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Abstract
Background & Aims: Fulminant hepatitis is a rare outcome of infection with
hepatitis E virus. Several recent reports suggest that virus variation is an
important determinant of disease progression. To critically examine the evi-
dence that virus-specific factors underlie the development of fulminant hepa-
titis following hepatitis E virus infection. Methods: Published sequence
information of hepatitis E virus isolates from patients with and without
fulminant hepatitis was collected and analysed using statistical tests to
identify associations between virus polymorphisms and disease out-
come. Results: Fulminant hepatitis has been reported following infection
with all four hepatitis E virus genotypes that infect humans comprising mul-
tiple phylogenetic lineages within genotypes 1, 3 and 4. Analysis of virus
sequences from individuals infected by a common source did not detect any
common substitutions associated with progression to fulminant hepatitis.
Re-analysis of previously reported associations between virus substitutions
and fulminant hepatitis suggests that these were probably the result of sam-
pling biases. Conclusions: Host-specific factors rather than virus genotype,
variants or specific substitutions appear to be responsible for the develop-
ment of fulminant hepatitis.

The aetiology of hepatitis E virus infection (HEV) is
complex. Many individuals exposed to HEV infection
remain asymptomatic while others go on to develop an
acute hepatitis of varying severity that usually resolves
within 2–3 months [reviewed in (1)]. Chronic infection
lasting a year or more has been observed rarely, and
then only in immunocompromised individuals. Another
potential outcome of HEV infection is fulminant hepati-
tis (FH), an uncommon rapidly deteriorating state with
a poor prognosis involving pathologies such as hepatic
encephalopathy, necrosis of hepatic parenchyma, coag-
ulopathy, renal failure or coma.

Several previous studies have suggested that the path-
ogenicity of HEV infection might be genotype or strain
dependent. For example, a bias towards genotype 4 has
been noted in Japanese patients with FH or severe dis-
ease (2–4), while a recent study reports an association
between infection with genotype 4 virus in France and
higher levels of ALT and the presence of jaundice (5).
There are also reports that disease severity (including
FH) is associated with a particular strain of HEV geno-

type 3 (6), and that FH is associated with particular
strains of genotype 1 (7) or genotype 4 virus (8). Fur-
ther, several recent publications have suggested that
there may be a link between particular substitutions in
the HEV genome and the development of FH. For
example, progression to FH has been associated with
142 synonymous and 8 nonsynonymous substitutions
of genotype 1 virus (9), with the presence of two or
three synonymous substitutions of genotype 4 virus (10,
11), or with 12 unique amino acid substitutions in a
genotype 4 virus from a FH patient (12).

However, an unacknowledged problem with some of
these studies is the common geographical origin of the
variants studied so the reported associations between
particular virus substitutions and FH might simply
occur because of epidemiological relationships amongst
the viruses rather than because such substitutions
were involved in the development of FH. This article
re-examines published evidence for an association
between FH and particular HEV genotypes, lineages or
particular nucleotide substitutions.
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Materials and methods

Complete HEV genome sequences downloaded from
Genbank were as follows: Genotype 1: JF443726,
JF443725, JF443724, JF443723, JF443722, FJ457024,
X98292, M73218, JF443721, JF443720, JF443719,
JF443718, JF443717, AF459438, AF076239, X99441,
AF051830, DQ459342, M80581, D10330, AF185822,
L08816, D11092, D11093, L25595, AY204877,
AY230202, AB720034, AB720035, JQ655734, AF444002,
AF444003, L25547, M94177, Genotype 3: AB291955,
Genotype 4 human isolates: AB291967, AB291959,
AB193176, AB220971, AB220972, AB220973, AB091395,
JQ740781, AB291966, AB291965, AB291968, AB220974,
AB291964, AB220975, AB220976, AB220977, AB220978,
AB220979, AJ272108, AB108537, AB097812, FJ763142,
KC492825, AB698654, JQ655735, JQ655733, HQ634346,
HM439284, AB369690, AB369688, AB197674,
AB197673, AB193178, AB193177, AB099347, AB074917,
AB074915, AB080575.

Sequences were aligned and annotated using SSE v1.1
(13) and phylogenetic analysis was performed using
Mega 6 (14). Nucleotide positions were numbered rela-
tive to AB220978. The significance of associations
between substitutions at each genome position and FH
status was measured using Fisher’s exact test using a sig-
nificance level of P < 0.01 in a two-tailed test as imple-
mented in an R script available upon request from the
authors. The same data sets were analysed using meta-
CATS (www.viprbrc.org) that uses both the chi-squared
test of independence and Pearson’s chi-squared test
(15). The genotype 1 data set differed from that of (9)
in that three identical or near-identical sequences
(L25547, M94177 and AF444002) were removed, and
three recently reported genotype 1 non-FH sequences
(AB720034, AB720035 and JQ655734) were added.

Results

Is FH genotype-specific?

There are reports of patients developing FH after infec-
tion with genotype 1 (7, 9, 16, 17), genotype 3 (6) and
genotype 4 (8, 10, 12, 18–22). A large outbreak of HEV
genotype 2 in Namibia was associated with FH in 3/600
(0.5%) of individuals (23); although nucleotide
sequences were not reported from the fulminant cases it
seems likely that genotype 2 virus was involved. Hence,
all four of the currently identified HEV genotypes
known to infect humans can result in FH.

Is FH strain-specific?

We next investigated the possibility that FH results from
the infection with particular strains of HEV. Phyloge-
netic analysis of the complete genome sequences of
HEV derived from FH patients (Fig. 1) reveals the
presence of three lineages (groups of sequences

supported by >70% of bootstrap replication) for
both genotypes 1 and 4. Analysis of partial genome
sequences of HEV from an additional 10 genotype 1 FH
patients (EF015410, EF175962-4, EF206325&6 (7) and
FJ230847-50), identified another genotype 1 lineage
(Figure S1A, B), while analysis including the genotype
4 FH sequences (AB108659&60 (20), AB505793 (8),
AB079762 (24) and AB114178) revealed a fourth geno-
type 4 lineage (Figure S1C–E). The ORF2 sequences of
HEV genotype 3 FH isolates AB079763 (11), EF061404
and AB291955 (6) fell into three lineages (Figure S1F).
Hence, these 31 FH-derived HEV variants comprise at
least 11 lineages within genotypes 1, 3 and 4.

Is FH transmissible?

Three published studies describe exposure from a com-
mon source (all HEV genotype 4) following which at
least one individual developed FH. Of two men who
consumed uncooked boar liver, one developed FH while
the other individual had acute hepatitis (19). Similarly,
of 13 individuals who had eaten grilled pig liver and
intestines together, one developed FH and five serocon-
verted but were asymptomatic (21). One of these indi-
viduals transmitted HEV by blood transfusion to an
individual who cleared the infection following inter-
feron treatment. Finally, of 40 individuals who had
eaten barbecued pig meat and entrails together, one
developed FH, one had acute severe hepatitis, one had
self-limited hepatitis, one seroconverted but had a
subclinical infection, 10 were seronegative and the
remainder were unavailable for follow up (22). These
observations imply either that exposure to a particular
strain of HEV is not sufficient to produce FH or that the
penetrance of the trait is low. From the cases described
above the penetrance would be 50%, 17% and 25%.

Is FH associated with specific virus substitutions?

We tested possibility that particular substitutions are
responsible for the development of FH by tabulating
sequence differences in two of the common source out-
breaks for which complete genome sequences were
available (Table 1). None of the 17 sites at which viruses
derived from the same source differed, were also
variable in the other transmission set, and none were
overrepresented amongst other FH isolates. Similarly,
although a genotype 4 virus isolated from a FH patient
had 12 unique amino acid substitutions (12), none of
these substitutions were present in other genotype 4 FH
sequences.

Previous studies have used statistical methods to
identify substitutions that are associated with isolates
derived from FH patients infected with HEV genotype 4
(10, 11) or genotype 1 (9). However, interpretation of
these results is complicated by the restricted geographi-
cal and temporal origin of the FH isolates; five of the
seven genotype 1 FH isolates were from the single
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Indian city of Pune and were sampled in consecutive
years (9) while five of eight FH-derived genotype 4 com-
plete genome sequences were obtained on the Japanese
island of Hokkaido from 2002 to 2006 (10, 11). Our re-
analysis of the genotype 1 data set using Fisher’s exact
test identified 110 sites significantly (P < 0.01) associ-
ated with FH, but 136 sites if only the five FH isolates
from Pune were included, or four sites if only one of the
Pune FH isolates was used. These four sites (positions
248, 946, 967 and 6312) were all synonymous, although
position 6312 lies within a proposed secondary structure
that is essential for virus replication (25). When we ran-

domly assigned FH status to five of six non-FH isolates
D11093, D11092, L08816, M80581, JQ655734 and
L25595 that formed a well-defined lineage, >230 sites
were detected. A three nucleotide deletion in ORF2/3 at
position 5344 found in three FH isolates (9) was also
present in two non-FH isolates, giving a non-significant
association using Fisher’s exact test (3/7 compared to
2/23, P = 0.06). Together, these observations suggest
that the previous reports of sites significantly associated
with FH amongst genotype 1 viruses may be actually
reflect the common geographical and temporal origin of
5/7 FH isolates.

(A)

(B)

Fig. 1. Phylogenetic analysis of complete HEV sequences from FH and non-FH patients. Distances between HEV genotype 1 (A) and geno-
type 4 (B) complete genome sequences are presented on a neighbor-joining tree (FH patients are indicated by symbols, ■ for FH isolates from
Pune or Hokkaido, and ● for other FH isolates, □ for the genotype 3 outgroup). Branches supported by >70% of bootstrap replications
(n = 500) are indicated.
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Similar re-analysis of genotype 4 complete genome
sequences from FH (n = 8) and non-FH (n = 30)
patients revealed only two sites significantly associated
with FH (positions 1963 and 4795, both synonymous).
These FH-associated substitutions were also present in
>41% of the non-FH sequences and differed from the
two sites reported from analysis of 22 isolates (10), or
the eight sites reported from analysis of 28 isolates (11).
Position 1963 differed between one FH and two non-FH
isolates derived from a common source of infection
(Table 1). Removing two or three of the most closely
related Hokkaido sequences left no sites significantly
associated with FH. The frequency of the double (syn-
onymous) substitution U3148 and C5907 in FH isolates
reached significance at the 5% level in Fisher’s exact test
(5/8 vs. 6/24, P = 0.031); a previous study reported a
much lower P value of 0.0042 (11).

Repeating all these analyses using a different test for
association, the Metadata-comparison analysis tool
(meta-CATS, www.viprbrc.org) (15) that uses the chi-
squared test of independence and Pearson’s chi-squared
test revealed fewer sites significantly associated with FH
for both the full genotype 1 data set (45 significant sites
compared to 110), and the full genotype 4 data set (0
significant sites compared to 2).

Discussion

In contrast to several previous studies (6, 7, 9–12), we
have been unable to identify specific HEV strains or
genomic substitutions that are associated with FH,
although the presence of synonymous substitutions at
positions 3148 and 5907 (11) was significantly associ-
ated with FH at a reduced level of significance (5%).
Progression to FH is not a genotype-specific property of
HEV as all four of the genotypes currently known to
infect humans have been associated with FH. In addi-
tion, FH is not a strain-specific property of particular
lineages within each HEV genotype (Fig. 1). Not all
individuals infected from a common source develop FH
and neither do particular substitutions appear to be
associated with FH as no common mutations were
observed in individuals with and without FH infected
from a common source. Our re-analysis of the associa-
tion between FH and substitutions at particular posi-
tions in the genome of genotype 1 and genotype 4
viruses suggests that previously reported significant
associations may have been influenced by the restricted
geographical and temporal sampling of FH isolates.

The identification of virus lineages or substitutions
associated with the development of FH would be more
difficult if this trait had incomplete penetrance. However,
in this case, many more isolates from FH patients would
be required. For example, a recent survey of virus deter-
minants of FH following infection with hepatitis B virus
that included 50 cases of FH with age- and sex-matched
controls was able to demonstrate an association with the
G1896A pre-core mutation (26), a substitution found in

several other common source outbreaks in which there
was a high frequency of FH (27). A different study iden-
tified two different substitutions (T1961 not T and
C1962 not C) as significantly associated with FH (28).
On the other hand, a study of 10 FH cases following
acute infection with hepatitis A virus did not detect
any difference in virus genotype between patient groups
(29).

Although FH can develop following infection with
any of the HEV genotypes known to infect humans, evi-
dence that FH might be associated with particular geno-
types comes from a survey of HEV in Japan over the last
decade (30). Of 199 HEV patients, seven developed FH,
these comprising 8.1% of those infected with genotype 4
but only 0.8% of those infected with genotype 3. How-
ever, the northerly island of Hokkaido which has <5%
of Japan’s population contributed 70% of the genotype
4 infections, and almost 70% of HEV infections there
could be attributed to the consumption of uncooked pig
liver, while in other regions most infections had no
known source. Infection with HEV genotype 4 has also
been associated with more severe disease (compared to
genotype 3) amongst patients from France (5). In both
cases, it is possible that the reported association between
FH and HEV genotype 4 could reflect underlying epide-
miological factors rather than a difference in virus path-
ogenicity. Experiments in animal models are currently
limited to genotypes 1, 2 and 3 (31).

Alternatively, the development of FH consequent to
HEV infection could be because of patient-specific fac-
tors. A precedent for this comes from previous studies
showing a correlation between the severity of HEV
infection (including FH) and pregnancy (32, 33), pre-
existing liver disease (2, 34–37) and either a low (38) or
high viral load (39). More detailed study of HEV
infected FH patients from around the world should pro-
vide a definitive answer to the role of virus variation in
this aspect of pathogenesis.
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Supporting information

Additional Supporting Information may be found in the
online version of this article:

Figure S1. Phylogenetic analysis of subgenomic HEV
regions from FH and non-FH patients. Maximum com-
posite likelihood distances between sequences are pre-
sented as neighbour joining trees for (A) genotype 1
(positions 4295–4601), (B) genotype 1 (4460–4786), (C)
genotype 4 (123–448), (D) genotype 4 (4001–4821), (E)
genotype 4 (5979–6390) and (F) genotype 3 (6034–
6335). Sequences isolated from FH patients are indi-
cated by ● and the genotype 2 outgroup (M74506) by □.
The percentage of bootstrap replicates supporting indi-
vidual branches is indicated.
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