Skip to main content
. 2015 Dec 11;5:18086. doi: 10.1038/srep18086

Table 1. Summary of calculations for Si(111) n /Si(SC) superlattices.

n lattice N E Inline graphic(PBE) Inline graphic(PBE) Inline graphic(G0W0) Inline graphic(G0W0)
1 BCO 6 89 (QD) 0.431 0.430 0.894 0.847
  Cubic-diamond stacking
2 SM 10 46 (QD) 0.906 0.869 1.346 1.316
3 SM 14 42 (D) 0.807   1.197  
4 SM 18 32 (D) 0.832   1.283  
5 SM 22 26 (D) 0.782   1.218  
6 SM 26 22 (QD) 0.788 0.774 1.224 1.215
7 SM 30 19 (QD) 0.761 0.741 1.198 1.185
8 SM 34 17 (QD) 0.746 0.726 1.185 1.166
9 SM 38 16 (QD) 0.738 0.712 1.177 1.154
10 SM 42 13 (QD) 0.725 0.699 1.167 1.147
  Hexagonal-diamond stacking
2 SO 10 72 (QD) 0.562 0.527 0.980 0.961
3 SM 14 49 (D) 0.615   1.049  
4 SO 18 39 (D) 0.578   1.008  
5 SM 22 34 (D) 0.497   0.914  

The lattice type, the number of atoms per unit cell (N), the energy relative to cubic-diamond Si (E in meV/atom), the type of band gap, the direct band gap size (Inline graphic in eV), and the indirect band gap size (Inline graphic in eV) are compared for the Si(111)n/Si(SC) superlattices with the cubic- and hexagonal-stacking sequences of the Si(111) layers. The quasiparticle G0W0 gaps are also shown for comparison. Here D and QD in parentheses denote direct and quasidirect band gaps, respectively, and lattice types are abbreviated, such as SM: simple monoclinic, SO: simple orthorhombic, and BCO: base-centered orthorhombic.