Skip to main content
. 2015 Dec 10;15:329. doi: 10.1186/s12884-015-0767-x

Table 2.

Regression analysis identifying factors associated with preterm birth in Hubei Province, China (2001 – 2012)

Covariates Univariate analysis
OR (95 % CI)
Multivariable analysis*
OR (95 % CI)
Year 1.01 (1.00 - 1.01) ----
Maternal age (<35 y vs. ≥ 35 y) 5.28 (5.04 - 5.45) 0.57(0.55-0.58)
Gestational week(<34 week vs. ≥ 34 week) 2.21 (1.86 - 2.63) ----
Birth weight(<2.5 kg vs. ≥ 2.5 kg) 1.08 (1.05 -1.13) ----
Pregnancy parity(1 vs. ≥ 2) 2.80 (2.69 - 2.95) ----
Birth parity (1 vs. ≥ 2) 1.08 (1.01 - 1.10) ----
Assisted reproductive technology
(yes vs. no)
1.97 (1.91 -2.05) 3.67 (3.56-3.78)
Income (<500 USD/month vs. ≥ 500 USD/month) 1.27 (1.22- 1.32) 0.63 (0.61-0.66)
Education (>9 years vs. ≤ 9 years) 0.71 (0.49 - 0.91) 1.04 (1.01-1.06)
Residence (rural vs. urban) 1.37 (1.35 - 1.39) 1.27 (1.24-1.30)
Newborn Emergency Transport Service (yes vs. no) 3.13 (3.02 - 3.23) ----
Infant gender (female vs. male) 0.59 ( 0.56 - 0.63) 3.31 (3.23 -3.39)
Occupation (physical labor vs. office job) 2.16 (2.09 - 2.23) ----
Single birth 0.91 (0.89 - 0.97) ----

*Multivariate logistic model was fit with all characteristics considered as predictors of preterm birth, and a backward-selection procedure was used to select significant variables included in the final model, with a P value < 0.05 indicating significance