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Abstract

Motivation: Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase

dependency for an individual patient or cancer cell can be challenging to predict. Kinase depend-

ency does not always correspond with gene expression and mutation status. High-throughput

drug screens are powerful tools for determining kinase dependency, but drug polypharmacology

can make results difficult to interpret.

Results: We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-through-

put drug screening data, comprehensive kinase inhibition data and gene expression profiles to

identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21

lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimen-

tally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581,

showing synergistic reduction in proliferation after combining ponatinib and AZD8055.

Availability and implementation: KAR can be downloaded as a Python function or a MATLAB

script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/.

Contact: aikchoon.tan@ucdenver.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Kinases play essential roles in cell survival, growth and proliferation

and are currently the largest protein class in clinical trials (Rask-

Andersen et al., 2014). Kinases are frequently mutated in cancer and

acquire oncogenic properties to drive tumorgenesis. These cancer

cells are often ‘addicted’ to the mutated oncogenes (e.g. kinases).

Targeted cancer therapies have exploited this ‘oncogene addiction’

concept, and deployed small molecules that could inhibit these onco-

genic kinases (Sawyers, 2004). While kinases are predominantly tar-

geted for cancer therapy, they are also implicated in immunological,

neurological, metabolic and infectious diseases (Zhang et al., 2009).

Induction of cell death through inhibition of a specific essential kin-

ase creates selective pressure for cancer cells to develop resistance

mechanisms. Cancer cells often acquire resistance through muta-

tions that interfere with drug binding (Azam et al., 2008). Other re-

sistance mechanisms include target amplification, upregulation of

alternative kinase pathways, and intrinsic resistance of a subset of

cells in the larger population (Glickman and Sawyers, 2012; Sun

and Bernards, 2014). Combination of kinase inhibitors could limit

development of these resistance pathways and dramatically improve
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cancer therapy (Al-Lazikani et al., 2012). In order for combination

therapy to be more widely adopted, new systems approaches are

needed to prioritize target combinations for experimental validation

(Ryall and Tan, 2015).

Before targeted kinase inhibitor therapies can be applied, kinase

dependency within a cancer cell needs to be established. High-

throughput pharmacological screening is a powerful method for

determining kinase dependency, (Garnett et al., 2012; Barretina

et al., 2012). However, due to unexpected drug-kinase interactions

(polypharmacology), target deconvolution for drug screening data

remains a challenge in chemical systems biology. Moreover, highly

expressed kinases are not always effective molecular targets in can-

cer (Wei et al., 2006). Unfortunately, the large number off-target

interactions of most kinase inhibitors can lead to misinterpretation

of drug screening results. For example, the commonly reported tar-

gets of FDA-approved drug bosutinib are SRC and ABL; however,

bosutinib also inhibits another 40 kinases by more than 85% inhib-

ition at 500 nM (Anastassiadis et al., 2011). While this poses a chal-

lenge for target deconvolution, it also provides a unique opportunity

to study the effects of a more comprehensive set of kinases as well as

combinations of kinases in a given screen. As quantitative kinase in-

hibition data is becoming increasingly available (Davis et al., 2011;

Anastassiadis et al., 2011), it can be used to better identify critical

kinases following drug screens.

Here, we developed Kinase Addiction Ranker (KAR), an algo-

rithm that integrates high-throughput drug screening data, compre-

hensive kinase inhibition data and gene expression profiles to

determine kinase dependency in cancer cells. This algorithm was

inspired by previous work using kinase inhibition profiles and drug

sensitivity data to predict kinase targets for leukemia patients

(Tyner et al., 2013). Using publicly available data, we demonstrated

the utility of KAR in ranking kinase targets for 21 lung cancer cell

lines and used statistical clustering to group cell lines by kinase de-

pendency. We experimentally validated KAR predictions for non-

small cell lung cancer cell line H1581. We also applied this approach

to previously published data from 151 leukemia patient samples.

2 Methods

2.1 Kinase addiction ranker (KAR) algorithm
We have developed KAR, a computational algorithm that integrates

high-throughput drug screening data, comprehensive quantitative

drug-kinase binding data, and transcriptomics data to predict kinase

dependence in cancer cells (Fig. 1). KAR generates lists of kinases

with high correlation with a phenotypic output such as cell prolifer-

ation or survival. Kinases are scored based on the sensitivity of each

drug that inhibits the kinase. Since the ultimate goal of KAR is to

generate lists of kinase targets for therapeutic application, KAR first

filters low expressing kinases from subsequent analysis (Fig. 1). This

shortens computation time and ensures that each high scoring kinase

is expressed in the cell above a user-defined threshold.

After filtering kinases with low gene expression, the drugs used

in the screen are sorted into one of five bins based on drug sensitivity

(Fig. 1). Drugs meeting the highest sensitivity threshold (e.g.

IC50�1 lM) are placed into Bin 1. Kinase targets of drugs in Bin 1

receive the highest point value (20 points) by the algorithm. Bin 2

and 3 contain drugs with high (e.g. IC50�2 lM) and intermediate

(e.g. IC50�5 lM) sensitivity values. Kinase targets of drugs in these

bins receive fewer points than targets in Bin 1 (10 points and

5 points, respectively). Finally, Bin 4 and 5 contain drugs that do

not meet the threshold for sensitivity (e.g. IC50�5 lM). Targets of

drugs in Bin 4 receive no points and targets of drugs in Bin 5 receive

negative 10 points by the algorithm. Four thresholds are used to de-

fine the bins: Bin 1: IC50<Threshold 1, Bin 2: Threshold

1� IC50<Threshold 2, Bin 3: Threshold 2� IC50<Threshold 3,

Bin 4: Threshold 3� IC50�Threshold 4, and Bin 5:

IC50>Threshold 4. For our lung cancer cell line data we used IC50

thresholds of 1, 2, 5 and 10 lM to define the five bins and for the

leukemia patient data we used IC50 thresholds of 0.5, 1, 2.5 and

5 lM. Lower thresholds were used for the leukemia data since this

dataset had smaller ranges of IC50 values (max IC50¼10 lM). The

highest ranking kinases were consistent over a variety of different

threshold sets. See Supplementary Tables S1 and S2 for examples of

KAR ranking by varying thresholds for two different lung cancer

cell lines. The threshold for tiering drug sensitivity in KAR could be

tuned for different experiments as deemed appropriate by the user.

We used thresholds such that Bin 1 contained the top �15% most

sensitive drugs, Bin 2: top �15–20%, Bin 3: top �20–30%, Bin 4:

top �30–40% and Bin 5: bottom �60%. While we used IC50 meas-

urements of sensitivity, the thresholds can easily be tuned to accom-

modate other measures of sensitivity such as Ki (inhibition constant)

or percent of control measurements at a single concentration. Since

Ki measurements are less sensitive to assay type, they could be useful

for combining data from different experimental sources.

After binning the drugs, a score is calculated for each kinase in

the dataset. Each time the kinase is inhibited above the threshold,

the appropriate amount of points are added or subtracted based on

the bin of the drug that inhibited the kinase (Table 1). If the kinase

is not inhibited by the drug, no points are added or subtracted for

that drug. We sum over all drugs and kinases to get a final raw score

for each kinase. A kinase is considered inhibited based on previously

published competitive binding data of hundreds of kinases for each

drug. Data using different measurements of inhibition strength (e.g.

percent of control, Kd, IC50) were combined to ensure the most com-

prehensive list of drugs was available for analysis. We defined a kin-

ase target as inhibited if its percent of control measurement at a

Fig. 1. Kinase Addiction Ranker (KAR) algorithm overview. KAR integrates

drug sensitivity, kinase inhibition, and gene expression data to generate a

ranked list of kinase targets associated with drug sensitivity. Kinase targets

for each drug screened in a cancer sample are scored based on the sensitivity

of the drug
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single drug concentration was less than 15% (>85% inhibition of

the target) or if its IC50 or Kd measurement was <1lM.

Similarly, KAR also calculates scores for each pair of kinases.

Here, points are only added or subtracted if two kinases are in-

hibited above threshold by the same drug. Then the appropriate

number of points are given based on the bin of the drug that in-

hibited the pair of targets. While points are calculated for every pos-

sible combination of kinases in the dataset, certain pairs of targets

are unlikely to ever have a high score since the number of drugs that

inhibit a particular pair may be low or nonexistent. An example is

the pair FGFR1 and MTOR, which is only inhibited at the same

time by one compound in our dataset, AZD-7762.

KAR scales the raw scores such that the kinase or pair with the

highest raw score has a scaled score of 1. This allows for comparison

of KAR scores between samples. KAR also calculates a percent ef-

fective score by computing the percentage of times the kinase is in-

hibited and is included in one of the sensitivity bins receiving

positive points (sensitivity Bins 1–3). KAR also calculates chi-square

and Fisher’s exact test P-values for the kinases and combinations

using the contingency table for two variables: (i) kinase inhibited

(>85% inhibition or IC50/Kd<1lM) and (ii) drug sensitivity (sensi-

tivity bins 1–3). The P-values compute if there is a significant associ-

ation between a kinase being inhibited and the inhibiting drug being

sensitive (sensitivity bins 1–3) and are not related to the KAR score.

We sort the table of kinase scores by P-value to ensure that kinases

that are not inhibited by as many compounds are not overlooked by

the algorithm since kinases that are inhibited by more compounds

have greater potential to receive higher scores. Each of these scores

together result in a more complete picture of the importance of a

given kinase or combination to the sample. The key kinases to test

in follow-up experiments will likely have significant P-values, high

scores, and high percent effective values. An example of all the out-

puts of KAR for one of the cell lines we tested is given in

Supplementary Table S3.

2.2 Implementation of KAR
We implemented KAR in MATLAB (version 2015a) and Python

Scripting Language (version 2.7.8). We tested KAR in OSX Version

10. 9.5. KAR code is freely available for download at http://tanlab.

ucdenver.edu/KAR.

2.3 Drug sensitivity data
We obtained high-throughput pharmacological profiling data for 21

lung cancer cell lines from the Genomics of Drug Sensitivity in

Cancer (GDSC) database (Yang et al., 2012) (Supplementary

Table S4). Screening data from 151 leukemia patient samples was

obtained from a recent publication (Tyner et al., 2013)

(Supplementary Table S5).

2.4 Microarray gene expression data
We obtained microarray gene expression data for the 21 lung cancer

cell lines from the Cancer Cell Line Encyclopedia (GSE36133). Raw

CEL files for these cell lines were normalized using Robust

Multiarray Average (RMA) (Irizarry et al., 2003) approach in

Affymetrix Power Tools (APT).

2.5 Quantitative kinase inhibition data
For lung cancer cell lines study, we obtained comprehensive quanti-

tative kinase inhibition data for 49 kinase inhibitors used in the

GDSC database. References for publications and databases used to

acquire the kinase profiles are in Supplementary Table S6. For the

leukemia patient study, kinase inhibition data for 66 kinase inhibi-

tors were collected from published papers (Tyner et al., 2013).

References for publications and databases used to acquire the kinase

profiles are in Supplementary Table S7. Quantitative kinase binding

data was dichotomized as inhibited or not inhibited using thresholds

of IC50/Kd<1lM or percent inhibition >85%. Databases such as

ChEMBL (Bento et al., 2014), PubChem (Wang et al., 2014) and

DSigDB (Yoo et al., 2015) are useful resources for finding published

quantitative kinase target information.

2.6 Cluster analysis
We performed hierarchical clustering of the data using the

MATLAB bioinformatics toolbox with Euclidean distance metric

and average linkage to generate the hierarchical tree. Data columns

were normalized so that the mean was 0 and the standard deviation

was 1.

2.7 Cell proliferation assay
H1581 cells were plated at 100 cells per well in 96-well tissue cul-

ture plates and treated with inhibitors at various doses. When the

DMSO-treated control wells became confluent (10 days) cell num-

bers were assessed using a CYQUANT Direct Cell Proliferation

Assay (Invitrogen) according to the manufacturer’s instructions.

2.8 Quantifying combination effects
To quantify the combination effect of drugs used in this study, we

used the Bliss independence model, that predicts the combined re-

sponse C for two single compounds with effects A and B using the

following equation: C¼A�B, where each effect is expressed as

fractional activity compared to control between 0 (maximal effect,

100% inhibition) and 1 (no effect, 0% inhibition). The combination

is synergistic if the %inhibition of the combination is greater than

the predicted C.

2.9 Immunoblot analysis
For immunoblot analysis cells were plated at 1.5�106 cells per

plate in 4–10 cm plates. Twenty-four hours later, cells were switched

to HITES media for 2 h and subsequently treated with either

DMSO, 100 nM ponatinib, 100 nM AZD8055, or the combination

of ponatinibþAZD8055 for 2 h. Cells were collected in PBS, centri-

fuged (3 min at 3000 rpm) and suspended in lysis buffer. Aliquots of

the cell lysates containing 60mg of protein were submitted to SDS-

PAGE and immunoblotted for phospho-mTOR (#5536), mTOR

Table 1. Example calculation of raw KAR score for Kinase X

Drug Sensitivity bin Kinase X inhibited? D score

1 1 Yes 20

2 2 No 0

3 5 Yes �10

4 1 Yes 20

5 3 No 0

6 4 No 0

Note: If a drug inhibits Kinase X, points are added based on the sensitivity

bin of the drug. For example, Drug 1 inhibits kinase X and is in sensitivity bin

1 (highest sensitivity), therefore 20 points are added to the score. Drugs that

do not inhibit Kinase X do not affect the score (Drugs 2, 5 and 6). The total

Raw score for Kinase X is calculated by summing over all the drugs in the

panel.

Raw KAR Score¼ 20-10þ 20¼ 30.
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(#2983), phospho-Akt S473 (#9271), Akt (#9272), phospho-

p70S6K (#9234), p70S6K (#9202), phospho-S6 (#4857), S6

(#2317), phospho-ERK p-p44/42 MAPK (#9101); Cell Signaling

Technology and ERK1 (sc-93), ERK2 (SC-154), NaK-ATPase a-sub-

unit (sc-21712); Santa Cruz Biotechnology.

3 Results

3.1 Determining kinase dependency in lung cancer
We initially applied KAR to a panel of 21 lung cancer cell lines using

drug sensitivity data from the GDSC database (Yang et al., 2012).

We obtained microarray gene expression data from the Cancer Cell

Line Encyclopedia (GSE36133). Raw CEL files for these cell lines

were normalized using RMA approach (Irizarry et al., 2003) in

Affymetrix Power Tools (APT). Genes with expression level lower

than seven (log2 signal from RMA) were deemed to be low ex-

pressed and filtered out in this study. Drugs were included in our

analysis for each kinase inhibitor profiled in GDSC with published

kinase inhibition profiles. Sensitivity data for each cell line con-

tained data from between 21 and 49 kinase inhibitors with a median

of 30 inhibitors. The list of the kinase inhibitors used in this study is

available in Supplementary Table S4. Each pair of cell lines had at

least 20 overlapping kinase inhibitors screened in the dataset. The

top five ranking kinases and kinase pairs for each cell line are pro-

vided in Supplementary Tables S8 and S9.

3.2 Cluster analysis of the kinase dependency in lung

cancer cell lines
Hierarchical clustering of the scaled KAR scores (Fig. 2A) reveal re-

lationships in kinase dependence among the lung cancer cell lines

and kinases with similar scoring patterns. For example, MELK,

MAP4K4 and TAF1 group together and have high scores in the

same cell lines. Cell lines H1703, EPLC272H and H2009 group to-

gether partially due to high scores in MELK, MAP4K4, TAF1 and

CAMKK2. A subset of kinases was selected for clustering by iden-

tifying kinases with a significant association with drug sensitivity

(Fisher’s exact test, P<0.05) in one of the 21 cell lines. MTOR was

most frequently significantly associated with drug sensitivity among

the lung cancer cell lines studied. This is relevant as MTOR is a key

kinase that regulates the survival pathway and has been previously

shown to be active in non-small cell cancer (Ekman et al., 2012;

Fumarola et al., 2014). Clustering results reveal that MTOR, EGFR

and ERBB2 are among the kinases with the most distinct scoring

patterns, making the scores of these kinase more unique identifiers

of the cell lines (Fig. 2A). This is interesting as EGFR is one of the

targets with FDA-approved drugs (e.g. gefitinib and erlotinib)

approved for non-small cell lung cancer.

In contrast, clustering based on drug sensitivity (Fig. 2B) instead

of kinase score resulted in different groupings of cell lines. For ex-

ample, H1623 and H2126 clustered together by drug sensitivity par-

tially due to shared sensitivity to EGFR inhibitors gefitinib and

Fig. 2. KAR identifies relationships in kinase dependence among lung cancer cell lines. (A) Hierarchical clustering of scaled KAR scores for 21 lung cancer cell

lines, showing relationships among cell lines and kinases. (B) Hierarchical clustering of drug IC50 data for the 20 overlapping drugs in each cell line’s dataset.

Each column was normalized before clustering to give a mean of 0 and a standard deviation of 1. Red indicates that a cell line has higher sensitivity to a given kin-

ase/drug and blue indicates relatively lower sensitivity. Clustering results differ when clustering based on kinase score vs. drug IC50
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afatinib. However, when clustering based on kinase score (Fig. 2A),

we see more separation between these cell lines, with H1623 having

a higher EGFR score than H2126. Data from drugs with strong off-

target effects on EGFR such as AZD-7762, bosutinib and ponatinib

decrease the EGFR score for H2126. The KAR score clustering also

highlights the high dependence of H2126 on MTOR and CDK9

compared to H1623. This is consistent with published data suggest-

ing that H2126 acquired resistance to EGFR inhibition via activa-

tion of the AKT/MTOR pathway (Wu et al., 2013). This highlights

that clustering based on KAR could delineate the kinase dependency

in individual cell lines, which is not possible to distinguish based on

drug sensitivity data clusters.

Additionally, H292 grouped together with other cell lines in-

hibited by bosutinib like H661 (Fig. 2B), but when we cluster based

on kinase score we more clearly see that H292 has a unique sensitiv-

ity to FLT3 inhibition. These examples further illustrate how incorp-

oration of comprehensive kinase inhibition profiles for each drug

allows for better kinase target deconvolution.

KAR results also demonstrate that effective kinase targets cannot

be predicted based on gene expression alone. While some cell lines

have high kinase scores for kinases with high gene expression (e.g.

PC-14 - EGFR), many high expressing kinases have low associations

with drug sensitivity. For example, AURKA is one of the kinases

with the highest gene expression in cell line H1299, but has a scaled

score of �0.14 and a chi-square P-value of 0.784, indicating low

correlation with drug sensitivity. Another example is high MET ex-

pression in H1975, but a scaled KAR score of 0.38 and a chi-square

P-value of 1.00.

3.3 Validation of KAR-predicted kinase dependency
To demonstrate that KAR could delineate kinase dependency in in-

dividual cell lines, we validated KAR algorithm predictions for three

non-small cell lung cancer cell lines: H1975, H1299 and H1581

(Table 2) based on published literature and experimental results.

3.3.1 Validation of kinase dependency in H1975

H1975 is an EGFR double-mutant (L858R, T790M) cell line with

high EGFR gene expression. The first mutation (L858R) correlates

with sensitivity to EGFR kinase inhibitors (e.g. erlotinib and gefiti-

nib). In contrast, the second mutation (T790M) is the gatekeeper

mutation that generates resistance to the first-generation EGFR in-

hibitors (erlotinib and gefitinib). While EGFR was the highest scor-

ing kinase by KAR, the association between EGFR and drug

sensitivity was not significant (chi-square P¼0.08). This is due to

the T790M mutation that confers resistance to the EGFR drug sensi-

tivity for this cell line. EGFR, however, was present in significant in-

hibition pairs with TNIK and GAK (chi-square P¼0.01), which are

inhibited by the dual SRC/ABL inhibitor bosutinib. High scoring

single targets TNIK, MAP4K4, STK3, AAK1, GAK and EGFR are

also inhibited by bosutinib. These findings are supported by a previ-

ous study demonstrating decreased proliferation in H1975 after

combining EGFR inhibitor gefitinib with bosutinib compared to ei-

ther drug alone (Kim et al., 2014).

3.3.2 Validation of kinase dependency in H1299

KAR results for H1299 showed high ranking for casein kinase 2

alpha (Table 2) and several high scoring combinations of kinases

containing casein kinase 2 (Supplementary Table S9). This target is

supported by a previous study showing that CX-4945, a selective

casein kinase 2 alpha inhibitor, induces dose-dependent decreases

in cell proliferation in H1299 and has an IC50 of 1.8 lM (Zhang

et al., 2013). More recently, CX-4945 was shown to down-

regulate AKT/mTOR signaling pathway in H1299 and induces

apoptosis in this cell line (So et al., 2015). This supports that

H1299 is dependent on the CNSK2A1 and MTOR kinases as pre-

dicted by KAR.

3.3.3 Validation of kinase dependency in H1581

The highest scoring kinases for FGFR1 amplified NSCLC cell line

H1581 were FGFR1, FGFR2, MKNK2 and MTOR (Table 2).

H1581 was the only lung cancer cell line analyzed with a significant

association between FGFR1 inhibition and drug sensitivity.

Previously, we have demonstrated that H1581 is a cell line that has

high FGFR1 gene and protein expressions, and this cell line is sensi-

tive to ponatinib, a FGFR1 inhibitor (Wynes et al., 2014).

Moreover, MTOR was identified as a biomarker of resistance to tar-

geted therapy in recent studies in breast cancer and

melanoma(Corcoran et al., 2013; Kelsey and Manning, 2013;

Elkabets et al., 2013). We experimentally tested this prediction by

combining FGFR1 (ponatinib) and MTOR (AZD8055) inhibitors in

this cell line. Experimental results show enhanced reduction in pro-

liferation with the combination and the combination is synergistic

by Bliss independence (Fig. 3A). Western blots confirm decreased

ERK1/2 activation with ponatinib and decreased mTOR, AKT,

p70S6K and S6 activation with AZD8055 (Fig. 3B-C). More im-

portantly, the combination of ponatinib and AZD8055 shows inhib-

ition of both ERK and MTOR pathways (Fig. 3B-C). This results is

consistent with a recent kinome-wide RNAi screens that identified

MTOR is synthetic lethal with FGFR1 in this cell line (Singleton

et al., 2015).

Taken together, we demonstrated that KAR-predicted kinase

dependency in these lung cancer cell lines could be validated by ex-

perimental results and/or published literature. This supports the

utility of KAR in delineating kinase dependency by integrating

high-throughput drug screening data and in vitro kinase binding

data.

Table 2. Subset of the KAR output for three lung cancer cell lines: H1975, H1299 and H1581

Cell Line Top 5 kinases (Scaled score, P-value) ranked by KAR

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

H1975 MAP4K4 TNIK MELK STK16 GAK

(0.85, 0.014) (0.85, 0.014) (0.85, 0.028) (0.77, 0.006) (0.77, 0.014)

H1299 STK16 CSNK2A2 AAK1 MTOR DYRK1A

(1.00, 0.0004) (0.92, 0.001) (0.92, 0.003) (0.92, 0.003) (0.85, 0.003)

H1581 FGFR1 FGFR2 MKNK2 MTOR HIPK1

(1.00, 0.001) (1.00, 0.001) (0.86, 0.003) (0.79, 0.011) (0.79, 0.011)

Note: The top 5 ranking kinases and pairs of kinase for all 21 lung cancer cell lines tested are available in Supplementary Tables S8 and S9.
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3.4 Deciphering kinase dependency in leukemia

patient samples
Next, we applied KAR to a dataset of 151 leukemia patient samples

screened with 66 kinase inhibitors (Tyner et al., 2013). The list of

the kinase inhibitors used in this study is available in Supplementary

Table S5. Since gene expression data was not available, no kinases

were filtered prior to scoring. As with the lung cancer data, we

applied hierarchical clustering to the scaled KAR scores for a subset

of the kinases for each patient sample to observe relationships in

scoring patterns (Fig. 4). We selected the 50 kinases with the highest

variance in score and the 10 kinases most commonly significantly

associated with drug sensitivity (chi-square P<0.05). Even with pa-

tients grouped by disease type, we see a large variance in kinase de-

pendence among the patients with no set of kinases uniquely

identifying a disease type. This variance further illustrates the need

for pharmacological screens to help plan targeted patient therapy.

FLT3, a kinase with mutations in up to 30% of acute myeloid

leukemia (AML) patients (Zarrinkar et al., 2009), had the highest

variance in score among the kinases analyzed. EPHA5, EPHA3 and

BTK were most commonly significantly associated with drug sensi-

tivity. These kinases had significant associations in 72, 58 and 54%

of the patient samples, respectively (Supplementary Table S10). Eph

receptors have been shown to affect cancer growth, migration and

invasion in vitro and in vivo (Pasquale, 2010). Consistently, a RNAi

screen identified EPHA5 sensitivity in a subset of the 30 patient leu-

kemia samples studied (Tyner et al., 2009). Interestingly, Eph recep-

tors use bidirectional signaling mechanisms to induce both tumor

promotion and suppression (Pasquale, 2010). The frequency of BTK

dependence is interesting given a phase IB/II clinical trial of BTK in-

hibitor ibrutinib resulting in a high frequency of durable remissions

in patients with chronic lymphocytic leukemia (CLL) (Byrd et al.,

2013). The progression-free survival rate at 26 months was 75%.

This is consistent with our data showing 70% of CLL patient data

had significant association between BTK inhibition and drug sensi-

tivity (Supplementary Table S10).

4 Discussion

We developed and validated KAR, a novel algorithm to improve in-

terpretation of high-throughput drug screens by incorporating com-

prehensive drug-kinase binding profiles and transcriptomics data.

KAR takes advantage of drug polypharmacology to study a larger

variety of kinases as well as combinations of kinases. Two major

factors that could influence KAR data analysis are the (i) number of

effective drugs and (ii) diversity of drug targets. Influential kinases

cannot be rapidly identified without multiple inhibitors in your drug

set that target a given kinase. The KAR percent effective scores from

a preliminary screen can be used to identify kinases with potential

associations with drug sensitivity for further analysis with other

drugs. Moreover, many kinase pairs are uncommonly inhibited to-

gether (e.g. FGFR1 and MTOR), and must be hypothesized based

on the single kinase scores. While our algorithm most directly

applies to studying kinase dependence, it could be easily modified to

study other targets if inhibition data for these targets is available.

Other approaches have been developed that use overlap in drug

kinase profiles to identify key targets. Gujral et al. used principal

component analysis to identify an optimal set of 32 kinase inhibitors

for profiling and then used elastic net regularization to identify key

kinases influencing cell migration(Gujral et al., 2014). Similar to

KAR, they also used gene expression data to filter kinases from ana-

lysis. Tran et al. also applied elastic net regression to identify im-

portant kinases for cancer cell lines following an in vitro screen

(Tran et al., 2014). Another algorithm based on set theory uses drug

screen data and kinase inhibitor profiles to predict the most influen-

tial kinases and produce circuit diagrams illustrating if the kinase is

effective inhibited alone or if it needs to be inhibited with other kin-

ases (Berlow et al., 2013). Compared to these approaches, KAR

benefits from producing straightforward scores and P-values that

could be readily interpreted by scientists without computational

backgrounds. Moreover, the drug lists do not need preliminary opti-

mization, as chi-square and fisher’s exact test P-values take differ-

ences in the number of inhibitors that target each kinases and the

total number of sensitive drugs into account.

We applied KAR to leukemia patient samples profiled with 66

kinase inhibitors (Tyner et al., 2013), demonstrating the applicabil-

ity of the tool for predicting patient therapy. Given resource limita-

tions when working with patient samples, it may not be possible to

screen patient biopsies with large numbers of compounds.

Therefore, future studies could benefit greatly from prior optimiza-

tion of the set of drugs used for profiling. One recent example of this

is Gujral et al.’s (2014) use of principal component analysis to re-

duce the number of kinase inhibitors profiled to an optimal set of 32

from 178. Moreover, instead of using IC50 measurements of drug

sensitivity, which requires measurements at multiple concentrations,

Fig. 3. Experimental validation of KAR prediction of FGFR1 and mTOR de-

pendence for lung cancer cell line H1581. (A) 10 nm ponatinib (FGFR inhibitor)

and AZD8055 (mTOR inhibitor) were applied to H1581 cells and cell prolifer-

ation was measured with the CYQUANT assay kit. The combination of ponati-

nib and AZD8055 was synergistic by Bliss Independence (Additive

prediction¼19.4%, Actual¼6.7%). Bar graphs display mean percent of con-

trol (POC) þ/� SEM (B) Western blots showing changes in signaling with

ponatinib, AZD8055, and the combo. Ponatinib decreases ERK1/2 activation

and AZD8055 decreases signaling downstream of mTOR. (C) Signaling net-

work diagram for pathways targeted by ponatinib and AZD8055 in H1581
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cell viability measurements at single concentrations can be

considered.

KAR was inspired by a previous algorithm implemented using

Excel Visual Basic and macro code (Tyner et al., 2013). Compared

to the Tyner algorithm, we introduced tiering score values based on

drug sensitivity instead of target inhibition strength, percent effect-

ive scores, optional incorporation of gene expression data, stronger

penalties for insensitive drugs, and calculation of P-values. We also

made the algorithm more accessible by providing MATLAB and py-

thon functions. Calculation of P-values helps decrease potential for

false positives, as kinases targeted by more drugs have the potential

for higher raw scores. Incorporation of gene expression data helps

ensure that highly ranked kinases are translationally meaningful.

Moreover, we found that tiering kinase scores based on target inhib-

ition strength instead of drug sensitivity resulted in much lower per-

cent effective scores, indicating that weaker targets of the inhibitors

may not be accurate indicators of kinase dependency in the samples.

Moreover, a single threshold for kinase inhibition allows for easier

incorporation of kinase inhibition data from multiple platforms

with different inhibition measurement types (e.g. percent inhibition

compared to control, Kd, and IC50), allowing for more drugs to be

included in analysis. We believe that integrating high-throughput

drug screening data and in vitro kinome inhibition data as demon-

strated in this study could be a useful systems approach to identify

novel targets and kinase dependency in cancer cells.

5 Conclusions

In summary, KAR integrates drug sensitivity, comprehensive kinase

inhibition data and gene expression profiles to identify kinases

dependency in cancer cells. We applied KAR to published drug

screen data from lung cancer cell lines and leukemia patient samples.

Clustering analysis revealed lung cancer cell lines with similarities in

kinase dependence. We experimentally validated KAR predictions

of FGFR1 and MTOR dependence in lung cancer cell line H1581.

Our analysis revealed candidate kinases as potential targets in lung

cancer and leukemia for further pharmacological and biological

studies. We believe that the research reported in this study provides

a new research strategy to delineate kinase dependency in cancer

cells. This approach can be applied to other cancer cell lines and pa-

tient tumor samples to discover effective kinase targets for personal-

ized medicine.
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