set to
be —0.5/4, which represents a qualitative interaction model because the main effect
is in opposite direction to the interaction effect.

3. Model 3: The same simulation settings and a synergistic interaction model were
used as in Model 1 except that the MAF;'s were generated from the MAF
distribution observed in the GECCO HumanExome Beadchip data (see the next
section for a detailed description). We limited the range of the MAF distribution to
0.001 - 0.05, as in Model 1.

4. Model 4: The same simulation settings and a qualitative interaction model were
used as in Model 2 except that the MAF;'s were generated from the exomechip
MAF distribution.
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5. Model 5: The same simulation setting was used as in Model 1 except that E; and

Gij's are correlated: logit (P (Ei=1)) =logit (0.3) +Z::1>‘j (Gij — 2M AFj)
where 4; = 0.54. We intended to use this simulation scenario to show that the case-
only approach can also lose power when there is a correlation between G and E in
the direction opposite to the interaction effect.

For each model, SBERIA, eSBERIA, GESAT, coSBERIA, and coSKAT-O were applied to
perform the set-based GxE test and their power was estimated based on significance level
2.5x1076, which is the significance level when 20,000 genes are tested.

Real data application

Results

We applied all five methods to the Illumina HumanExome Beadchip data in the Genetics
and Epidemiology of Colorectal Cancer Consortium (GECCO) to conduct a genome-wide
GXE search for three environmental factors: NSAID usage (yes/no), smoking (ever/never),
and postmenopausal hormone use (PMH, yes/no). The participants are of European descent
and from seven nested case-control and five case-control studies (Supplemental Table I).
Each study is described in detail in the Supplementary Materials. CRC cases were defined as
colorectal adenocarcinoma and confirmed by medical records, pathologic reports, or death
certificates. All participants gave written informed consent and each study was approved by
their respective Institutional Review Boards. Study samples were genotyped on the Illumina
HumanExome BeadChip using standard protocols. The quality control (QC) procedure is
described in detail in the Supplemental Materials. After QC, a total of 10,446 cases, and
10,191 controls were used in the analysis. The environmental factors were harmonized
across studies and the harmonization procedure is described in the Supplemental Materials.

We aggregated variants within genes according to the annotation provided by SeattleSeq134
(http://snp.gs.washington.edu/SeattleSegAnnotation134/). The total number of genes was
17,986. Within each gene, we used variants with MAF<0.05 and minor allele count no less
than 10 for the set-based GxE testing. We implemented this lower bound for minor allele
count to avoid convergence issues when including very rare variants in the main effect. We
also filtered out genes with fewer than three variants or an aggregated MAF less than 0.5%.
There were 7,600 genes left after the filtering. We applied all five methods to the 7,600
genes for each of the three environmental variables to identify potential GXE. All analyses
were adjusted for study, sex, age, and the first principal components to account for
population substructure. We did not adjust for more potential environmental confounders
because unless the confounders also interact with the same G, they will not bias the
interaction estimate [Vanderweele et al., 2013].

Type | error rate

The results are summarized in Table I. When G and E are independent, all tests maintain the
correct type | error. When G and E are correlated, the type | error rates for the two case-only
methods (COSBERIA, coSKAT-O) are inflated as expected while the case-controls methods
(SBERIA, eSBERIA, GESAT) maintain the correct type | error.
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Power—The power comparison results under Model 1 are summarized in Figure 1. The
case-only tests are generally much more powerful than the case-control tests. Within the
case-controls tests, eSBERIA is always the most powerful test for all scenarios. Compared
to GESAT the power gain ranges from 27.7% to 600%. Among the case-only tests,
COoSBERIA is always more powerful than coSKAT-0O. When the interaction model is
qualitative (Model 2), Figure 2 shows the clear advantage of eSBERIA in the case-control
tests; however the advantage of the case-only test coOSBERIA over coSKAT-O is somewhat
reduced compared to Model 1. This is because coSBERIA uses marginal screening to guide
the aggregation of interaction signals and the marginal signal under a qualitative interaction
model is generally weak. In contrast, eSSBERIA uses both the marginal and the correlation
screening, the latter of which performs well under a qualitative interaction model.
Nevertheless, COSBERIA is still more powerful than coSKAT-O under most scenarios.

In Models 3 and 4, we mimic the MAF distribution that was observed from the exomechip
variants. As shown in the Supplemental Figure 1, the frequency of rare variants is higher
than less rare ones. Thus it can be expected that the power of SBERIA methods would be
affected because the screening methods do not work as efficiently for very rare variants.
Figure 3 confirms that the advantage of SBERIA methods is indeed reduced, especially
when the number of variants is small (=10). However, the overall conclusion is still the
same: eSBERIA is the most powerful among the case-control methods and coSBERIA is
more powerful than coSKAT-O. The power gain ranges from 1.6% to 48.7%. Figure 4,
where the interaction model is qualitative, shows that the performance of the two case-only
tests becomes similar. eSBERIA still takes a relatively large lead in power compared to the
other two case-control tests. When there is an inverse G-E correlation, Figure 5 shows that
case-only tests become less powerful than the case-control tests. Regardless, eSBERIA and
COSBERIA are still the most powerful tests within their respective categories.

Real data application—First, we constructed the quantile-quantile (QQ) plots for the
interaction test p-values from each method against their expected values (Supplemental
Figures 2-4). All QQ plots align very well with the 45 degree line indicating the type I error
is generally controlled. There is also no overall departure of G and E independence for the
three environmental factors; otherwise, the QQ plots for the case-only tests would have been
deviated from the 45 degree line.

In the genome-wide NSAIDs X gene interaction tests, we observe two interactions that reach
genome-wide significance = 6.6 x 10-6 = 0.05/7600 for any of the five methods (Table I1).
The first interaction is between NSAIDs and PTCHD3 at 10p12.1 for which eight variants
are included in the analysis. Out of 10,446 cases and 10,191 controls, the minor allele counts
of these eight variants range from 8 to 1,564 with a total minor allele count of 2,235
(Supplemental Table I1). The most significant p-value 2.7x1077 is given by eSBERIA.
Supplemental Table Il shows that eSBERIA gives a large weight to a variant
(chr10:27688101) with a strong interaction signal. eSBERIA also gives a very small weight
to a variant (chr10:27687775) with the largest number of minor alleles in the set but no
interaction signal, which is important because this null variant would otherwise dominate the
whole set. We also find that the variant chr10:27688101 with the strongest interaction signal
has a significant correlation (p= 1.26e-5) with E but in the opposite direction of the
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interaction effect. Based on the simulation results from Model 5, this explains why the two
case-only tests give less significant values but still reasonably small p-values. The second
significant interaction is with the gene MINK1 at 17p13.2 which has four variants. The
minor allele counts for the four variants range from 13 to 673 with a total minor allele count
of 861 (Supplemental Table 111). As it can be seen from Table Il, coOSKAT-O gives
significant results. The p-value for coOSBERIA is also very small although not as significant
as CoOSKAT-O. This can be explained by the fact that the variant (chr17:4797910) with the
strongest signal in MINK1 was given a small marginal screening weight by coSBERIA
(Supplemental Table I11). Further investigation shows that the main effect of that variant is
in the opposite direction to the interaction effect, which leads to weak marginal signal.
Nonetheless, cOSBERIA still gives a small p-value because it uses SKAT to account for the
residual signals that are missed by the non-informative weighting in this special case. All
three case-control tests also give reasonably small p-values with eSBERIA being the most
significant. There is no significant GXE finding for PMH and smoking.

Discussion

In this paper, we have proposed a powerful test framework for detecting set-based GXE
(eSBERIA). eSBERIA takes advantage of the correlation or marginal screening for
interaction tests by using the strength of the screening signals as adaptive weight to
aggregate the interaction signals in a set. Though screening signals for individual rare
variants provide limited information, collectively as a set of rare variants these screening
signals have been shown to be able to increase power considerably especially when the
number of variants increases. Furthermore, eSBERIA uses SKAT variance component to
account for the signals that may have been missed by the screening-informed interaction
test. Unlike other data-adaptive weights, eSBERIA maintains the correct type | error without
requiring permutation because the screening statistics are independent of the interaction test.
We have also extended the case-only approach from the single variant to a set of variants.
We showed, through extensive simulation, that eSBERIA and coSBERIA have appealing
power compared with existing methods.

eSBERIA tests a set of rare variants for interaction with an environmental risk factor.
Therefore, as long as the overall aggregated frequency of the variants in a set is not too rare,
eSBERIA should perform adequately. However, we may encounter non-convergence from
calculating the screening statistics, because we calculate these statistics for each variant. If a
variant occurs only a few times in the sample, these screening statistics can be unstable.
Under this situation, one may consider to set the weight for these extremely rare variants to
some constant (e.g., the mean or median of the weights for variants that converge) to reflect
the lack of screening information, instead of up- or down-weighting the variants according
to their screening statistics.

In a real data application, we found two novel GXE interactions with NSAIDs use for
colorectal cancer risk. MINK1 encodes a serine/threonine kinase belonging to the germinal-
center kinase family; it has been found to be significantly misregulated in colorectal cancer
tumors [Capra et al., 2006]. MINK1 has also been shown to interact with Wnt/ 3-catenin
signaling pathways, long established to be associated with colorectal cancer risk [Daulat et
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al., 2012; Fearon, 2011]. PTCHDS, on the other hand, has been less well studied but one
study showed evidence that PTCHD3 is a tumor suppressor for colorectal cancer [Smith et
al., 2013]. Independent studies are needed to replicate the identified interactions.

We can see from the simulation that the advantage of coOSBERIA is more obvious when the
number of variants in the set is large. In the HumanExome Beadchip application, ~80% of
the genes used in the analysis have fewer than 10 variants, which partially explains why
coSBERIA do not show a notable power gain over coSKAT-O. However, we expect
coSBERIA to show its advantage when applied to denser marker panels or sequencing data.

It is well known that case-only approaches boost the power in detecting interactions
compared with conventional case-control methods. However, as pointed out in Wu et al.
2013 and also in the current paper, case-only approaches can also lose power when there is
an inverse G-E correlation compared to the interaction effect [Wu et al., 2013]. Thus, it is
important to not rely entirely on case-only approaches even though the power gain can be
substantial when G and E are independent.

In summary, eSBERIA and coSBERIA showed promising performance compared to
existing methods in both simulations and a real data application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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The independence between ; and SKAT statistic

Let Z; = (1,E,G;,X;,S) and n (ag,a1,a’2,a'3,0) T where § = E;G; wis the SBERIA-
aggregated interaction term. Under model (2), 5, the maximum likelihood estimator of p
satisfies

n 2 (p—p)=H'U,

where U = n"12ST{D — g71(zn)} and H = n"1STdiag(V)S; diag(V) is a n x n diagonal
matrix with the ith diagonal element V; = exp(Zin) / (1+ exp(Zin))?; g(.) is the logit link
function. On the other hand, the SKAT statistic we used can be written as
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P n 2 T
Zwtj{sz‘j (D; - w)} ={D-g'(Zi)} GWW'G™ {D -g7" (zi)},
j=1 i=1

where 7 is the maximum likelihood estimator for n; W is a diagonal matrix with jth diagonal
element wt'/?; Using Taylor expansions, we have

D-g ' (Zf) =D
—{g7"(zm)
+diag (V) Z (i —n)
:D_{g—1 (Zn) +diag (V) Z{Z" diag (V) z}_lzT {D-g'(2n)}

- {1 ~ diag (V) 2{Z"diag (V) z}*lzT} [D—g ' (2n)

As ZT{l - diag(V)Z{z"diag(V(Z} 12"} = 0 and Siis a part of Z, it implies that

ST {1 — diag (V) 2{Z" diag (V) z}_lzT} =0

Similar to Sun et al. 2013, this shows that 5 is independent of the SKAT statistic.
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Model 1. Number of Variants:10

 sBeriAesBeRIA GESAT i cosBERIA Il coskaT-0
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Figure 1.
Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-0 under Model 1. Different
proportion of causal variants (C= P.g,sa1) and proportion of causal variants with negative

effects (N= Phegative) Were used.
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Model 2. Number of Variants:10
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Figure2.
Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-0 under Model 2. Different
proportion of causal variants (C= P.g,sa1) and proportion of causal variants with negative

effects (N= Phegative) Were used.
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Model 3. Number of Variants:10
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Figure3.

Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-0 under Model 3. Different
proportion of causal variants (C= P.g,sa1) and proportion of causal variants with negative
effects (N= Phegative) Were used.
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Model 4. Number of Variants:10
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Figure4.

Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-0 under Model 4. Different
proportion of causal variants (C= P.g,sa1) and proportion of causal variants with negative
effects (N= Phegative) Were used.
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Model 5. Number of Variants:10
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Figure5.
Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-0 under Model 5. Different
proportion of causal variants (C= P.g,sa1) and proportion of causal variants with negative

effects (N= Phegative) Were used.
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Table |

Type | error for set-based GxE tests.

SBERIA eSBERIA GESAT coSBERIA CcoSKAT-O

G and E independent

p=10 0.040 0.046 0.050 0.044 0.048
p=20 0.046 0.050 0.053 0.041 0.053
p=40 0.050 0.056 0.054 0.048 0.048

G and E correlated

p=10 0.045 0.046 0.043 0.270 0.150
p=20 0.054 0.053 0.047 0.340 0.216
p=40 0.048 0.054 0.060 0.375 0.302
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Table Il
Significant gene-based GxE results from HumanExome Beadchip data in GECCO

Gene SBERIA eSBERIA GESAT coSBERIA CcoSKAT-O

X NSAIDS
PTCHD3 9.67E-01 213E-07 1.40E-03 6.86E-03 7.98E-03
MINK1 7.22E-03  2.01E-03  4.60E-03 2.41E-05 5.65E-06
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