Skip to main content
. 2015 Dec 10;15:329. doi: 10.1186/s12884-015-0767-x

Table 3.

Regression analysis identifying factors associated with preterm mortality in Hubei Province, China (2001 – 2012)

Covariates Univariate analysis
OR (95 % CI)
Multivariable analysis*
OR (95 % CI)
Year 1.00 (1.00 -1.01) ----
Maternal age (<35 y vs. ≥ 35 y) 1. 32 (1. 22–1.51) ----
Gestational week (<34 week vs. ≥ 34 week) 2.76 ( 1.92 -2.99) 1.01 (1.00-1.02)
Birth weight (<2.5 kg vs. ≥ 2.5 kg) 1.07 ( 1.02 - 1.11) 1.02 (1.00-1.03)
Pregnancy parity (1 vs. ≥ 2) 1.08 (1.08 -1.11) ----
Birth parity (1 vs. ≥ 2) 1.00 (1.00 - 1.01) ----
Assisted reproductive technology
(yes vs. no)
1.13 (1.09-1.15) ----
Income (<500 USD/month vs. ≥ 500 USD/month) 1.31 (1.27 -1.39) 1.12 (1.01-1.22)
Education (>9 years vs. ≤ 9 years) 0.71 (0. 49–0. 89) ----
Residence (rural vs. urban) 1.14 ( 1.10 - 1.29) ----
Newborn Emergency Transport Service (yes vs. no) 2. 14 (2.00 - 3.02) 0.81 (0.77-0.99)
Infant gender (female vs. male) 0.67 ( 0.51 - 0.74) ----
Occupation (physical labor vs. office job) 1.18 (1.10 -1.23) ----
Single birth 0.97 (0.95 - 0.99) ----

*Multivariate logistic model was fit with all characteristics considered as predictors of preterm mortality, and a backward-selection procedure was used to select significant variables included in the final model, with a P value < 0.05 indicating significance