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Genetic variance components and heritability of multiallelic
heterozygosity under inbreeding

P Nietlisbach, LF Keller and E Postma

The maintenance of genetic diversity in fitness-related traits remains a central topic in evolutionary biology, for example, in the
context of sexual selection for genetic benefits. Among the solutions that have been proposed is directional sexual selection for
heterozygosity. The importance of such selection is highly debated. However, a critical evaluation requires knowledge of the
heritability of heterozygosity, a quantity that is rarely estimated in this context, and often assumed to be zero. This is at least
partly the result of the lack of a general framework that allows for its quantitative prediction in small and inbred populations,
which are the focus of most empirical studies. Moreover, while current predictors are applicable only to biallelic loci, fitness-
relevant loci are often multiallelic, as are the neutral markers typically used to estimate genome-wide heterozygosity. To this
end, we first review previous, but little-known, work showing that under most circumstances, heterozygosity at biallelic loci and
in the absence of inbreeding is heritable. We then derive the heritability of heterozygosity and the underlying variances for
multiple alleles and any inbreeding level. We also show that heterozygosity at multiallelic loci can be highly heritable when allele
frequencies are unequal, and that this heritability is reduced by inbreeding. Our quantitative genetic framework can provide new
insights into the evolutionary dynamics of heterozygosity in inbred and outbred populations.
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INTRODUCTION

Fisher’s fundamental theorem of natural selection states that the rate
of increase in fitness is proportional to the additive genetic variance in
fitness (Fisher, 1930, Chapter 2). From this it follows that, if selection
is the only evolutionary force and the environment is stable, additive
genetic variance in fitness will be depleted (e.g., Charlesworth, 1987),
reducing responses to selection. This expected depletion of additive
genetic variance in fitness has received most interest in the context of
mate choice for genetic benefits, as it is difficult to explain how there
remains enough additive genetic variance in fitness to make it
worthwhile for females to be choosy. This apparent contradiction
has been termed the ‘lek paradox’ (Borgia, 1979). A number of
solutions to the question of how genetic variance in fitness is
maintained have been proposed (reviewed in Kokko et al., 2003),
one of which is that genetic diversity is maintained by sexual selection
for heterozygosity (Borgia, 1979; Brown, 1997). The importance of
such selection is, however, highly debated (Lehmann et al, 2007;
Fromhage et al., 2009; Aparicio, 2011), and empirical studies testing
for a response to (natural or sexual) selection of heterozygosity at
fitness-related loci are lacking.

One important component of a rigorous quantitative genetic
framework to study such processes is the heritability of heterozygosity.
Theoretical studies have shown that heterozygosity is heritable when
allele frequencies are unequal (Borgia, 1979; Mitton et al., 1993; Neff
and Pitcher, 2008), and a number of empirical studies have reported
parent—offspring correlations in heterozygosity itself (Cothran et al,
1983; Mitton et al., 1993; Richardson et al., 2004; Hoffman et al., 2007;
Garcia-Navas et al., 2009; Oh, 2009; Thof3, 2010; Thonhauser et al., 2014),

or inferred them from a parent—offspring correlation in inbreeding
coefficients (Reid et al., 2006). Although the presence of substantial
heritability of heterozygosity has been formally shown for two-allelic
loci more than two decades ago (Mitton et al., 1993), this is not well
known among evolutionary biologists (e.g., Coulson and Clegg, 2014).

A parent—offspring correlation in heterozygosity may seem surpris-
ing, because offspring heterozygosity would appear to be only a
function of the genetic similarity of the parents. However, while the
genetic similarity of the parents is an important determinant of
offspring heterozygosity, under most conditions (i.e., whenever allele
frequencies are not equal) offspring heterozygosity also depends on the
genetic composition of each parent in isolation. We illustrate this in
Figure 1 for a randomly mating population and a single locus with two
alleles A; and A,, with frequencies p and g. As depicted in Figure 1a,
the probability of two random individuals having a heterozygous
offspring equals 2pg, which if p#q is <50%. However, the probability
of a heterozygous individual and a random individual having a
heterozygous offspring is, regardless of the allele frequencies in the
population, 50% (Figure 1b). Thus, if p#q, matings involving a
heterozygous individual produce more heterozygous offspring than
matings involving two randomly chosen individuals, giving rise to the
heritability of heterozygosity. When one allele becomes increasingly
rare, the amount by which the proportions of expected heterozygous
offspring differ between the two mating types becomes larger, and the
heritability of heterozygosity therefore increases when allele frequen-
cies become more unequal. Phrased in another way, heterozygosity is
heritable because gametes of heterozygous individuals are on average
less likely to share alleles with gametes of a randomly chosen
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Figure 1 Qualitative explanation of heritability of heterozygosity. (a) A situation of random mating where offspring genotypes are produced according to the
allele frequencies in the population. At most 50% of the offspring are expected to be heterozygous (dark gray areas). This maximum of 50% heterozygous
offspring occurs when allele frequencies are equal (i.e. p=gq). (b) A situation where a heterozygous individual mates with a random individual from the
population. In this case, half of the offspring are expected to be heterozygous (dark gray areas), regardless of the allele frequencies in the population. Thus,
for unequal allele frequencies (i.e. p#q), matings involving a heterozygous individual produce more heterozygous offspring than random matings. Hence,
heterozygosity is heritable when allele frequencies are unequal, or put another way, heterozygosity is heritable because of the presence of rare alleles.

individual from the same population. Thereby, the heritability of
heterozygosity does not require fitness differences between homo-
zygotes and heterozygotes, but rather is a neutral process following
directly from the principles of Mendelian inheritance.

Although we have a quantitative understanding of the heritability of
heterozygosity for cases of two alleles and no inbreeding (Mitton et al,
1993), most empirical studies that reported parent—offspring correla-
tions in heterozygosity have used multiallelic genetic (e.g., micro-
satellite) markers. Additionally, although point mutations in coding
DNA usually lead to biallelic single-nucleotide polymorphisms, many
fitness-relevant genes will carry multiple mutations leading to multiple
haplotypes (e.g., immune genes). Thus, at the scale of a gene rather
than a single nucleotide, multiallelic loci are common. Furthermore,
the expected heritability of heterozygosity has only been derived for
outbred populations. However, many studies measuring heterozygos-
ity are carried out in small and inbred populations, and inbreeding
complicates predictions of the heritability by influencing the covar-
iance between parents and offspring (Cockerham and Weir, 1984;
de Boer and Hoeschele, 1993; Shaw et al., 1998; Wolak and Keller, 2014).

Here we derive the heritability of heterozygosity for multiple
alleles and any inbreeding level. After reviewing the explicit
theoretical framework of Mitton et al (1993) for predicting
heritability of heterozygosity at biallelic loci in the absence of
inbreeding, we extend their framework to allow for multiple alleles
and any degree of inbreeding. We show that multiallelic hetero-
zygosity can be highly heritable when allele frequencies are unequal.
We also show how inbreeding affects heritability of heterozygosity.
On the whole, this quantitative genetics framework allows for a
direct comparison of the observed and the expected heritability of
heterozygosity, and thus for the study of the evolutionary dynamics
of heterozygosity.

THEORETICAL FRAMEWORK

The additive and dominance genetic variance of heterozygosity has
previously been derived for loci with two alleles by Mitton et al. in
Heredity (1993). Here we review these derivations, and subsequently
extend them to the multiallelic case. We do this first assuming random
mating and a large population size, and then allowing for any level of
inbreeding.

Heredity

Biallelic loci and no inbreeding

Heterozygosity can be treated as a quantitative genetic trait (Mitton
et al., 1993), as is illustrated for the simplest case of one locus with two
alleles A; and A, and frequencies p and g, respectively, in Figure 2
(following Fisher, 1918; as outlined in Falconer and Mackay, 1996,
Chapter 7).

We first assign a genotypic value G;; of 0 to homozygotes (i.e., allele
i=j) and 1 to heterozygotes (i.e., i#j). Following Falconer and Mackay
(1996, Chapter 7), the genotypic values of the two homozygotes (a and
—a) are expressed relative to their midpoint, and the deviation of the
heterozygote from this midpoint as d, the dominance coefficient. In
the case of heterozygosity, a =—a=0 and d=1. The average effect
of substituting allele A, with A;, given by a+d(q—p) (Falconer and
Mackay 1996, p 114), reduces to q—p in the case of heterozygosity.
This average effect of allelic substitution equals the slope of a least-
squares regression of genotypic values on the number of copies of
allele A;, weighted by genotype frequencies. On a scale where the
population mean is set to 0, the estimated genotypic values of such a
weighted regression represent the breeding values of the corresponding
genotypes, and the residuals represent dominance deviations. From
this it follows that the breeding values for heterozygosity of the A;A,
A1A; and AyA, genotypes are 2q(q—p), (q—p)* and —2p(q—p),
respectively. Note that Lynch and Walsh (1998, Chapter 4) use an
alternative formulation of d, namely d = (1+k)a, where k is undefined
for a=0.

One definition of additive genetic variance (¢3) is the variance in
breeding values, which is obtained by squaring the breeding values and
summing across genotypes, while weighting by genotype frequencies.
This yields 63 = 2pgla + d(q — p)]* in the general case (Falconer and
Mackay, 1996, Equation (8.3b)), and reduces to
o = 2pq(q — p)* for heterozygosity (Mitton et al, 1993). Similarly,
dominance deviations can be expressed as functions of p, g and d
(Falconer and Mackay, 1996, p 118). Because d=1 for heterozygosity,
dominance deviations are — 24> for A|A,, 2pq for AjA, and —2p? for
AyA;. Summing across the squared dominance deviations and weight-
ing by genotype frequencies yields the dominance genetic variance
o} = (2pqd)” (Falconer and Mackay, 1996, Equation (8.4)), which
equals 4p’q> for heterozygosity (Mitton et al., 1993). Because hetero-
zygosity does not exhibit environmental variance, in the absence of
inbreeding (see below), the total variance in heterozygosity is equal
to the genetic variance ¢, which is equal to the sum of 6% and o3,
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Figure 2 Derivation of additive and dominance genetic variance of heterozygosity for one locus with two alleles with frequencies p and g (see text for details).
Genotypic values Gj; of 1 are assigned to heterozygotes and O to homozygotes, and thus the mean genotypic value u of the population equals 2pq. Gray
circles represent genotypic values and their surface area represents genotype frequencies. Predicted values of a least-squares regression (black line) weighted
by genotype frequencies of Gj; on the number of A; alleles represent breeding values (black dots) and the slope of this regression represents the average
effect of allelic substitution a. Variance in breeding values represents the additive genetic variance. Dominance deviations (gray vertical lines) are differences
between breeding values and genotypic values Gj;, and their variance represents dominance genetic variance. Panel a shows an example of unequal allele
frequencies, in which case there exists additive genetic variance in heterozygosity, causing heritability of heterozygosity. Panel b shows the case of equal
allele frequencies, leading to no additive genetic variance, but considerable dominance genetic variance.

Thus,  narrow-sense  heritability = of  heterozygosity s
W =o}4/(0} +ob), which equals b = (q—p)*/[(q—p)* +2pq]
or h* = (q* — 2pq + p*)/(p* + ¢*). Thus, the heritability of hetero-
zygosity can, at least for biallelic loci, be predicted from allele
frequencies alone.

Multiallelic loci and no inbreeding

Additive genetic variance. To extend the formulations for biallelic loci
(see above) to accommodate loci with 7 alleles, we follow Lynch and
Walsh (1998, pp 71-89) for the case of random mating and infinite
population size. In this case, the additive effect of allele i is

o = (ZP,G‘;‘) e
=)

with g being the population mean heterozygosity (see below).
Assigning as before genotypic values (Gj;) of 0 to homozygotes (i.e.,
i=j, with i and j representing the two alleles of a diploid individual)
and genotypic values of 1 to heterozygotes (i.e., i# ), this simplifies to

o = (Z Pj)‘HG_l—Pi—HG

—1j#i

(1)

From this it directly follows that rare alleles have larger additive effects
on heterozygosity than common alleles.

Under Hardy—Weinberg equilibrium (Hardy, 1908; Weinberg,
1908), the population mean heterozygosity g =1 — > ¢_, pi, with
k indicating alleles (Nei, 1987, Equation (8.1)). Substituting this for g
in Equation (la) yields

% = <2P§> — bi
k=1

We can now substitute Equation (1b) into the general expression for
the additive genetic variance (Lynch and Walsh, 1998, Equation

(1b)

(4.23b)),

n
2 2
Oar = 2 E pi%s
=1

where we use subscript R to emphasize that this variance is for a
randomly mating and infinitely large population. Using Equation (1b),
this yields

Thr = Z(Zn;pi [(;;ﬁ) p,} 2)- (2)

Equation (2) shows that, as is the case for biallelic loci, the additive
genetic variance of heterozygosity is fully defined by the allele
frequencies. This derivation is general regarding the number of
alleles and reduces to the equation in Mitton et al. (1993) of
a2p = 2pq(q — p)* (because (q—p)>=(p—q)?) when applied to a
biallelic locus with allele frequencies p and gq.

Dominance variance. The dominance deviation & is the deviation of
the genotypic value from the breeding value for each genotype
(Figure 2; Lynch and Walsh, 1998, p 73):

05 = G — (g + % + o). (3a)

If we substitute Equation (1a) for o; and a;, we get
dij = Gijj — (HG"" (1=p) — e + <1 _Pj> _:uG)

=Gy — (2 —bi _Pj_ﬂc>
Following Cockerham and Weir (1984), we can calculate the

dominance variance for a randomly mating and infinitely large
population as

Thr = iipipjéfj = iipipj [Gij - (2 —pPi—P— /"G)]zy

i=1 j=1 =1 j=1

(3b)

A

Heredity
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B,

where the subscript R again denotes that this is the variance of an
infinitely large and randomly mating population.

Using pg = 1 — > p?, this yields
k=1

UZDR:zn:zn:Pin Gj— (1_Pi_Pj+ (iPi))} . (4)
=1

i=1 =1
Note that summation has to be across all possible values of i and j, and
therefore each heterozygous genotype is included twice.

Total genetic variance. Assuming Hardy—Weinberg equilibrium
(Hardy, 1908; Weinberg, 1908), we can calculate the total genetic
variance of heterozygosity 3 as the squared deviation of genotypic
values from the population mean, weighted by genotype frequencies
(Quinn and Keough, 2002, p 10):

g = ZP;‘Pj(Gij - #G)2~

ij=1

Splitting this equation into separate terms giving the contribution of
homozygotes (i.e., G;=0, with i=j) and heterozygotes (G;j;= 1, with
i#j) yields

oG = (iﬁ) (0—pe)* + (1 - ipiz> (1—pg)

We use pig =1 — Y, p? (see above) and (0—pug)* =puc> to get

o ()( -2

() (5n)

An alternative, but equivalent approach using Var(X) = E(X?) — E(X)?
(Bolker, 2008, p 118) yields the slightly simpler equation

2
oG = (1 - Zzﬁ) - <1 - Zzﬁ)
i=1 i=1

n n 2
= pi- (ZP?) :
i=1 i=1

Thus, rearrangement of Equation (5b) shows that the genetic variance
in heterozygosity is a function of mean heterozygosity pg:

(52)

(5b)

(5¢)

Conveniently, we can apply 67, = g4 — a3 and use Equations (2)
and (5b) to get an alternative equation for the computationally
involved Equation (4):

Thr = ip? - <ipf) —%ia{(izﬁ) —pi] >
i=1 i=1 i=1 k=1
(6)

2 _ 2
06 = K¢ — Hg-

Heritability. For a trait without environmentally induced variation
(such as heterozygosity), the broad-sense heritability is one, except in
the special case where 6% = 0. The narrow-sense heritability of

Heredity

heterozygosity can be calculated using Equations (2) and (5b) as

o< bl(E) ) (5]

(7)

Multiple loci

Without epistasis, measures of genetic variance obtained from several
loci can be combined by summing all locus-specific predictions of
variance components (Mitton et al., 1993; Falconer and Mackay, 1996,
p 129). This means that for the case of heterozygosity, multilocus
predictions will behave similarly to the average single-locus prediction,
and the extension of the predictions arrived at above to multiple loci is
straightforward. However, if there is strong gametic phase disequili-
brium, which affects additive and dominance genetic variances and
therefore heritability estimates, the extension to multiple loci becomes
more complicated (Lynch and Walsh, 1998, p 102) and is beyond the
scope of the framework outlined here. At present, it may thus be most
practical to prune the data set so that only loci in gametic phase
equilibrium remain (Purcell et al, 2007). Identity disequilibrium will
be explicitly dealt with in the extensions for inbred populations
(Cockerham and Weir, 1984) and will therefore not cause problems
for predictions based on multiple loci (see below).

Whereas in the absence of missing data, heterozygosity measures
such as the proportion of heterozygous loci among the genotyped loci
(i.e., multilocus heterozygosity; Coltman and Slate, 2003) or its
standardized equivalent, standardized heterozygosity (Coltman et al.,
1999), weight all loci equally, measures such as internal relatedness
(Amos et al., 2001) or homozygosity by loci (Aparicio et al., 2006)
include some type of weighting according to allele frequencies. For the
latter two measures, additivity across loci is therefore not guaranteed.
For example, the measure of homozygosity by loci (Aparicio et al.,
2006) gives more weight to loci with high mean heterozygosity.
Because such loci often tend to have lower heritability of hetero-
zygosity (see below and Figure 6), using homozygosity by loci will lead
to an underestimation of the heritability of heterozygosity. Because all
four measures of heterozygosity are strongly correlated (Chapman
et al., 2009), we therefore recommend the use of multilocus hetero-
zygosity (Coltman and Slate, 2003) or, when a considerable portion of
genotypes are missing, standardized heterozygosity (Coltman et al.,
1999) as measures for comparing predicted and estimated heritability
of heterozygosity.

Inbreeding

Many populations, both captive and natural long-term study popula-
tions of vertebrates (Clutton-Brock and Sheldon, 2010), are small and/
or fragmented. This often leads to non-negligible levels of inbreeding
within populations, either due to genetic drift (under random mating)
or due to non-random mating, for example, in selfing organisms or
during experimental breeding (Keller and Waller, 2002). The deriva-
tions below apply to both types of inbreeding.

In inbreeding populations, the total genetic variance 6% contains two
to four (depending on the type of population; see below) additional
genetic (co)variance components (Harris, 1964; Cockerham and Weir,
1984; de Boer and Hoeschele, 1993; Wolak and Keller, 2014). Because
these components influence the genetic covariance between parents and
offspring in inbred populations, they affect the response to selection
(Cockerham and Weir, 1984; Shaw et al., 1998; Kelly, 1999; Kelly and
Arathi, 2003; Wolak and Keller, 2014).



Following Cockerham and Weir (1984), but using when applicable
the nomenclature of Wolak and Keller (2014), in inbred populations,

og = (1+F)ojg + (1 — F)opg + 4Foapr + Fopy,
F(1 - F?)
2+F
All variables in Equation (8) are briefly explained here and will be
derived for the case of heterozygosity below. F is Wright's (1969,
Chapter 7) individual inbreeding coefficient, which includes effects of
non-random mating within populations and genetic drift (Keller and
Waller, 2002). 63, and g3 are the additive and dominance genetic
variances of the base population, respectively, that is, if the focal
population was randomly mating and non-inbred (ie., infinitely
large), and are given by Equations (2) and (6). oapy (called Dy in
Cockerham and Weir, 1984) is the covariance between the additive
effect of alleles and their homozygous dominance deviations, and ¢,
is the dominance variance due to complete inbreeding. In both cases,
the subscript I denotes a component calculated for fully inbred parts
of the population. H* is the per-locus inbreeding depression para-
meter. Finally, (H?—H*) is a measure related to identity disequili-
brium (a correlation in heterozygosity across loci; Weir and
Cockerham, 1973; David et al, 2007; Szulkin et al., 2010) and
therefore only relevant when multiple loci are considered, with H?
being related to H* but summed differently across loci (see below).
Here it is assumed that the population is in inbreeding equilibrium,
that is, that the level of inbreeding is stable across generations. If this is
not the case, this last term may change (Cockerham and Weir, 1984).
Note that H? of Equation (8), used here for consistency with
Cockerham and Weir (1984), should not be confused with the
broad-sense heritability. Without inbreeding (F=0), Equation (8)
reduces to 6% = 6%y + 0%y, whereas under complete inbreeding
(F=1), Equation (8) becomes 6% = 203y + 40ap1 + 65 = 0.

All terms are needed for large inbred populations (e.g., populations
with an individual probability of selfing >0 and <1) for which the
mean but not the individual inbreeding coefficients are known. In this
case, the last term in Equation (8) (which is always zero if only one
locus is considered) accounts for identity disequilibrium because of
variance in inbreeding around the mean inbreeding coefficient and
may become very large if many loci are considered (Cockerham and
Weir, 1984). When variance components are estimated across one or
several sub-populations experimentally derived from an infinitely large
population and where all individuals have the same known inbreeding
coefficient, H* is required but not the last term of Equation (8),
because there is no variance in inbreeding coefficients and hence no
identity disequilibrium. If inbreeding occurs because of random
mating in a small population, the last two terms in Equation (8) are
not required (Chevalet and Gillois, 1977). Note that it is only
necessary to use the latter approach in small randomly mating
populations if allele frequencies are taken from the ancestral popula-
tion. In cases of random mating where allele frequencies are taken
from the current population and loci are in Hardy—Weinberg
equilibrium, ¢ = o3y + by

+F(1 - F)H* + (H* —HY). (8)

Derivation of additive and dominance variance under inbreeding. With
inbreeding, but without unaccounted identity disequilibrium (i.e.,
when the last term in Equation (8) equals zero, which is the case when
there is no variance in inbreeding or when individual inbreeding
coefficients are known), Cockerham and Weir (1984) (Equations (1a)
and (b)) show that genetic variance can be decomposed into two
components, the additive and dominance genetic variance with
inbreeding (i.e., GZG = Uf\F + GZDF), with the subscripted F denoting
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that these variances refer to a decomposition into only two compo-
nents (63 and g3;) in an inbred population:

2F?
O'iF = (1 +F)O'iR + 4FO-ADI +mdle, (9)

and

F(1—F) (10)
14+ F
For F=0, these equations again reduce to 63 = o3 and o = ofp,
whereas for F=1, 63 = 20%; + 40ap1 + 0b; = 0 and o, = 0.
Alternatively, 63, can in principle be derived directly from allele
frequencies and additive effects following methods from Kempthorne
(1957, p 350) as explained in Supplementary Information 2. However,
it should be noted that the derivation by Kempthorne (1957, p 350) is
incorrect, leading to an erroneous formula that is also repeated in
Lynch and Walsh (1998, Equation (4.24)). See Supplementary
Information 2 for a corrected derivation. Falconer (1985) provides
an alternative explanation on how to calculate o3y

obe = (1 —F)adg + opy + F(1 — F)H".

Derivation of other genetic (co)variance components under inbreeding.
We will now derive formulae for all remaining genetic (co)variance
components in Equation (8) for heterozygosity as a trait, starting from
equations in Cockerham and Weir (1984), Shaw et al. (1998), Lynch
and Walsh (1998, Chapter 4) and Falconer and Mackay (1996,
Chapters 7 and 8).

The covariance oap; (called Dy in Cockerham and Weir, 1984)
between the additive effects of alleles and their homozygous dom-
inance deviations can be calculated as

n
OADI = E Pi%i0i.
p

For heterozygosity, the dominance deviations of homozygotes &; can
be substituted using Equation (3a) and G;;=0, which yields

n
oapt = Y pici( =g — 2e)-
i=1
Using Equation (la) for a; yields

OADI = ZP{(I — b — 1) (=2 + 2p; + ug),
-1

and subsequently substituting g = 1 — >_;_, pi produces

GADI = ia{(iﬁ) —pl} {2@- - (izﬁ) - 1} (11)

The dominance variance due to complete inbreeding, O'2DI, is given by
D, — H*, where

n
D, = Zpl(slzl
i=1

For the case of heterozygosity, §; can be substituted for Equation (3b),
with G;=0 and pg =1 — Y _;_, pi, which gives

n n 2
D, = ZPi |:2Pi - <ZP£> - 1] :
=1 k=1

Because H* = I}, we use

h = ip@n
P

(12)

- |

Heredity
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)

where, in the case of heterozygosity, d;; can again be substituted for
Equation (3b), with G;=0 and g =1 — Y ;_, pi, to get

by = ZPi 2p; — (ZP?) - 1:|~
=1 =1

Squaring h; vyields the squared per-locus inbreeding depression
parameter H*

(e (8-

Using Equations (12) and (14), we get for o3, (called D,* in
Cockerham and Weir, 1984)

(13)

(14)

62 =D, — H" = (lz;:p, [217,- - (ZP§> - 1]2> - (;p {Zp[ - (Zpi) - IDZ'

(15)
All components of Equation (8) derived so far can be extended to
multiple loci by summing individual-locus values. However, the last
term of Equation (8) contains H?, which is derived by summing h
(Equation (13)) across loci, followed by squaring this sum:

Moci 2
H? = (Zl: h,) )
=1

If there is only one locus under consideration, H?=H*, and the last
term of Equation (8) becomes zero. Furthermore, this last term of
Equation (8) is not necessary if individual inbreeding coefficients are
known or if there is no variance in inbreeding (de Boer and
Hoeschele, 1993; Shaw et al., 1998).

(16)

Heritability under inbreeding. Narrow-sense heritability can be
defined in multiple ways: As the ratio of additive genetic variance
(i.e., the population variance in breeding values) divided by the
total phenotypic variance, or as the slope of a regression of mean
offspring values on mean parental (reviewed in
Charlesworth, 1987). With inbreeding or gametic phase disequili-
brium, equivalence of these definitions is not guaranteed
(Charlesworth, 1987).

Animal models, which are commonly used to estimate quantitative
genetic parameters in domestic and wild populations, and which are
able to simultaneously use all available pedigree information, estimate
the heritability as the proportion of phenotypic variance 3 explained
by additive genetic variance for a base population (Henderson, 1984;
Kruuk, 2004; Mrode, 2005; Postma, 2006). This base population is
assumed to be made up of unrelated individuals, and the individuals
with unknown parents in the pedigree are assumed to be a random
sample of this base population (Mrode, 2005). Heritability estimated
from an animal model thus uses the ratio ¢3p/0%, which for
heterozygosity equals o3y /0%. o4 must therefore be predicted from
Equation (8) by setting F=0, resulting in 6% = o3 + o5y (see also
Shaw et al., 1998), yielding a heritability that is independent of
inbreeding in the focal population.

To predict the ratio of additive genetic variance to total phenotypic
variance in an inbred population, we use heritability defined as
0%;/0%, that is, the proportion of phenotypic variance because of
variance in breeding values in an inbred population. For hetero-
zygosity, this equals 63;/0%, giving (using Equation (9))

values

hz . (1 +F)O-iR —+ 4FO'AD1 +12+L;UZDI

(17)
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This heritability refers to an inbred population (e.g., Falconer, 1985),
but depending on the actual population structure, its relationship with
parent—offspring covariance may not be obvious (Nyquist, 1991;
Gibson, 1996).

If expected effects of inbreeding are small (see below) or if
inbreeding is due to genetic drift and random mating, heritability
can be estimated as the slope of a regression of mean offspring
phenotype on the mean phenotype of the two parents, for example,
following the procedure in Lynch and Walsh (1998, Chapter 17) while
weighting for family size following Kempthorne and Tandon (1953).
Although this method overestimates heritabilities in the presence of
maternal, paternal or common environmental effects, none of these
affect heterozygosity, making offspring—parent regressions a good way
to estimate heritability of heterozygosity. Because correlations in
inbreeding level between parents and offspring may be common in
small populations (Reid et al, 2006; Reid and Keller, 2010), the
negative effect of inbreeding on heterozygosity should also be
considered (Wolak and Keller, 2014). This can be done by using the
variation in heterozygosity not explained by inbreeding coefficient
(i.e., the residuals of a regression of heterozygosity on F), for example,
by including F as a covariate in the animal model (Wolak and Keller,
2014).

RESULTS

Outbred populations

Our theoretical framework allows for prediction of heritability of
heterozygosity for loci with multiple alleles and any level of inbreeding,
solely as a function of allele frequencies and inbreeding. Such
predictions have previously been derived for loci with two alleles
and no inbreeding (Mitton et al, 1993). In line with these previous
results, we show that for biallelic loci the heritability of heterozygosity
increases with increasingly unequal allele frequencies, and that it
approaches one as an allele approaches fixation (Figure 3). Note that
K% is not defined when one allele is fixed, because in that case there is
no genetic variation. Hence, heritability of heterozygosity is maximal
when additive and total genetic variances become minimal (i.e., with
highly unequal allele frequencies). Thus, at these limits, heritability of
heterozygosity may be of limited biological relevance because there is
very little variation in heterozygosity. However, at moderately unequal
allele frequencies, both additive and total genetic variance and
heritability of heterozygosity are high.

Unlike /2, additive genetic variance of heterozygosity is maximal at
allele frequencies p = 0.5 — 1/0.125 and p = 0.5 + 1/0.125 (revealed
by setting the first derivative of the two-allele version of Equation (2)
to zero; these maxima are approximately at p ~0.146 and ~ 0.854) and
zero at allele frequencies P=0, 0.5 and 1 (Figure 3). Thus, this
represents a case of pure overdominance (Crow and Kimura, 1970,
Table 4.1.1; Falconer and Mackay, 1996, Figure 8.1¢).

A similar pattern emerges when loci with more than two alleles are
considered. For the case of three alleles, narrow-sense heritability of
heterozygosity reaches its maximum when one allele is nearly fixed,
whereas heterozygosity is not heritable when all three alleles have equal
frequencies (Figure 4). As is the case for two alleles, additive genetic
variance is maximal when all three alleles are present at non-zero and
unequal frequencies. For the case of more than three alleles, we can
use the variance in allele frequencies for visualization of the
dependence of the genetic variance components on the (variance in)
allele frequencies. To illustrate this, we randomly sampled allele
frequencies from a Dirichlet distribution. We set the shape parameter
a to 0.15 to ensure sampling of a wide range of allele frequencies. We
plotted heterozygosity and genetic variance components against



variance in allele frequencies for 2 to 6, 10 and 20 alleles at a locus
(Figure 5). As shown by Equations (S1.2) and (S1.3) (Supplementary
Information 1), aé is a function of only the variance in allele
frequencies and the number of alleles at the locus, whereas alzm,
o} and h? are functions of variance in allele frequencies, number of
alleles at the locus and actual allele frequencies. Figure 5 also shows
that the heritability of heterozygosity increases with increasing variance
in allele frequencies (i.e., with increasingly unequal allele frequencies),
whereas whenever there are more than two alleles, 6%, o3z and ohy
are maximal at intermediate variances in allele frequencies.
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Figure 3 Expected genetic variance components and heritability of
heterozygosity for a locus with two alleles. Note that additive genetic
variance is maximal at allele frequencies of p = 0.5+ v/0.125 (which is at

p~0.146 and ~0.854), whereas heritability approaches maximal values at
highly unequal allele frequencies.
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An alternative statistic to visualize the dependence of 63, o3, ohg

and h? on allele frequencies is provided by relating them to mean
heterozygosity (Figure 6). Total genetic variance in heterozygosity (¢)
is a quadratic function of mean heterozygosity only (Equation (S1.5)
in Supplementary Information 1). Taking the first derivative of
Equation (S1.5) and setting it to zero (or looking at Figure 6) shows
that total genetic variance in heterozygosity is maximal when mean
heterozygosity yig=0.5. a1y, g, and h? are only partly predicted by
mean heterozygosity, and information about actual allele frequencies is
needed for their accurate prediction. Figure 6 shows that additive and
dominance genetic variance in heterozygosity are maximal when mean
heterozygosity is intermediate, with the exact location of the max-
imum shifting with the number of alleles present. Heritability of
heterozygosity decreases with increasing mean heterozygosity.

In summary, we have shown that for any number of alleles in an
outbred population, heritability of heterozygosity is highest for highly
unequal allele frequencies, whereas additive genetic variance in
heterozygosity is highest for moderately unequal allele frequencies.

Inbred populations
The effects of inbreeding on the heritability of heterozygosity depend
slightly on the type of population considered, but inbreeding always
reduces the heritability of heterozygosity (Figures 7a and b). Herit-
ability in small and randomly mating populations (where the last two
terms of Equation (8) are not required) is slightly higher than in one
or several sub-populations derived from an infinitely large population
where all individuals have the same known inbreeding coefficient
(where only the last term of Equation (8) is not required). For F=1,
heritability of heterozygosity approaches 0, but is not defined because
in that case all individuals are homozygous, and there is no genetic
variance in heterozygosity.

Because inbreeding reduces heterozygosity, total genetic variance in
heterozygosity is lowered by inbreeding (Figures 7d and e). Under
complete inbreeding, all individuals are homozygous and there is no
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Figure 4 Expected genetic variance components and heritability of heterozygosity for a locus with three alleles in a randomly mating, infinitely large
population are shown in simplex plots. Along each side of the triangle, one allele has a frequency of 0%, which increases with distance away from the
triangle side until reaching a frequency of 100% at the opposite corner. Colors indicate the values of heritability, total genetic, additive and dominance
genetic variance, respectively. Note that the range of values is different for heritability than for the three genetic variance components. Note that the color

key is different for genetic variance to allow for better visibility of patterns.
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Figure 5 Relationship between variance in allele frequencies and heritability or genetic variance components of heterozygosity for different numbers of
alleles. Note that the relationships are similar in shape for different numbers of alleles, but high variance in allele frequencies can only be reached when few
alleles are present, leading to compressed curves for higher numbers of alleles. Although theoretically possible, many variances in allele frequencies shown
here are unlikely or impossible in reasonably sized populations (e.g., <1000 individuals) because they may require some extremely low allele frequencies.

genetic variance in heterozygosity. When total genetic variance o2 of
the inbred population is partitioned into only two components, the
additive genetic variance in the inbred population (¢%; Figure 7c)
becomes zero with complete inbreeding, as does the corresponding
dominance variance (o3 Figure 7f). As is the case for any quantitative
trait, the contribution of random-mating additive genetic variance
((1 + F)a%y; Figure 7g) increases with stronger inbreeding, and the
contribution from random-mating dominance variance ((1 — F)o}y,
Figure 7h) decreases.

Inbreeding dominance variance (Faf)l; Figure 7j) increases with
inbreeding for moderately unequal allele frequencies, and at complete
inbreeding it behaves similarly to the contribution of random-mating
additive genetic variance ((1+ F)o?y; Figure 7g). The covariance
between additive effects and homozygous dominance deviations
(4Foapp; Figure 7i) is always negative under inbreeding, and is
strongest when inbreeding is high and allele frequencies are moder-
ately unequal. As for any trait, cap; and o3, are 0 if alleles are equally
frequent (Cockerham and Weir, 1984). The inbreeding depression
parameter (F(1— F)H*; Figure 7k) is 0 for F = 0 or F=1 and reaches
its maximum at F=0.5 and equal allele frequencies.

To sum up, we showed how inbreeding affects heritability of
heterozygosity in randomly mating populations and in populations
where all individuals are experimentally inbred to the same level.
In these types of populations, the results hold for any number of
loci in gametic phase equilibrium. In populations at equilibrium
with unknown individual inbreeding coefficients but known mean
inbreeding level (e.g., because only the average selfing rate is known),
identity disequilibrium leads to low heritability of heterozygosity when
many loci are considered.

Heredity

DISCUSSION

The fact that heterozygosity can be heritable has been shown more
than two decades ago, at least in the case of biallelic loci in outbred
populations (Mitton et al., 1993). However, as this is generally not well
known, we first reviewed this seminal work. Subsequently, we
provided a quantitative genetic framework for the prediction of
genetic (co)variance components and heritability of heterozygosity,
which allows for any number of multiallelic loci and inbred popula-
tions. This provides a useful tool for explicit theoretical and empirical
investigations of the importance of selection of heterozygosity for the
maintenance of genetic variation in fitness. Indeed, irrespective of the
conditions under which selection of heterozygosity might or might not
occur, heritability of heterozygosity is an essential requirement for an
evolutionary response. The quantitative genetic framework outlined
here can be applied to (multiallelic) markers that have fitness effects
themselves or to loci that are in linkage disequilibrium with loci that
influence fitness (Slatkin, 1995). In addition, heritability of hetero-
zygosity provides an alternative, biologically intuitive explanation for
why the dominance coefficient d contributes to additive genetic
variance of any trait whenever allele frequencies are unequal
(Nietlisbach and Hadfield, 2015).

Whereas heritability of heterozygosity can be calculated for any type
of genetic locus, an evolutionary response is not necessarily expected.
In particular, allele frequencies at neutral marker loci are not expected
to change when they are not linked to loci that are under selection,
even if marker heterozygosity correlates with fitness (‘apparent
selection’; Charlesworth, 1991). In other words, heterozygosity—fitness
correlations are not evidence of selection at the marker loci under
study (Szulkin et al, 2010). However, when applied to loci that
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Although theoretically possible, many data points shown here are unlikely or impossible in reasonably sized populations (e.g. <1000 individuals) because

they may require some extremely low allele frequencies.

influence fitness, or to loci linked to them, our framework will be useful
to evaluate the possibility of an evolutionary response to selection of
heterozygosity. Also, the expected response to selection, as predicted
from the product of heritability and selection differential (i.., the
breeder’s equation), will often deviate from the observed response, for
example, if there is no additive genetic covariance between trait and
fitness (Merild et al., 2001; Morrissey et al., 2010, 2012).

Heritability of heterozygosity is highest for highly unequal allele
frequencies and is reduced by inbreeding. Reductions in heritability
with increasing inbreeding are typical for traits determined by additive
gene action. However, with dominance effects, changes in heritability
are difficult to predict and can go in any direction (Falconer and
Mackay, 1996, p 266), as has been shown experimentally for various
traits other than heterozygosity (e.g., Wade et al, 1996; Kristensen
et al., 2005). Our framework can be used to assess how strong the
effects of inbreeding are on the heritability of heterozygosity in a focal
population. This is useful, because empirical estimation of all genetic
(co)variance components relevant under inbreeding is very challenging
(Wolak and Keller, 2014). Because empirical quantification may often
be difficult or impossible, being able to predict these (co)variance
components for given allele frequencies and a certain level of
inbreeding is of practical relevance. In addition, this framework offers
a way to describe the amount of (additive and total genetic) variance
in heterozygosity introduced by inbreeding.

Although evaluating the conditions under which heterozygosity may
be selected for is beyond the scope of this article, selection for
heterozygosity is possible at loci displaying heterozygote advantage
(Lehmann et al., 2007; Fromhage et al., 2009). Among the few known
loci showing indications for a heterozygote advantage is the major

histocompatibility complex (or human leukocyte antigen system in
humans), where heterozygous individuals are more resistant against
pathogens (reviewed in Hedrick, 2012). However, because most rare
alleles occur in heterozygous form (Halliburton, 2004, p 78), it is often
not possible to distinguish heterozygote advantage from selection for
rare alleles (Spurgin and Richardson, 2010). Nevertheless, even if
heterozygote advantage seems to be rare in nature, just a few over-
dominant loci would have a larger effect compared with many loci with
directional dominance (Crow, 1952, p 291). Additionally, there may be
a role for pseudo-overdominance (Charlesworth and Willis, 2009)
(sometimes called associative overdominance; Frydenberg, 1963; Lynch
and Walsh, 1998, p 288) and fluctuating selection (Charlesworth, 1988)
in generating selection for heterozygosity.

CONCLUSION

We have shown for multiallelic loci and for populations with
inbreeding that the degree to which heterozygosity is heritable is a
function of only allele frequencies and inbreeding coefficients, and that
this heritability can be very high under unequal allele frequencies and
little inbreeding. In fact, heritability of heterozygosity easily reaches
levels as high as those for life-history traits in wild populations
(Postma, 2014). Because allele frequencies in natural populations are
usually unequal (e.g., Chakraborty et al, 1980; Whittam, 1981;
Burns and Zink, 1990), the heritability of heterozygosity is likely often
greater than zero. Our theoretical framework provided here enables
explicit prediction of heritability of heterozygosity for many situations,
including for loci with multiple alleles (e.g., immune genes, haplotypes
of multiple single-nucleotide polymorphisms corresponding to func-
tional genes or microsatellites) and for inbred populations. This
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Figure 7 Plots of all genetic (co)variance components and heritability of heterozygosity under inbreeding. Values for a set of inbreeding coefficients are
colored according to (I). (a and d) A randomly mating population with inbreeding because of genetic drift. (b and e) Experimental populations where one or
several lines are inbred to a known and identical degree and descending from an infinitely large randomly mating population. These distinctions are not
necessary for the other panels. Heritability (h2) of heterozygosity approaches O, but is not defined for complete inbreeding (F=1) because then there is no
genetic variance for heterozygosity as all individuals are completely homozygous (a and b). Genetic variance in heterozygosity (d and e) decreases with
inbreeding. When genetic variance is partitioned into two components only (Equations (9) and (10)), both additive (¢) and dominance (f) genetic variance
decrease with inbreeding. When genetic variance is partitioned into five or six components (Equation (8)), the contribution from additive genetic variance
because of random mating (g) increases with inbreeding, whereas the corresponding dominance variance (h) decreases. The covariance between the additive
effect of alleles and their homozygous dominance deviations (i) becomes increasingly negative with inbreeding, whereas the dominance variance because of
inbreeding (j) becomes increasingly positive. The inbreeding depression effect (k) is maximal for F=0.5 and O for F=0 and F=1, which means that some
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framework will thus help to critically evaluate the evolutionary

dynamics of heterozygosity in natural or laboratory populations.
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