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Abstract

Identification of gene-environment interaction (GxE) is important in understanding the etiology of 

complex diseases. Based on our previously developed Set Based gene EnviRonment InterAction 

test (SBERIA), in this paper we propose a powerful framework for enhanced set-based GxE 

testing (eSBERIA). The major challenge of signal aggregation within a set is how to tell signals 

from noise. eSBERIA tackles this challenge by adaptively aggregating the interaction signals 

within a set weighted by the strength of the marginal and correlation screening signals. eSBERIA 

then combines the screening-informed aggregate test with a variance component test to account 

for the residual signals. Additionally, we develop a case-only extension for eSBERIA 

(coSBERIA) and an existing set-based method, which boosts the power not only by exploiting the 

G-E independence assumption but also by avoiding the need to specify main effects for a large 

number of variants in the set. Through extensive simulation, we show that coSBERIA and 

eSBERIA are considerably more powerful than existing methods within the case-only and the 

case-control method categories across a wide range of scenarios. We conduct a genome-wide GxE 

search by applying our methods to Illumina HumanExome Beadchip data of 10,446 colorectal 

cancer cases and 10,191 controls and identify two novel interactions between NSAIDs and MINK1 

and PTCHD3.
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Introduction

Common diseases such as cancer, diabetes and cardiovascular diseases result from a 

complex interplay of genetic (G) and environmental (E) factors. For most of these diseases, 

several environmental factors and a rapidly increasing number of genetic factors have been 

identified [Hindorff et al., 2009]. However, so far there have been very few findings of 

gene-environment interactions (GxE). Some exceptions include an observed interaction 

between smoking and the GSTM1 deletion and a tag SNP in NAT2 in bladder cancer 

[Garcia-Closas et al., 2005; Rothman et al., 2010], ADH7 variants and alcohol consumption 

in upper aerodigestive cancers [Hashibe et al., 2008], GRIN2A variants and coffee 

consumption in Parkinson's disease [Hamza et al., 2011] and our recent finding of GATA3 

variants and processed meat consumption in colorectal cancer [Figueiredo et al., 2014]. 

Several aspects could contribute to the lack of GxE findings, including, for the 

environmental factors, measurement error and lack of optimal data harmonization across 

studies. In addition, the statistical power to detect an interaction is much smaller than to 

detect a main effect, requiring approximately four times as many subjects are needed to 

detect a main genetic effect of comparable size [Smith and Day, 1984].

To enhance the power to detect GxE, many methods have been proposed and can be broadly 

categorized into two groups. The first, which encompasses most existing methods, is 

focused on increasing the power to detect GxE for a single variant. These methods include 

the case-only test [Chatterjee and Carroll, 2005; Piegorsch et al., 1994], the empirical Bayes 

method [Mukherjee and Chatterjee, 2008], and the Bayesian Model Averaging method [Li 

and Conti, 2009]. Within this category, two types of screening methods have also been 

proposed to reduce the multiple testing burden in genome-wide GxE search: correlation-

based screening [Murcray et al., 2009] and marginal association-based screening 

[Kooperberg and LeBlanc, 2008].

Toward this end, several recent methods have been developed to use and combine existing 

screening and testing approaches, such as the hybrid method [Murcray et al., 2011], Cocktail 

method [Hsu et al., 2012] and EDGx [Gauderman et al., 2013].

The second group of methods aims at increasing power by performing a set-based GxE test. 

A set-based test can enhance the power not only by aggregating multiple GxE signals in the 

same set, but also by greatly reducing the multiple-testing burden. As large-scale sequencing 

studies are increasingly being conducted, there is a great interest in testing GxE on rare 

variants, which makes set-based methods necessary. Tzeng et al. (2011) developed a method 

to test for interaction between a set of variants and an environmental variable for a 

continuous outcome using the set-based genetic similarity method [Tzeng et al., 2011]. Lin 

et al. (2013) proposed a set-based GxE test called GESAT by extending the SNP-set Kernel 

Association Test (SKAT) to the GxE setting for both continuous and categorical outcomes 

[Lin et al., 2013]. GESAT assumes random GxE effects following a mean 0 distribution 
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with variance T
2. Testing GxE for a set of variants is equivalent to testing a zero variance of 

T
2.

When aggregating signals in a set-based test, it is a thorny issue to determine which are the 

signals and what are the directions of the signals, as not all variants in a set have GxE and if 

those that have GxE, the directions can be positive or negative. Differing from a typical set-

based association test, the set-based GxE tests have the advantage that there exist screening 

statistics that are informative in revealing the strength and direction of interaction signals but 

still independent of the interaction test. In an earlier work, we proposed SBERIA to take 

advantage of this desirable feature of GxE by exploiting the established correlation and 

marginal screening to determine which variants to choose and the direction of their effects, 

while aggregating genotypes within a variant set [Jiao et al., 2013]. As the screening 

statistics are independent of the interaction test, conventional logistic regression can be used 

to test the hypothesis without resorting to permutation to adjust for the data adaptive weight.

Although we showed that SBERIA provided attractive power compared to benchmark 

methods, it also has limitations. SBERIA requires specifying a p-value threshold to 

determine which variants to include in the aggregation. In practice, it can be difficult to find 

a cutoff that achieves optimal power. In addition, SBERIA gives each variant a weight of 1, 

−1 or 0, which does not take into account the difference in signal strengths among variants. 

Furthermore, SBERIA excludes the variants that are not selected based on screening. 

However, since the screening is not perfect, those variants can still contain useful 

information. Hence, power could potentially be increased by combining SBERIA with other 

tests to retrieve some or all of the remaining signals.

In this paper, we aim to address the aforementioned limitations of SBERIA. We propose a 

new method, enhanced SBERIA (eSBERIA), using more nuanced variant weights instead of 

1, −1, and 0 and combining SBERIA with the variance component test to achieve a more 

powerful and robust performance. In addition, we propose a case-only version of the new 

test (coSBERIA). In the single variant GxE test, the case-only test has been shown to be 

more efficient than the conventional case-control test by exploiting the G-E independence 

assumption [Chatterjee and Carroll, 2005]. In set-based GxE tests, the case-only analysis is 

even more advantageous because it not only exploits the G-E independence assumption, but 

also avoids the need to include a large number of G's as main effects. We compared 

eSBERIA and coSBERIA with existing methods through extensive simulations under a wide 

range of scenarios. We also applied our methods to Illumina HumanExome Beadchip data 

with 10,446 colorectal cancer cases and 10,191 controls from the Genetics and 

Epidemiology of Colorectal Cancer Consortium (GECCO) to identify novel genome-wide 

gene-based interactions.

Methods

Notation and Models

Suppose there are N subjects and their disease status is denoted by Di (=0 or 1) for subject i, 

i=1, ..., N. Assume Ei is the environmental factor Xi = (Xi1,...Xiq)is a vector of q potential 
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confounder covariates, and Gi = (Gi1,...Gip) is a vector of p genetic variants. The interaction 

model between the set of p variants and the environmental factor is:

(1)

where logit(.) is a logit link function, πi = P(Di = 1), α0 is the intercept, α1 is the coefficient 

for the main effect of Ei, α2 is the px1 vector of coefficients for Gi, α3 is the qx1 vector of 

coefficients for Xi, EiGi = (EiGi1,...EiGip), and β = (β1,...,βp)T is the px1 vector of interaction 

coefficients. The null hypothesis for interaction effects is H0 : β = 0.

SBERIA

SBERIA uses the screening statistics (G and E correlation screening or marginal association 

screening of G with disease risk, whichever is more significant) as a guide to aggregate the 

genotypes. Specifically, SBERIA first selects variants for which the strength of the 

screening signal is greater than a threshold. For the selected variants, a weighted sum of 

their interaction terms is computed, where the weight=1 if the screening statistic is positive 

and −1 otherwise. As the screening statistics, both marginal association [Dai et al., 2012] 

and G and E correlation [Murcray et al., 2009] are independent of the interaction test, 

conventional logistic regression can be used to test the interaction without requiring 

permutation [Jiao et al., 2013].

eSBERIA

As described in the Introduction, SBERIA can be improved in several aspects. Suppose Ei is 

a binary variable (we will focus on binary environment variables in this paper; the extension 

to a continuous E is trivial). First we test the marginal association of each variant in the set 

Gij (j=1 to p) with Di and the correlation between each variant with Ei using logistic 

regression without conditioning on other variants and GxE interactions. Note that covariates 

can be straightforwardly adjusted for in the logistic regression model. Depending on the 

context of the studies, investigators may want to adjust for covariates such as study, age, 

sex, and principal components to account for population sub-structure when calculating the 

screening statistics. For each variant j, we denote the marginal-screening statistic by Mj and 

the correlation-screening statistic by Cj. Then we fit the following logistic regression:

(2)

where ŵ = (ŵ1,...ŵp)T is the weight vector and ŵj = Mj if |Mj |>| Cj and otherwise ŵj = Cj. 

The hypothesis of interest is H0 : ρ = 0 and the Wald statistic to test this hypothesis is 

, where  is the maximum likelihood estimator. It can be seen that the larger the 

magnitude of the screening statistics, the higher is the weight assigned to the corresponding 

variant. This weighting scheme is inspired by the previous findings that marginal and 

correlation screening statistics are good indicators for the strength of interaction signals 

[Hsu et al., 2012; Kooperberg and LeBlanc, 2008; Murcray et al., 2011; Murcray et al., 

2009]. In addition, the direction of the screening statistics can also inform the direction of 

the interaction signals [Jiao et al., 2013]. As the screening statistics are independent of the 
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interaction test, the regular Wald test is valid without requiring permutation [Jiao et al., 

2013].

However, these screening statistics may not capture the signals of all the interaction effects, 

because various factors such as the type of interaction (qualitative vs. quantitative), limited 

sample size and rare variants could make the signals for the interaction sometimes difficult 

to capture. To account for residual effects that may have been missed by (2), we adopt a 

similar idea to that in Sun et al. (2013) to test for the remaining signals [Sun et al., 2013]. 

Specifically, we used the following variance component SKAT statistic:

(3)

where wtj is the weight for the jth variant and  is the predicted value for Di from model (2). 

The weight wtj can be equal or different for each variant. SKAT sets the default weight to be 

the density of a Beta distribution with shape parameters 1 and 25 for a given MAF, which is 

denoted by Beta(MAF;1, 25). This weight function is powerful when the effect of the 

variant is inversely proportional to the MAF. For simplicity of presenting the main idea of 

eSBERIA, we use the SKAT default weight, Beta(MAF;1, 25), in the simulation and the real 

data application, nothing that investigators can easily plug in a different weight function. As 

the aggregated interaction effect ρ in (2) has been adjusted for in (3), the SKAT statistic and 

the Wald test for H0 : ρ = 0 are independent (see the proof in Appendix) so the p-values 

from the two tests can be combined via Fisher's method.

coSBERIA

As mentioned before, the case-only GxE test for a single variant boosts the power by 

exploiting the gene-environment independence assumption. Thus, it is expected that the 

case-only test would also increase power for a set-based GxE test. Another unique 

advantage of the case-only test for set-based GxE is that it does not require specifying main 

effects for G. As pointed out above, including main effects for a large number of variants 

can potentially lead to convergence issues [Lin et al., 2013], which is particularly an issue 

for rare variants and usually requires sophisticated statistical methods such as regularization 

or variance component tests to solve. Because case-only test does not estimate the main 

effects for G, it naturally circumvents the issue.

Similar to eSBERIA, we propose to combine the SBERIA and SKAT tests for the case-only 

test. First, we fit the following case-only model:

(4)

where M = (M1,...Mp)T is the weight vector and Mj is the marginal association screening 

statistic. The hypothesis of interest is H0 : τ = 0. Note that we do not include the correlation 

screening here in the weight because it is not independent from the case-only interaction test 

[Dai et al., 2012; Hsu et al., 2012], and the inclusion of correlation screening will lead to an 

inflated type I error.
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Then we use the following SKAT to test for the remaining interaction effects within cases:

(5)

where  is the default SKAT weight for the jth variant and  is the predicted value 

for Ei in cases from model (4). Again, the p-values from the SBERIA test and SKAT test are 

combined by Fisher's method.

Methods for comparison

We will compare the performance of eSBERIA with SBERIA [Jiao et al., 2013] and 

GESAT [Lin et al., 2013], both of which have been shown to be more powerful than the 

benchmark methods such as the likelihood ratio test and the minimum p-value method under 

a wide range of scenarios. Thus, we do not include those benchmark methods in the 

comparison in this paper. We also evaluate the performance of the case-only tests. The case-

only approach essentially tests the association between the binary E variable and the set of 

genetic variants in cases. Therefore, previous set-based methods such as Sun et al. (2013) for 

testing the association between disease risk and a set of variants can be applied without 

additional modification. We have shown previously that the burden test does not perform 

well in GxE settings because it is not reasonable to assume the interaction effects of all the 

variants in a set are in the same direction [Jiao et al., 2013]. Hence, in addition to 

coSBERIA, we will consider the case-only version of SKAT-O test [Lee et al., 2012] and 

denote it by coSKAT-O. SKAT-O test was a popular test proposed for set-based marginal 

association test of rare variants. Like coSBERIA, coSKAT-O is also a combination of the 

burden test and the SKAT variance component test. By taking advantage of the screening 

statistic, we expect coSBERIA to be more powerful than coSKAT-O.

Simulation

The increasing popularity of set-based methods is driven mainly by the need for increasing 

power when testing the associations between rare variants from sequencing studies and 

outcomes of interest. Thus, in this paper we focus on evaluating the performance of various 

set-based GxE methods in the rare variant setting.

In the simulation, the disease status was generated based on the following model:

(6)

where α0 = exp(−5) denoting a relatively rare disease; γ = log(1.2) is the effect size for the 

environmental factor Ei; Ei is assumed to be a binary variable with frequency 0.3; p is the 

number of variants in the set; Gij is the genotype of variant j in sample i; αj's and βj's are the 

main effects and interaction effects, respectively. For each simulated dataset, we generated a 

large population based on model (6) and randomly selected 2000 cases and 2000 controls. 

All parameters and variables were randomly generated for each simulated dataset. For each 

scenario, we generated 2,000 simulated datasets.
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Type I error rate

We generated datasets under the null model of no interaction between any variant in the set 

and E. Specifically, we generated p (=10, 20, 40) variants Gij (j=1 to to p) with MAFj 

~Uniform(0.001, 0.05) under Hardy-Weinberg equilibrium. The main genetic effects αj in 

(6) were generated as αj ~ Normal(0,log(1.5) / 2) βj's in (6) were set to 0. All five methods 

(SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-O) were used to test the interaction 

between the set of variants and E based on the generated dataset and the results (p-values) 

were recorded. The type I error was estimated based on significance level α =0.05. Case-

only approaches are known to yield inflated type I error when the gene-environment 

independence assumption is violated. Hence, we also conducted simulations where Ei and 

Gij's are correlated: , where λj = 

Normal(0,log(1.5)/2)* Bernoulli(0.5)

Power

We used five models to generate datasets for the evaluation of power.

1. Model 1: p (=10, 20, 40) variants Gij (j=1 to p) were generated with MAFj ~ 

Uniform (0.001, 0.05) under Hardy-Weinberg equilibrium. We set a background 

main effect for each variant as αj ~ Normal(0,log(1.5) / 2). The interaction effects 

βj's in (6) were generated as c*|log10(MAFj)|* Bernoulli(Pcausal) *{1-2* 

Bernoulli(Pnegative)} where Pcausal =0.2, 0.5, 0.8 and Pnegative =0.5, 0.5. In other 

words, every variant had probability Pcausal of having interaction effect, and if the 

variant had the interaction, the direction of the interaction effect had probability 

Pnegative of being negative. IN addition the rarer variants had larger effect sizes [Wu 

et al., 2011]. For the variants with an interaction effect, the main effects were set as 

0, representing a synergistic interaction model. In order to see differences among 

methods, c was chosen such that the resulting power was neither too high nor too 

low. Hence the value of c can be different for different scenarios and the actual 

power is not comparable across scenarios but for each scenario the methods are 

directly comparable.

2. Model 2: The same simulation settings were used as in Model 1 except that for the 

variants with interaction effects (βj ≠ 0), the corresponding main effects were set to 

be −0.5βj, which represents a qualitative interaction model because the main effect 

is in opposite direction to the interaction effect.

3. Model 3: The same simulation settings and a synergistic interaction model were 

used as in Model 1 except that the MAFj's were generated from the MAF 

distribution observed in the GECCO HumanExome Beadchip data (see the next 

section for a detailed description). We limited the range of the MAF distribution to 

0.001 - 0.05, as in Model 1.

4. Model 4: The same simulation settings and a qualitative interaction model were 

used as in Model 2 except that the MAFj's were generated from the exomechip 

MAF distribution.
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5. Model 5: The same simulation setting was used as in Model 1 except that Ei and 

Gij's are correlated: 

where λj = 0.5βj. We intended to use this simulation scenario to show that the case-

only approach can also lose power when there is a correlation between G and E in 

the direction opposite to the interaction effect.

For each model, SBERIA, eSBERIA, GESAT, coSBERIA, and coSKAT-O were applied to 

perform the set-based GxE test and their power was estimated based on significance level 

2.5×10−6, which is the significance level when 20,000 genes are tested.

Real data application

We applied all five methods to the Illumina HumanExome Beadchip data in the Genetics 

and Epidemiology of Colorectal Cancer Consortium (GECCO) to conduct a genome-wide 

GxE search for three environmental factors: NSAID usage (yes/no), smoking (ever/never), 

and postmenopausal hormone use (PMH, yes/no). The participants are of European descent 

and from seven nested case-control and five case-control studies (Supplemental Table I). 

Each study is described in detail in the Supplementary Materials. CRC cases were defined as 

colorectal adenocarcinoma and confirmed by medical records, pathologic reports, or death 

certificates. All participants gave written informed consent and each study was approved by 

their respective Institutional Review Boards. Study samples were genotyped on the Illumina 

HumanExome BeadChip using standard protocols. The quality control (QC) procedure is 

described in detail in the Supplemental Materials. After QC, a total of 10,446 cases, and 

10,191 controls were used in the analysis. The environmental factors were harmonized 

across studies and the harmonization procedure is described in the Supplemental Materials.

We aggregated variants within genes according to the annotation provided by SeattleSeq134 

(http://snp.gs.washington.edu/SeattleSeqAnnotation134/). The total number of genes was 

17,986. Within each gene, we used variants with MAF<0.05 and minor allele count no less 

than 10 for the set-based GxE testing. We implemented this lower bound for minor allele 

count to avoid convergence issues when including very rare variants in the main effect. We 

also filtered out genes with fewer than three variants or an aggregated MAF less than 0.5%. 

There were 7,600 genes left after the filtering. We applied all five methods to the 7,600 

genes for each of the three environmental variables to identify potential GxE. All analyses 

were adjusted for study, sex, age, and the first principal components to account for 

population substructure. We did not adjust for more potential environmental confounders 

because unless the confounders also interact with the same G, they will not bias the 

interaction estimate [Vanderweele et al., 2013].

Results

Type I error rate

The results are summarized in Table I. When G and E are independent, all tests maintain the 

correct type I error. When G and E are correlated, the type I error rates for the two case-only 

methods (coSBERIA, coSKAT-O) are inflated as expected while the case-controls methods 

(SBERIA, eSBERIA, GESAT) maintain the correct type I error.
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Power—The power comparison results under Model 1 are summarized in Figure 1. The 

case-only tests are generally much more powerful than the case-control tests. Within the 

case-controls tests, eSBERIA is always the most powerful test for all scenarios. Compared 

to GESAT the power gain ranges from 27.7% to 600%. Among the case-only tests, 

coSBERIA is always more powerful than coSKAT-O. When the interaction model is 

qualitative (Model 2), Figure 2 shows the clear advantage of eSBERIA in the case-control 

tests; however the advantage of the case-only test coSBERIA over coSKAT-O is somewhat 

reduced compared to Model 1. This is because coSBERIA uses marginal screening to guide 

the aggregation of interaction signals and the marginal signal under a qualitative interaction 

model is generally weak. In contrast, eSBERIA uses both the marginal and the correlation 

screening, the latter of which performs well under a qualitative interaction model. 

Nevertheless, coSBERIA is still more powerful than coSKAT-O under most scenarios.

In Models 3 and 4, we mimic the MAF distribution that was observed from the exomechip 

variants. As shown in the Supplemental Figure 1, the frequency of rare variants is higher 

than less rare ones. Thus it can be expected that the power of SBERIA methods would be 

affected because the screening methods do not work as efficiently for very rare variants. 

Figure 3 confirms that the advantage of SBERIA methods is indeed reduced, especially 

when the number of variants is small (=10). However, the overall conclusion is still the 

same: eSBERIA is the most powerful among the case-control methods and coSBERIA is 

more powerful than coSKAT-O. The power gain ranges from 1.6% to 48.7%. Figure 4, 

where the interaction model is qualitative, shows that the performance of the two case-only 

tests becomes similar. eSBERIA still takes a relatively large lead in power compared to the 

other two case-control tests. When there is an inverse G-E correlation, Figure 5 shows that 

case-only tests become less powerful than the case-control tests. Regardless, eSBERIA and 

coSBERIA are still the most powerful tests within their respective categories.

Real data application—First, we constructed the quantile-quantile (QQ) plots for the 

interaction test p-values from each method against their expected values (Supplemental 

Figures 2-4). All QQ plots align very well with the 45 degree line indicating the type I error 

is generally controlled. There is also no overall departure of G and E independence for the 

three environmental factors; otherwise, the QQ plots for the case-only tests would have been 

deviated from the 45 degree line.

In the genome-wide NSAIDs x gene interaction tests, we observe two interactions that reach 

genome-wide significance = 6.6 × 10-6 = 0.05/7600 for any of the five methods (Table II). 

The first interaction is between NSAIDs and PTCHD3 at 10p12.1 for which eight variants 

are included in the analysis. Out of 10,446 cases and 10,191 controls, the minor allele counts 

of these eight variants range from 8 to 1,564 with a total minor allele count of 2,235 

(Supplemental Table II). The most significant p-value 2.7×10−7 is given by eSBERIA. 

Supplemental Table II shows that eSBERIA gives a large weight to a variant 

(chr10:27688101) with a strong interaction signal. eSBERIA also gives a very small weight 

to a variant (chr10:27687775) with the largest number of minor alleles in the set but no 

interaction signal, which is important because this null variant would otherwise dominate the 

whole set. We also find that the variant chr10:27688101 with the strongest interaction signal 

has a significant correlation (p= 1.26e-5) with E but in the opposite direction of the 
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interaction effect. Based on the simulation results from Model 5, this explains why the two 

case-only tests give less significant values but still reasonably small p-values. The second 

significant interaction is with the gene MINK1 at 17p13.2 which has four variants. The 

minor allele counts for the four variants range from 13 to 673 with a total minor allele count 

of 861 (Supplemental Table III). As it can be seen from Table II, coSKAT-O gives 

significant results. The p-value for coSBERIA is also very small although not as significant 

as coSKAT-O. This can be explained by the fact that the variant (chr17:4797910) with the 

strongest signal in MINK1 was given a small marginal screening weight by coSBERIA 

(Supplemental Table III). Further investigation shows that the main effect of that variant is 

in the opposite direction to the interaction effect, which leads to weak marginal signal. 

Nonetheless, coSBERIA still gives a small p-value because it uses SKAT to account for the 

residual signals that are missed by the non-informative weighting in this special case. All 

three case-control tests also give reasonably small p-values with eSBERIA being the most 

significant. There is no significant GxE finding for PMH and smoking.

Discussion

In this paper, we have proposed a powerful test framework for detecting set-based GxE 

(eSBERIA). eSBERIA takes advantage of the correlation or marginal screening for 

interaction tests by using the strength of the screening signals as adaptive weight to 

aggregate the interaction signals in a set. Though screening signals for individual rare 

variants provide limited information, collectively as a set of rare variants these screening 

signals have been shown to be able to increase power considerably especially when the 

number of variants increases. Furthermore, eSBERIA uses SKAT variance component to 

account for the signals that may have been missed by the screening-informed interaction 

test. Unlike other data-adaptive weights, eSBERIA maintains the correct type I error without 

requiring permutation because the screening statistics are independent of the interaction test. 

We have also extended the case-only approach from the single variant to a set of variants. 

We showed, through extensive simulation, that eSBERIA and coSBERIA have appealing 

power compared with existing methods.

eSBERIA tests a set of rare variants for interaction with an environmental risk factor. 

Therefore, as long as the overall aggregated frequency of the variants in a set is not too rare, 

eSBERIA should perform adequately. However, we may encounter non-convergence from 

calculating the screening statistics, because we calculate these statistics for each variant. If a 

variant occurs only a few times in the sample, these screening statistics can be unstable. 

Under this situation, one may consider to set the weight for these extremely rare variants to 

some constant (e.g., the mean or median of the weights for variants that converge) to reflect 

the lack of screening information, instead of up- or down-weighting the variants according 

to their screening statistics.

In a real data application, we found two novel GxE interactions with NSAIDs use for 

colorectal cancer risk. MINK1 encodes a serine/threonine kinase belonging to the germinal-

center kinase family; it has been found to be significantly misregulated in colorectal cancer 

tumors [Capra et al., 2006]. MINK1 has also been shown to interact with Wnt/ β-catenin 

signaling pathways, long established to be associated with colorectal cancer risk [Daulat et 
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al., 2012; Fearon, 2011]. PTCHD3, on the other hand, has been less well studied but one 

study showed evidence that PTCHD3 is a tumor suppressor for colorectal cancer [Smith et 

al., 2013]. Independent studies are needed to replicate the identified interactions.

We can see from the simulation that the advantage of coSBERIA is more obvious when the 

number of variants in the set is large. In the HumanExome Beadchip application, ~80% of 

the genes used in the analysis have fewer than 10 variants, which partially explains why 

coSBERIA do not show a notable power gain over coSKAT-O. However, we expect 

coSBERIA to show its advantage when applied to denser marker panels or sequencing data.

It is well known that case-only approaches boost the power in detecting interactions 

compared with conventional case-control methods. However, as pointed out in Wu et al. 

2013 and also in the current paper, case-only approaches can also lose power when there is 

an inverse G-E correlation compared to the interaction effect [Wu et al., 2013]. Thus, it is 

important to not rely entirely on case-only approaches even though the power gain can be 

substantial when G and E are independent.

In summary, eSBERIA and coSBERIA showed promising performance compared to 

existing methods in both simulations and a real data application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

The independence between  and SKAT statistic

Let Zi = (1,Ei,Gi,Xi,Si) and η (α0,α1,αT
2,αT

3,ρ)T where Si = EiGiŵ is the SBERIA-

aggregated interaction term. Under model (2), , the maximum likelihood estimator of ρ 

satisfies

where U = n−1/2ST{D – g−1(Zη)} and H = n−1STdiag(V)S; diag(V) is a n x n diagonal 

matrix with the ith diagonal element Vi = exp(Ziη) / (1+ exp(Ziη))2; g(.) is the logit link 

function. On the other hand, the SKAT statistic we used can be written as
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where  is the maximum likelihood estimator for η; W is a diagonal matrix with jth diagonal 

element wt1/2
j Using Taylor expansions, we have

As ZT{I − diag(V)Z{ZTdiag(V(Z}−1ZT} = 0 and S is a part of Z, it implies that

Similar to Sun et al. 2013, this shows that  is independent of the SKAT statistic.
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Figure 1. 
Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-O under Model 1. Different 

proportion of causal variants (C= Pcausal) and proportion of causal variants with negative 

effects (N= Pnegative) were used.
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Figure 2. 
Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-O under Model 2. Different 

proportion of causal variants (C= Pcausal) and proportion of causal variants with negative 

effects (N= Pnegative) were used.
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Figure 3. 
Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-O under Model 3. Different 

proportion of causal variants (C= Pcausal) and proportion of causal variants with negative 

effects (N= Pnegative) were used.
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Figure 4. 
Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-O under Model 4. Different 

proportion of causal variants (C= Pcausal) and proportion of causal variants with negative 

effects (N= Pnegative) were used.
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Figure 5. 
Power of SBERIA, eSBERIA, GESAT, coSBERIA, coSKAT-O under Model 5. Different 

proportion of causal variants (C= Pcausal) and proportion of causal variants with negative 

effects (N= Pnegative) were used.
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Table I

Type I error for set-based GxE tests.

SBERIA eSBERIA GESAT coSBERIA coSKAT-O

G and E independent

p=10 0.040 0.046 0.050 0.044 0.048

p=20 0.046 0.050 0.053 0.041 0.053

p=40 0.050 0.056 0.054 0.048 0.048

G and E correlated

p=10 0.045 0.046 0.043 0.270 0.150

p=20 0.054 0.053 0.047 0.340 0.216

p=40 0.048 0.054 0.060 0.375 0.302
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Table II

Significant gene-based GxE results from HumanExome Beadchip data in GECCO

Gene SBERIA eSBERIA GESAT coSBERIA coSKAT-O

(x NSAIDS)

PTCHD3 9.67E-01 2.13E-07 1.40E-03 6.86E-03 7.98E-03

MINK1 7.22E-03 2.01E-03 4.60E-03 2.41E-05 5.65E-06
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