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Abstract

Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome
sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to
large amount of sequencing that is required. In this study, we have applied a captured metagenomics
technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale target-
ing of functional genes, coding for enzymes related to organic matter degradation, was applied to
two agricultural soil communities through captured metagenomics. Captured metagenomics uses
custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of inter-
est in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured
metagenomes were highly enriched with targeted genes while maintaining their target diversity and
their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured
metagenomes were highly enriched with genes related to organic matter degradation; at least five
times more than similar, publicly available soil WMG projects. This target enrichment technique also
preserves the functional representation of the soils, thereby facilitating comparative metagenomics
projects. Here, we present the first study that applies the captured metagenomics approach in large
scale, and this novel method allows deep investigations of central ecosystem processes by studying
functional gene abundances.
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1. Introduction

The knowledge on the link between functional diversity and species
richness is one of the key areas that is lacking for better understanding
of ecosystem functioning in soils,' > Ecosystems such as soil have vast
diverse microorganisms with several thousand complex functional
capabilities.** Novel technological advancements are thought to be
a way towards the understanding of microbial functional diversity in
biogeochemical processes more clearly.® Several molecular methods

like PCR, RFLP, microarrays and sequencing have been utilized in
the field of ecology, and in recent years high-throughput sequencing
has proven to be efficient in characterizing the diversity of microorgan-
isms in ecological systems.” Whole metagenomic sequencing is cur-
rently limited by its coverage as the interesting regions can form a
very low proportion of the whole nucleic acid amounts and will
thus not be obtained in the large data set.>> Amplicon sequencing
through PCR primers is an alternative way to specifically obtain the
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less abundant genomic regions of interest, which becomes harder
when there are several thousand functional targets.'®!! Large-scale
functional gene microarrays such as the Geochip'? has been chosen
as an alternative method by targeting several specific genes involved
in ecosystem functioning. This method was useful but also had pro-
blems related to specificity and sensitivity of the fragments of DNA
binding to the probes which are difficult to control.'® Although tar-
geted approach could be very informative, it is important to note
that these are confined only to known and well-annotated sequence
information available in public databases.'*

We suggest using a technique, called ‘sequence capture’, to se-
quence a large number of genes that could be used for analysing the
functions of environmental communities at a significantly higher reso-
lution than what has been possible with other approaches. It involves a
selection of specific genomic loci through adhesion to probes and se-
quencing only the DNA fragments that are bound to the probes.'® The
main advantage of the method is its ability to efficiently enrich for
genes that are in very low abundance in the gene pool.' It has been
predominantly used in the field of medicine to study disease-related
point mutations in the human genome.'”° Sequence capture has
also been implemented for use in several non-model organisms such
as chipmunks (Tamilas),! sugarcane (Saccharum)?? and bison
(Bos)?® targeting several thousand genomic regions through their
closely related species. Sequence capture was also used in a small-scale
targeting of two enzymatic regions in a freshwater metagenome from
Lake Pavin in France.**

In this study, we aim to demonstrate the application of sequence
capture on a large scale for the first time on microbial communities
of agricultural soils. The focus was to identify and enhance the capture
of functional genes coding for carbohydrate-active enzymes and secre-
tory proteases that are related to organic matter degradation were
identified from the public databases were targeted in this method> "
and subsequently targeted using sequence capture. The probe design
was customized to target functional enzymes of soil microorganisms
in natural soil communities using MetCap?® and allows for efficient
targeting hundreds of thousands of genes. In short, MetCap is a web-
based probe-designing pipeline that takes user’s sequences of interest
and design probes for targeting those sequences optimized for
sequence capture. The soil metagenomic DNA was targeted at four
different probe hybridization stringencies and sequenced with high-
throughput sequencing. Here we determine that: (i) the custom-
designed sequence capture is efficient in enriching for functional
targets in the metagenomic data sets and the effect of hybridization
stringencies was investigated, (ii) the correlation of taxonomic distri-
bution of the targeted metagenomes to their respective traditional
ribosomal 16S rDNA libraries is very high and (iii) a comparative
metagenomic analyses of the eight captured metagenomes with 22
publicly available soil whole metagenomes from the MG-RAST meta-
genome database illustrated the efficient enrichment using sequence
capture compared with standard shotgun whole metagenome sequen-
cing (WMGQG).

2. Materials and methods

2.1. Soil samples and DNA extraction

Two soils from Bjornstorp, located in the southern region (Scania) of
Sweden that is part of a land-use management study,?’ were sampled
to test the proposed sequence capture method. The soil samples were
from agricultural fields, one from a winter wheat field and the other
from grassland nearby the wheat field (Supplementary Table S1).

At each field, several sub-samples were collected from different spots
(0-15 cm depth) and mixed together. The soils were transported in
cold boxes and sieved (2.5 mm) and then stored in a —20°C freezer.
Then refrigerated at 4°C before proceeding to DNA extraction.
DNA from both samples was extracted using Nucleospin soil DNA
isolation kit (Macherey & Nagel, Duren, Germany). The extractions
were carried out according to the manufacturer with 0.5 g of soil as the
starting material. The extracted DNA was tested for quality (A260/
280) and concentration using NanoDrop 2000 spectrophotometer
(NanoDrop Technologies, Wilmington, NC, USA). Multiple extrac-
tions were carried out for each sample, and the extraction with highest
yield and best quality was chosen for amplicon and sequence capture
(SeqCap) library preparation steps.

2.2. SeqCap EZ probe generation

Enzymes from Carbohydrate-Active Enzyme database (CAZy)* and
proteases from the MEROPS database®” having a predicted secretion
signal based on signalP v4>° were chosen. In total, 306,525 sequences
were selected for probe generation of which 260,731 were from CAZy
and 45,794 were from MEROPS. The nucleotide coding sequences of
these genes were used to design probes for sequence capture, and a
local sequence database was created with these sequences (subsequent-
ly called target database, TDB). The probes were generated based on
these sequences using the MetCap pipeline, where the sequences were
clustered with 90% sequence similarity and on an average three
probes were generated from each cluster and more details of these
probes were described in Kushwaha et al.?® In total, 406,277 probes
were generated with 351,482 from CAZy and 54,795 from MEROPS.
They were generated with melting temperature (50°C) and probe
length (50mer) that are suitable to use with protocol based on Nimble-
Gen SeqCap EZ (Roche NimbleGen, Inc.).

2.3. SeqCap design

The design of the SeqCap protocol has been modified and tested for
the hybridization stringency on target sequence binding specificity,
to account for the combination of variability in metagenomic samples
and the number of target regions. To test for this stringency, ‘hybrid-
ization time’ has been chosen as a factor, since it is effective, and it is
also least dependent on other parameters of the protocol making it
easy to handle according to the recommendations of Roche Nimble-
Gen, Inc. The metagenomic SeqCap setup was designed to test both
soil samples at four different hybridization times. Along with the re-
commended 72 h (Roche NimbleGen, Inc.) hybridization time for
probes and DNA fragments at 47°C, three (24, 16 and 8 h) less-
stringent hybridization times have been tested, where 72 h was ex-
pected to be most stringent and 8 h to be the least stringent in binding
specificity against the target genes.

2.4. SeqCap library preparation

Four libraries were constructed from each soil DNA sample (4 hybrid-
ization times x 2 soil samples), following manufacturer’s instructions
from GS FLX rapid library preparation method (Roche). A total of
500 ng of each DNA sample was fragmented using a Nebulizer
(Roche) along with nebulization buffers at 2.1 bar pressure to get
the average fragment length in the range of 700 bp. This length is
the recommended fragment length for the combination of sequence
captures using SeqCap EZ probes coupled with 454 GS FLX sequen-
cing (NimbleGen, Roche). The cleaned fragments were then subjected
to the end repair treatment (Roche) followed by 454-adapter ligation.
To make multiplexing possible in both cases of sequence capture and
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sequencing, each library was prepared with a specific MID (Multiplex-
ing Identifier) on its 454 adapters (Lib-L). Each of the eight libraries
contained a unique MID, and the qualities of the libraries were
checked with High Sensitivity DNA chip (Bioanalyzer, Agilent) at
the end of the library preparation step. Before subjecting the fragments
to hybridization with probes, a ligation-mediated (LM) PCR (pre-
capture) with the 454 adapters as primers was done with FastStart
High Fidelity PCR System (Roche Applied Science) with only 12 cycles
and purified with QIAquick PCR purification kit (Qiagen, Limburg,
The Netherlands), so as to increase the amount of DNA fragments
for hybridization step that passed adapter ligation step.

2.5. Sequence capture

The actual sequence capture process has been carried out with the cap-
ture protocol (Roche NimbleGen, Inc.) with adjustments in hybridiza-
tion time as described in the design. The following steps are according
to the standard SeqCap EZ protocol (Roche NimbleGen, Inc.). The
hybridization step was multiplexed and carried out for each hybridiza-
tion time as the libraries contain MIDs. For each hybridization time,
1 pg (500 ng from each soil DNA) of amplified libraries together with
hybridization-enhancing oligos was dried in a DNA vacuum concen-
trator. The corresponding DNA libraries were dried, so that there were
four dried samples representing each hybridization time. Hybridiza-
tion buffers were added to the libraries and heated at 95°C for 10
min to denature the DNA fragments. Then the probes (6.5 pl/reaction)
were added to the denatured libraries immediately and incubated at
47°Cin a thermal cycler with a heated cover at 57°C for respective hy-
bridization times. After the hybridization, the libraries were washed
with buffers specified in the SeqCap EZ protocol (Roche NimbleGen,
Inc.) along with streptavidin dynabeads at 47°C and magnetic device
to retain just the hybridized fragments with probes and remove un-
bound fragments. These captured DNA fragments bound to probes
that were attached to the dynabeads were used as template in a
LM-PCR (post-capture) reaction by which the captured DNA frag-
ments were amplified and also separated from the beads/probes.
These samples were checked again with a Bioanalyzer to ensure that
the DNA fragments were captured and to check for primer dimers.
The captured DNA fragments were purified two times using AmpPure
Bead (Beckman Coulter Inc., Brea, USA) purification method for the
removal of any primer dimers from the post-capture LM PCR that
could hinder in the sequencing step. The quantities of double-stranded
DNA in these four captured DNA libraries were measured using
Quant-it Pico Green kit (Invitrogen, Carlsbad, USA).

2.6. 16s rDNA amplicon library preparation

As part of the sample analysis, bacterial species composition was stud-
ied through amplicon sequencing of ribosomal DNA from these soil
samples. Amplicon libraries were prepared by running a PCR with fu-
sion primers optimized for 454 sequencing. Fusion primers for bacter-
ial 16S rDNA V3-V4 region were designed using the forward primer
B341F [‘CCTACGGGNGGCWGCAG’] and 454 (Lib-A) adapter-A
and the reverse primer BS80OSR [‘GACTACHVGGGTATCTAATCC’]
preceded by 454 (Lib-A) adapter-B with a MID.*! All amplicon librar-
ies were prepared using reagents based on Phire Hot Start DNA Poly-
merase (Thermo Fisher Scientific Inc., Waltham, MA, USA). The
pre-PCR mix was prepared in the same proportion for each sample to-
taling to 25 pl (5 pl-5x Buffer; 0.5 pl-10 mM dNTPs; 1 pl-10 pM for-
ward primer; 2 pl-5 pM reverse primer; 0.5 pl-DNA polymerase;
0.5 pl-bovine serum albumin; 2.5 pl-Template DNA; 13 pl-MilliQ
water). The PCR conditions for 16S rDNA amplification were as

follows: initial denaturation step at 98°C for 30 s; 27 cycles of de-
naturation at 98°C for 5 s, annealing at 56°C for 5 s, extension at
72°C for 10 s; final extension at 72°C for 60 s. Three 25 pl PCR reac-
tions were run separately for each sample and pooled together. These
PCR amplicons were purified with QIAquick PCR purification kit
(Qiagen), and the quantity was measured using Quant-it Pico Green
kit (Invitrogen).

2.7. 454 sequencing

The SeqCap and amplicon libraries were sequenced separately with
Lib-L and Lib-A chemistry, respectively (Roche 454, Shirley, NY,
USA). The multiplexing (MID) option used in both SeqCap and am-
plicon libraries facilitate sequencing them as respective pools to yield
more sequencing depth and then to separate the libraries computation-
ally. For SeqCap pool, equal amounts of captured DNA from all four
different hybridizations were pooled together. The pooled captured li-
braries were sequenced in the sequencing facility at Lund University on
a whole plate of GS FLX Titanium series with Lib-L chemistry in two
regions. For amplicon libraries, both 16S rDNA amplicon libraries
were sequenced as part of an amplicon pool made from equal amounts
of 24 other amplicon libraries. This amplicon pool was sequenced in
a 1/4 plate using a GS FLX Titanium series with Lib-A chemistry
also sequenced at the same facility. The sequence data related
to the captured metagenomes can be found on the MG-RAST
server with their specific Metagenome IDs (WS-72: 4527652.3,
WS-24: 4529373.3, WS-16: 4529786.3, WS-8: 4528934.3, GL-72:
4527653.3, GL-24: 4529374.3, GL-16: 4529787.3 and GL-8:
4528937.3). The 16S rDNA amplicon sequencing data can be found
in the study accession number PRJEB9530 at EMBL (WS-16S:
ERS743453 and GL-16S: ERS743454).

2.8. Data analysis

The sequencing output from both regions in the captured libraries was
separated based on their MID tags into their respective eight different
data sets. The sequence reads from each of these captured data sets
were processed through MG-RAST,*? an online tool that is mainly
used for functional annotations of metagenomic sequences. The de-
fault parameters for quality filtering in MG-RAST were used to re-
move reads with bad quality and to remove artificial sequence
duplicates.>® The filtered sequence reads were used in further analysis.
The optimal hybridization time with respect to this particular set of
probe design method was deduced based on the enrichment efficiency
(fraction of on-targets) for each hybridization time. On-targets were
identified through sequence similarity (blastx, E-value of 107°) with
the target database (TDB) consisting of carbohydrate-active enzymes
and secreted proteases.”> %’

The functional assignment of sequences from captured metagen-
omes was also carried out in MG-RAST based on sequence similarity
matches with different databases along with SEED** database where
reads were annotated with different subsystems (E-value of 107°). The
CAZy domains were predicted from the captured metagenomes using
CAZy Analysis Toolkit (CAT) with E-value cut-off of 107°.3° The
taxonomic analysis of captured metagenomes has been analysed
mainly based on counts for each taxa obtained from MG-RAST.*?
The amplicon metagenomes were processed with QIIME>® in combin-
ation with Greengenes®” for 16S rDNA amplicons as a resource
for taxonomy assignments. The taxonomic distributions from the
amplicon metagenomes were compared with that of the captured
metagenomes. A comparative metagenomic analyses between the
eight captured metagenomes along with 22 publicly available whole
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metagenomes (WMG) (Supplementary Table S6) also from soil se-
quenced with 454 were achieved through the R package ‘matR’ in
MG-RAST.?® These metagenomes were also normalized with log
transformation and centred for each sample using ‘matR’. STAMP>®
was used for the visualization and the statistics of the comparative me-
tagenomic data sets with Bonferroni correction for P-values. The
CAZy domains were predicted for two of the intensively sequenced,
publicly available whole metagenomes and compared with the cap-
tured metagenomes from our study.

3. Results

In total, 914,996 sequence reads were obtained from the SeqCap pool.
The number of sequences with good quality (after QC and dereplica-
tion) for all eight samples was uniform and ranged between 89,281
and 129,198 per sample (Supplementary Table S2). The targeted me-
tagenomes that were sequenced with 454 pyrosequencing generated
>850,000 reads with an average read length of 348 after quality con-
trol (QC). The fraction of reads removed through QC was consistent
(~7%) among all eight captured metagenomes. In total from the am-
plicon pool, 4,990 sequence reads were obtained from 16S rDNA am-
plicons after QC from both the wheat soil (WS) and grassland soil
(GL), respectively.

3.1. Capture efficiency
The efficiency of different hybridization times to enrich for the se-
quences of interest was measured as the proportion of reads with sig-
nificant similarity to proteins sequences in the TDB (Fig. 1A). The
fraction of reads that matched (blastx) to TDB varied from 27 + 1%
for the shortest hybridization time (8 h) to 40 = 2% for the longest hy-
bridization time (72 h). The total number of reads that belonged to the
carbohydrate subsystem from SEED** and the fraction of reads that
have a predicted CAZy domain from CAT>® also increased with in-
crease in hybridization times for both samples (Supplementary Fig.
S1). The capture efficiencies of the different hybridization times ob-
tained through three independent methods (Supplementary Fig. S1)
showed that 72 h hybridization time was most efficient in enriching
targets from metagenomes.

The abundance of each enzyme (Uniprot enzyme ID) based on the
number of reads that matched the enzymes in TDB sequences through
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blastx was obtained for each metagenome. The rarefaction curve
(Fig. 1B) for unique enzymes in each metagenome also depicts the vari-
ation between hybridization times for both soil samples. The metagen-
omes in terms of enzyme abundance counts were significantly
explained by hybridization time when they were homogenized for
soil types (ANOSIM: P =0.04). The 72 h hybridization time had
more unique enzymes and more on-target matches than the other
times in any given amount of random sampling of sequences.

3.2. Taxonomic distribution of the metagenomes

The captured metagenomes were dominated by sequences of the bac-
terial phyla Actinobacteria and Proteobacteria in both soil samples.
Comparative taxonomic analysis of metagenomes was based on the
relative abundances of different genera (both bacteria and fungi).
The taxonomic groups of the captured metagenomes from the same
soil type were significantly similar (PERMANOVA: P <0.001, R* =
0.74; ANOSIM: P =0.03), while the hybridization time did not have
any effect on their taxonomic distribution (PERMANOVA: P = 0.45;
ANOSIM: P =0.22) (Fig. 2A). The high-stringency (72 h) metagen-
omes were used for the taxonomic comparison to the taxonomic dis-
tribution obtained from the 16S rDNA amplicon sequencing of
respective soil samples (WS-16 and GL-16). The relative abundances
of bacterial taxa in the captured metagenomes (72 h) from MG-RAST
were well correlated with their respective 16S rDNA amplicons
(Fig. 2B). The taxonomic representations of the captured metagen-
omes were similar to that of the representations obtained from the
ribosomal amplicon metagenomes. The taxonomy distributions be-
tween amplicon libraries and the captured metagenomes were signifi-
cantly correlated at different levels of taxa for both soil types
(Supplementary Table S3).

3.3. Functional distribution of the metagenomes

The functional annotations based on the different databases available
in MG-RAST showed that the fraction of reads annotated with func-
tional proteins increased with longer hybridization time for both soil
samples (Supplementary Fig. S2). However, the fraction of reads that
had neither protein similarity nor functional annotation was constant
in all captured metagenomes (12.5 = 1%). The subgroup of reads
with KEGG orthology annotations (KO) (identity >60% and length
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Figure 1. (A) The capture efficiency in relation to different hybridization times from the wheat (WS) and grassland (GL) soils calculated as fraction (%) of total filtered
reads that had a significant sequence match (blastx) to the protein sequences from TDB. (B) Rarefaction curves of unique enzyme IDs (UniProt) from random
sampling of filtered sequence reads from the captured metagenomes. This figure is available in black and white in print and in colour at DNA Research online.
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>15 aa) showed that >85% of these proteins were involved in metab-
olism (Supplementary Table S4). Also, >70% of those metabolic reads
were particularly involved in carbohydrate metabolism in both wheat
and grassland soil with high-stringent hybridization time (WS-72:
18,628 reads; GL-72: 15,900 reads) (Fig. 3A) and are part of >200 dif-
ferent KO functional groups. This is followed by synthesis of second-
ary metabolites, amino acid metabolism and glycan biosynthesis and
metabolism. These four metabolic categories constitute >90% of all
the metabolic annotations.

Among the different annotation sources in the MG-RAST server,
the SEED-based subsystem had the most abundant annotations with
943 different subsystems (Level 3) annotated at least two times
among the eight captured metagenomes. Comparing the abundances
of broader subsystems (Level 1), the carbohydrates subsystem was
the most abundant (WS-72: 35% and GL-72: 36%) followed by the
clustering-based subsystem (functionally coupled genes) (WS-72:
33% and GL-72: 35%). The three most abundant finer (Level 3) sub-
systems that were found in both wheat (WS-72) and grassland soil

(GL-72) were trehalose biosynthesis, glycogen metabolism and glyco-
gen metabolism cluster which form ~50% of the entire subsystems.
The blastx matches obtained against the TDB sequences showed that
~75% of the matches were annotated to CAZy enzymes and the rest
were proteases for both soils (WS-72, GL-72). Among the different en-
zyme families, the most abundant bacterial family was the glycosyl
hydrolase 13 (GH13) in the CAZy database (WS-72: 41%, GL-72:
45%). This was followed by metalloproteases (WS-72: 13%, GL-72:
11%) and serine proteases (WS-72: 13%, GL-72: 10%) in both soils.

3.4. CAZy analysis

Out of 331 different CAZy enzyme families, 243 were found in both
soil samples (WS-72 and GL-72) at least through one of the three
methods of annotation (CAT, MG-RAST and blastx) (Supplementary
Table S5). The number of different enzyme families captured in each
CAZy enzyme class varied between the soil samples and the enzyme
class (Fig. 3B). Larger number of enzyme families from glycosyl
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transferase (GT) class was not found in both metagenomes (WS-72
and GL-72) compared with other enzyme classes. Glycosyl hydrolases
were the most abundant enzyme class from all three methods in both
metagenomes (WS-72 and GL-72). The most abundant glycosyl
hydrolase enzyme family GH13 was predicted along with carbon
binding motif CBM48 from the domain predictor (CAT). The frac-
tions of reads with GH13 domain along with CBM48 (WS-72:
39%, GL-72: 46%) were the most abundant next to GH13 domains
(WS-72: 17%, GL-72: 17%) that were predicted independently.

3.5. Comparative metagenomics

As all the captured metagenomes in this study represented two soils,
the metagenomes from the different hybridization times were treated
as replicates and the different enzyme IDs among the portion of on-
targets (removing the off-targets) that matched (blastx) to TDB was
very similar within each soil type (Fig. 4A). Similarly, the abundances
of different SEED-based subsystems (Level 3) from MG-RAST after
normalization were analysed for the eight captured metagenomes
(Fig. 4B). The subsystem abundances in these eight captured metagen-
omes were significantly affected by both soil type (PERMANOVA: P
<0.001) and hybridization times (PERMANOVA: P < 0.01). Enzymes
such as amino-peptidisases, GH10 and GH36 for example were highly
enriched in grassland (GL) while enzymes related to peptidoglycan
biosynthesis and GH46 were highly enriched in the wheat field (WS)
(Supplementary Figs S3 and S4).

To elucidate the ability of captured metagenomics, a number of
whole metagenomic data sets from soil (WMG) that were deeply se-
quenced by pyrosequencing and were publicly available in MG-RAST
were chosen for comparison. Some of these public metagenomes were
sequenced to a depth >10 times that of the captured metagenomes in
our study. Two of WMG have been analysed for CAT, since it only
allows 50,000 sequences to be analysed per run. The fraction of
reads that contained CAZy domains in the captured metagenomes
was more than five times higher than the possible untargeted metagen-
omes despite the coverage of sequencing (Table 1). The most abundant
enzyme family GT2 in the two public metagenomes formed only ~0.8
and 0.2% of the total reads, whereas in our targeted approach the two
most common enzyme families were GH13 together with CBM48 and
represented 12% of the WS-72 and 13% of the GL-72 metagenomes.

Table 1. The fraction of reads predicted with CAZy domains from
the captured metagenomes is at least five times more than
intensively sequenced public WMG

Metagenomes Filtered CAZy % Expected CAZy
reads domains CAZy domains (per
(reads) million reads)
WS-72 105,190 30,999 29.50 294,695
GL-72 89,281 24,637 27.60 275,949
Public-A 937,368 52,817 5.60 56,346
Public-2M 354,345 4,692 1.30 13,241

CAZy, Carbohydrate-Active Enzymes; WMG, whole metagenome
sequencing.

In total, 22 publicly available whole metagenomes were used for
comparison towards the two captured metagenomes (WS-72 and
GL-72). After normalization of these 24 metagenomes, there were
1,124 subsystems (Level 3) whose abundances were compared be-
tween the metagenomes. Among these subsystems, there were 390 sub-
systems that had a significant difference in the relative frequencies
(P<0.05, g<0.05) between the whole metagenomes and captured
metagenomes (Fig. 5§) (PERMANOVA: P <0.001, R%=0.59). The
most common subsystems that were significantly enriched in the cap-
tured metagenomes (Supplementary Table S7) belonged to: carbohy-
drates (43), clustering-based subsystem (45) and protein metabolism
(18). The captured metagenomes are highly efficient in enriching for
sequences related to carbohydrate subsystem as expected through de-
sign compared with the whole metagenomes (Fig. 6).

4. Discussion

This study has for the first time applied a targeted metagenomic ap-
proach to study genes of more than hundreds of different enzyme fam-
ilies in environmental samples. The approach was successfully
demonstrated for soil from two different land-use types, grass and
wheat, but is applicable to any metagenome. The soil functional diver-
sity can be efficiently investigated by using the sequence capture tech-
nique that has been developed with an online web tool for probe
design®® for genes encoding enzymes regulating specific functional
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mechanisms in ecosystems. This method circumvents the inefficiency
due to coverage or high labour demand for gene targeting, of the tech-
niques that are commonly applied for the study of community func-
tions.®*13*% We have applied this technique successfully for two
different soil metagenomes to target enzymes involved in organic mat-
ter degradation.

The abundances of these target enzymes in each captured metagen-
ome were significantly affected by the hybridization time. However,
the diversity of these targeted enzymes was consistent within each

soil regardless of their hybridization time. This shows that stringent
hybridization, in terms of hybridization time, increases the enrichment
of target genes while maintaining the diversity. It could also be in-
ferred that this technique is reproducible as there is an increase in tar-
get enrichment while maintaining diversity at higher hybridization
stringencies for both metagenomes. Lower hybridization stringencies
also increase the fraction of proteins without any annotations in the
public databases in the metagenome. This is mainly due to the random
hybridizations of DNA fragments to probes (i.e. increased number of
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off-targets), which would be less likely at higher stringencies. Since this
technique involves sequencing of the hybridized fragments, it provides
the advantage of separating out the randomly bound fragments
from the ones that contain functional annotation compared
with microarray-based techniques.'? It is also important to note that
these fragments were sequenced with 454 for longer sequence reads.
As 454 frequently does not sequence the entire DNA fragment, adja-
cent non-coding region instead of the region bound to the probe might
have been sequenced, which could also hinder their functional anno-
tations. In addition, 454 also has higher per-base sequencing errors
like homopolymer errors*! that could cause problems while matching
sequence reads for homology in databases. These issues could
be solved with other less error-prone sequencing technologies such
as [llumina.

Most of the metabolic gene predictions in the captured meta-
genomic datasets for both soils were annotated to carbohydrate
metabolism. Other major metabolic components (e.g. amino acid me-
tabolism) of the captured metagenomes are also related to organic
matter degradation. This clearly illustrates the efficiency of using our
customized probes to enrich for regions of interest in a complex meta-
genome and is a highly suitable approach to increase the understand-
ing of a particular environmental process. Similarly in the subsystem
analysis, the most abundant subsystem (Level 1) was carbohydrates,
also showing the efficiency of this capture technique. The second
most abundant subsystem, clustering-based subsystems, are the genet-
ic regions that are collocated to functional genes in the genomes of dif-
ferent taxa, but their functions are not well known.** We suggest that
these genes are abundant, because they are sequenced along with the
targeted genetic DNA fragments. The functional subsystems distribu-
tion between the captured metagenomes was mainly influenced by
their soil type rather than their hybridization stringency, although
both properties significantly affected their distribution. This shows
that this targeted metagenomics approach does not bias the functional
representation of the soils even at very high stringency. The results
clearly show the efficiency of applying this method to provide insights
into important ecological questions, such as understanding key pro-
cesses in complex environments.

The number of different CAZy enzyme families found from these
metagenomes also shows the ability of this target enrichment strategy
to obtain reliable data for >200 enzyme families at different taxonom-
ic levels. It is to be noted that an efficient enrichment of proteases was
also obtained along with CAZy enzymes, although there are common
enzymes between the two databases CAZy and MEROPS. Due to our
approach, the numbers of CAZy enzyme families found in our meta-
genomes are much higher to what has been reported in earlier find-
ings.*>*4 Despite this, some enzyme families from certain enzyme
class like GT were not acquired completely. This could be due to the
inefficiency of probes targeting of these families or the very low abun-
dance of these enzyme classes in these soils. Also, these enzyme classes
could co-occur with other enzyme families and the annotations like
blast would predict one of those with higher scores. For example,
the glycosyl hydrolase 13, one of the major CAZy enzyme families,
frequently co-occur with CBM48*° and is the most abundant enzyme
family in captured metagenomes. GH13 enzyme catalysis is known to
be an important step in trehalose biosynthesis,*® and this biosynthesis
is also the most abundant subsystem in the captured metagenomes.

The taxonomic analysis of the captured metagenomes from
MG-RAST showed that the target enrichment strategy applied here
does not appear to bias the targeting towards any particular taxonom-
ic group. The taxonomic distribution between all captured metagen-
omes was significantly explained by their soil type rather than the

hybridization times. It is evident that even at the high stringency, cap-
tured metagenomes have a similar taxonomic distribution as the other
metagenomes from the same soil. Hence, the developed sequence cap-
ture method does not have any taxonomic bias. This was further sup-
ported by the significant correlations between captured metagenomes
(WS-72 and GL-72) and the amplicon metagenomes based on the rela-
tive abundances of taxa at different levels. The changes in certain taxa
between captured metagenomes and amplicon sequencing could be
explained through the availability of functional information of par-
ticular taxa. The phylum acidobacteria, for example, is represented
highly in 16S rDNA amplicon data but not in case of the captured me-
tagenomes. This can be explained partially that it is well known for its
abundance in soil communities but has not been extensively studied
for their functions.*”**® The fraction of genes coding for enzymes
from Acidobacteria used for our probe were measured to be only
0.6% in TDB, also only 0.9% among the other bacterial enzymes.
This limitation is not due to the capture technique, but rather due to
biases in the public databases. Several ongoing projects are aiming at
increasing the resolution of these under-studied organisms through
4230 wwhich will be helpful in understanding the
ecosystems better in the future.

genome sequencing,

The comparison of CAZy domains from captured metagenomes to
publicly available whole metagenomes showed that enrichment
through probes was more efficient than intensive sequencing to iden-
tify lowly abundant functional genes. Even the most abundant CAZy
domains were <1% in WMG, showing the inability of whole metage-
nomic approach to obtain these important genes.’' However, our tar-
geted approach efficiently enriched for genes that were targeted, at
considerably lower sequencing depths. The abundance of enzymes re-
lated to carbon cycling from captured metagenomes was much higher
than the whole metagenomes (WMG) despite that the WMG was very
deeply sequenced. These 22 WMG were obtained from different soils at
different conditions, including metagenomes from places like rain forest
in Puerto Rico, permafrost and high arctic soils which are known to have
communities with higher organic matter degradation capabilities.’ ™3

The differences between two soil communities (WS and GL) were
deducible with the availability of abundance and richness of the en-
zymes in captured metagenomes. It was clear that enzyme families
such as GH10 coding for xylanases'® were abundant in grassland as
expected since it is related to degradation of plant cell-wall material.
Similarly amino peptidases are also found abundant in grassland, as
the soil does not receive any free nitrogen as in the case of wheat
soil through fertilization. This also shows the ability of captured me-
tagenomics to explain soil functionality. Although, it is important to
note that the probes used in this method depend on known functions/
enzymes in databases and the information related to unknown func-
tions/enzymes in communities may only be obtained if they were gen-
etically similar. WMG could still be a way of obtaining such
information in these particular cases but not to forget that annotating
them could still be a subject of biases.’*

This study has for the first time implemented the sequence capture
technique to study the functional diversity of enzymes degrading or-
ganic matter in natural soil communities. This approach has the ability
to solve the coverage issues with the WMG to get enough amounts of
representative sequences.’® We also argue that it is superior to the
large-scale microarrays®® since it is able to detect unspecific binding
of DNA fragments to the probes and facilitates the discovery of
novel genes. It has also been clearly shown, based on multiple hybrid-
ization stringencies, that this technique is highly stable and reprodu-
cible. As this method represents the taxonomic diversity very well, it
could be used to understand the relation between the taxonomic
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and functional diversity present in the environmental communities.'
As mentioned in Fierer et al.,*” this approach would be an excellent
tool for measuring ‘community aggregated traits’ (CAT) and hence
proved an integrated understanding of the functional capabilities of
complex microbial ecosystems. The relative functional gene abun-
dances from different samples, as traits irrespective of its taxonomic
origin, are a better way to determine the functional capabilities of
the community. Overall, this method demonstrates its ability to im-
prove our understanding of those community functions in different
ecological processes of interest and is applicable even to the most
complex metagenomes.
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