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Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT) cover a wide range of structural 

malformations that result from defects in the morphogenesis of the kidney and/or urinary tract. 

These anomalies account for about 40–50% of children with chronic kidney disease worldwide. 

Knowledge from genetically modified mouse models suggests that single gene mutations in renal 

developmental genes may lead to CAKUT in humans. However, until recently only a handful of 

CAKUT-causing genes were reported, most of them in familial syndromic cases. Recent findings 

suggest that CAKUT may arise from mutations in a multitude of different single gene causes. We 

focus here on single gene causes of CAKUT and their developmental origin. Currently more than 

20 monogenic CAKUT-causing genes have been identified. High-throughput sequencing 

techniques make it likely that additional CAKUT-causing genes will be identified in the near 

future.

Keywords

Congenital Anomalies of the Kidney and Urinary Tract; CAKUT; genetic kidney disease; 
monogenic disease

Introduction

Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a wide range of 

structural malformations that result from defects in the morphogenesis of the kidney and/or 

the urinary tract. These anomalies include among others: renal agenesis, renal 

hypodysplasia, multicystic dysplastic kidney, hydronephrosis, ureteropelvic junction 

obstruction, megaureter, ureter duplex, vesicoureteral reflux and posterior urethral valves 

[1]. CAKUT account for about 40–50% of children with chronic kidney disease [2]. The 

condition may appear as an isolated feature or as part of a systemic condition that 
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encompasses extra-renal manifestations [3–5]. The notion that CAKUT may be caused by 

single gene mutations (“monogenic CAKUT”) is suggested by three findings: (1) CAKUT 

may appear with familial aggregation [6]; (2) monogenic mouse models exhibit CAKUT 

phenotypes; (3) human multi-organ monogenic syndromes may include CAKUT 

phenotypes. Recently this notion was corroborated by the discovery of more than 20 single-

gene causes for CAKUT in humans [7–11]. Until then only a handful of CAKUT-causing 

genes had been documented, most of which were identified among familial syndromic cases, 

including HNF1B (Renal Cysts and Diabetes Syndrome) [4], PAX2 (Renal Coloboma 

Syndrome) [3], and EYA1 (branchio-oto-renal syndrome) [5]. Recent findings suggest that 

CAKUT may be caused by a multitude of different disease-causing genes (Table 1), each 

gene representing a monogenic recessive or dominant cause of CAKUT [3–5, 12–36]. Given 

this broad genetic locus heterogeneity and the rapidly evolving sequencing technology, it is 

likely that many novel genes will be identified in the near future.

We focus here on single-gene causes of CAKUT and their developmental mechanisms. We 

mainly discus disease-causing genes related to isolated CAKUT or syndromic forms of 

CAKUT in which the renal phenotype predominates. Single-gene causes of human 

congenital urinary bladder diseases are beyond the scope of this review and have been 

recently reviewed [37].

CAKUT are due to disordered genetic control of kidney development

The pathology of CAKUT is based on the disturbance of normal nephrogenesis, and can be 

due to genetic abnormalities in renal developmental genes that direct this process [1, 38–41]. 

In order to understand the genetic basis of human CAKUT it is essential to consider how the 

normal kidney develops (Figure 1). Kidney development can be divided into the following 

developmental stages: ureteric bud induction, mesenchymal-to-epithelial transition (MET), 

renal branching morphogenesis, and nephron patterning and elongation (which include 

proximal and distal tubule morphogenesis and glomerulogenesis) [1, 38–41]. The underlying 

molecular control of these developmental stages is governed by a large number of genes and 

signaling pathways that orchestrate this complex process. Perturbation in each of these steps, 

as supported by mouse models, can lead to the clinical phenotype of CAKUT. Insights into 

the related molecular control mechanisms has led to a paradigm shift away from classic 

anatomic theories to contemporary cell biological and genetic views of the etiology of 

CAKUT [42].

For many years mouse models have been a key tool in our understanding of the molecular 

basis of kidney development with numerous mouse models re-capitulating human disease 

phenotypes. For instance, in mice the following monogenic causes of CAKUT have been 

described for the following process: (1) Ret and Gdnf for ureteric bud induction [43] (2) 

Wnt4 for mesenchymal-to-epithelial transition (MET) [44] and (3) Agtr2 (Angiotensin 

receptor 2) for branching morphogenesis [45]. Figure 1 outlines key steps during normal 

kidney development and their corresponding CAKUT-causing genes in mice and humans.

Classical studies [46] have also highlighted the importance of the position of the ureteric 

budding in the development of CAKUT and lead to the “budding hypothesis”. According to 
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this hypothesis the precise position at which the ureteric bud grows out from the 

mesonephric duct is critical for subsequent normal kidney and urinary tract development. 

This hypothesis was generated following the anatomical analysis of duplex kidneys which 

showed that a more severe hypoplasia and dysplasia were closely correlated with mal-

displacement of the ureteral orifice. This hypothesis, in part, is supported by the fact that 

many “early development” genes, involved in the ureteric budding stage, actually lead to 

CAKUT. In the following sections we will discuss the most important single gene causes of 

CAKUT in humans in relation to their corresponding function during kidney development.

Human CAKUT-causing genes involved in ureteric bud induction

The products of most genes that if mutated cause CAKUT in humans are involved in the 

control of the early morphogenesis stages of the kidney i.e. induction of the metanephric 

mesenchyme by the ureteric bud and mesenchymal-to-epithelial transition. Ureteric budding 

is promoted by GDNF signaling via its receptor RET. In humans, mutations in RET were 

initially recognized to cause multiple endocrine neoplasia (MEN) syndrome [47] and 

Hirschsprung disease [48]. RET mutations were subsequently reported to cause CAKUT in 

fetuses with bilateral renal hypodysplasia/agenesis [18, 49]. In addition the role of RET as 

CAKUT causing gene is suggested by the finding that many patients with Hirschprung 

disease have silent urinary tract defects [50]. Still, data regarding the frequency of RET as a 

CAKUT-causing gene are conflicting [18, 49]. Mutation analysis of GDNF has been 

performed in patients with CAKUT. However, no evidence supporting its causative role has 

been established so far [30, 51]. The GDNF-RET signaling pathway is regulated by multiple 

circuits. Given the central role of the GDNF-RET signaling pathway in ureteric budding it 

was likely that mutations in genes that regulate this pathway may result in CAKUT. Indeed, 

these regulatory mechanisms include transcription factors such as PAX2, EYA1, and SALL1, 

all of which have been initially recognized to be mutated in small pedigrees with multiple 

affected individuals with CAKUT and syndrome-specific extra-renal manifestations. 

Mutations in PAX2 were first identified in patients with Renal Coloboma Syndrome which 

comprises renal hypodysplasia, optic nerve abnormalities and deafness [3]. To date, more 

than 55 disease causing mutations of PAX2 have been reported worldwide [17]. Importantly, 

PAX2 mutations were shown to also lead to isolated CAKUT without optic nerve or hearing 

abnormalities or with subtle features. In addition, PAX2-mutations were shown to lead to 

variable renal phenotypes across the spectrum of CAKUT, including renal hypodysplasia, 

vesicoureteral reflux renal cysts and multcystic dysplastic kidneys as the most common ones 

[17]. Mutations in EYA1 lead to Branchio-Oto-Renal (BOR) syndrome which is 

characterized by hearing loss, structural defects of the ear, branchial fistula or cyst and 

CAKUT, ranging from mild renal hypoplasia to agenesis [5]. Interestingly, mutations in 

SIX1 and SIX5 have also been identified in patients with EYA1-negative BOR syndrome, 

and probably represent a more rare underlying etiology [22, 23]. Mutations in SALL1 lead to 

Townes-Brocks Syndrome (TBS), which is characterized by kidney, anal, ear and thumb 

abnormalities [21]. An isolated CAKUT phenotype was reported in one patient with a 

SALL1 mutation [52]. Unpublished data from our lab further support an isolated CAKUT 

phenotype.
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BMP4 is expressed in the mesenchymal cells that surround the Wolffian duct and inhibits 

GDNF-RET-signaling [38]. Missense mutations in BMP4 were identified in five CAKUT 

patients [12]. Subsequent functional analysis, using overexpression assays in zebrafish 

suggested that these mutations affect BMP4 protein function [53].

Human CAKUT-causing genes involved in mesenchymal-to-epithelial 

transition

Once the ureteric bud invades the metanephrogenic mesenchyme it induces condensation of 

the metanephrogenic mesenchymal cells around the ureteric bud tips. This step begins the 

polarization of the mesenchyme to generate the epithelial cells of the nephron in a process 

named mesenchymal-to-epithelial transition (MET) [38, 39]. WNT proteins, i.e. WNT9b 

and WNT4 that act within the WNT signaling pathway play a critical role in this process 

[38, 39]. Furthermore, recent evidence generated from mouse models supports that the 

WNT-pathway partially is regulated by SIX2 [54]. Interestingly, mutations in WNT4 or SIX2 

have been identified in pediatric patients with CAKUT [12, 30]. Other important key players 

in MET are the fibroblast growth factor (FGF) ligands Fgf8 and Fgf9 (Figure 1) [38, 39]. In 

addition, in a recent report, on three affected fetuses with bilateral renal agenesis from a 

consanguineous family, an autosomal recessive loss of function mutation gene was 

identified in the FGF20 [36].

Human CAKUT-causing genes involved in branching morphogenesis

Renal branching morphogenesis follows the primary ureteric bud outgrowth. The ureteric 

bud subsequently undergoes serial branching to generate approximately 15 generations of 

branches. During this time new nephrons are induced at the tip of each branching bud 

(Figure 1). Several factors have been shown to modulate the UB branching morphogenesis 

[39]. One of the factors that govern this process is Angiotensin 2. Angiotensin 2 activates 

both the angiotensin receptor type 1 and 2 on the ureteric bud to stimulate branching. In 

addition it is required for elongation of the collecting duct [39]. Accordingly, mutations in 

the genes encoding several components of the renin–angiotensin system: AGT 

(angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), and AGTR1 

(angiotensin II receptor type 1) have been linked to the distinct severe phenotype of CAKUT 

in humans of renal tubular dysgenesis [34] (Table 1). This rare fetal autosomal recessive 

disorder is characterized by early onset of persistent anuria leading to oligohydramnios and 

the Potter sequence, secondary to the absence or incomplete differentiation of the proximal 

tubules. Inactivation of different components of the RAS has been performed in mice. While 

Agtr2 [45] and Agt [55] null mice have CAKUT, this phenotype was not recapitulated in Ace 

and Ren null mice. These findings illustrate the possible discrepancies between mouse 

models and human diseases whereas the former exhibit an earlier developmental insult 

(branching morphogenesis) as compared to the later insult (developmental abnormality of 

the proximal tubules due to impaired tubular growth and differentiation).

Vivante et al. Page 4

Pediatr Nephrol. Author manuscript; available in PMC 2015 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Human CAKUT-causing genes involved in nephron patterning and 

elongation

Whereas a large amount of research has focused on the initial stages of kidney formation, 

much less is known about the genetic programs that drive segmentation of the nephron [41]. 

Indeed, the only possible human CAKUT-causing gene that can be designated under this 

category is UMOD. The Uromodulin (UMOD) gene encodes the Tamm-Horsfall protein, 

which is the most abundant urinary protein in humans [56]. UMOD mutations cause a large 

variety of different kidney syndromes: (1) medullary cystic kidney disease type 2 (MCKD2), 

(2) familial juvenile hyperuricemic nephropathy (FJHN), and (3) glomerulocystic kidney 

disease (GCKD) [33]. All of these disorders are inherited in an autosomal dominant mode 

and may have a CAKUT phenotype. Nevertheless, in a previous study published by our 

group, no UMOD mutations were identified among 96 patients with isolated CAKUT, 

implying that it may represent a very rare etiology for this condition [57].

Human CAKUT-causing genes yet-unassigned to a specific developmental 

stage

The developmental role of some human CAKUT-causing genes is still poorly understood. In 

this respect we will discuss two important genes, HNF1B and DSTYK. Hepatocyte nuclear 

factor 1B (HNF1B) is a homeodomain-containing transcription factor. HNF1B is essential 

factor for embryogenesis of the kidney, pancreas, and liver, and is expressed in the Wolffian 

duct from a very early developmental stage of the kidney [58]. Mutations in HNF1B have 

originally been recognized as the cause of the Renal Cysts and Diabetes Syndrome (RCDS) 

[4]. Subsequently, HNF1B-mutations and deletions were reported among individuals with 

isolated CAKUT encompassing different renal malformations across its spectrum, such as 

renal hypodysplasia, multicystic dysplastic kidney, cystic kidney disease, single kidney, and 

oligomeganephronia [52, 59]. HNF1B mutations have also been recognized to result in 

genital tract abnormalities, elevated liver function tests, hyperuricemia [60] and 

hypomagnesaemia [61]. Interestingly, several recent publications showed that contiguous 

gene deletion in the 17q12 region (which includes the HNF1B transcription factor) has 

resulted in the clinical combination of autism/schizophrenia and CAKUT [62, 63].

With regard to pathomechanism, a link was identified between HNF1B mutations and 

autosomal recessive polycystic kidney disease (ARPKD), which is caused by mutations in 

PKHD1 (polycystic kidney and hepatic disease 1). In mice, it has been shown that Hnf1b 

binds specifically to the Pkhd1 promoter and stimulates gene transcription. Since Hnf1b 

directly regulates the transcription of Pkhd1, mutations in HNF1B can inhibit PKHD1 gene 

expression and therefore may contribute to the formation of renal cysts in humans with 

RCDS [64].

Currently, HNF1B and PAX2 are considered to be the most frequent CAKUT-causing genes. 

Still, they are responsible for not more than 5–15% of cases depending on the examined 

cohort [52, 65, 66].
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In a recent study involving 7 affected family members with CAKUT, disease causing 

mutations were detected in the gene DSTYK [32]. Additional DSTYK mutations were 

detected in 7 out of 311 (2.3%) unrelated patients with CAKUT. The study demonstrated 

that DSTYK is a positive regulator of ERK phosphorylation downstream of FGF-receptor 

activation during kidney development [32].

Finally, another aspect of CAKUT that should be taken into consideration with regard to 

gene discovery is copy number variations (CNVs). Several lines of evidence support their 

role in CAKUT [67]. This concept has been highlighted recently in a study involving 522 

patients with CAKUT in which 72 distinct known or novel copy-number variations in 87 

(16.6%) patients were identified, suggesting that kidney malformations can, in part, result 

from pathogenic genomic imbalances [68].

Conclusions and future directions

CAKUT are a genetically heterogeneous group of disorders that are caused by mutations in 

genes involved in the embryogenesis of the kidneys. The malformation phenotypes due to 

the altered proteins vary from normally appearing kidneys with intact kidney function (i.e., 

incomplete penetrance) to severe hypodysplasia and end stage kidney disease. In clinical 

practice the evaluation of patients with CAKUT, in addition to standard care, should 

include: (1) meticulous evaluation for extra-renal syndrome-specific signs and symptoms 

(see Table 1); (2) thorough family evaluation for the presence of CAKUT in other family 

members; (3) referral to genetic counseling. Currently, the most common CAKUT-causing 

genes are HNF1B and PAX2. Other cases, which often present sporadically, are probably a 

result of many rare diseases causing genes.

Novel gene discovery for CAKUT is hampered by a high degree of sporadic cases, genetic 

heterogeneity, lack of genotype-phenotype correlation and phenotypic heterogeneity. For 

example single gene causes of primary VUR are still elusive despite the fact that multiple 

disease loci were published [69]. Although primary VUR is one of the most commonly 

detected CAKUT presentations, its phenotypic case ascertainment is challenging. The fact 

that improved prenatal ultrasound examinations have resulted in the recognition that often 

VUR is accompanied by concomitant other congenital kidney and urinary tract 

abnormalities can provide one explanation for that. However, the advent and progress in 

sequencing and bioinformatics technologies should ensure that additional CAKUT-causing 

genes will be described in the near future. This may lead to more relevant etiologic 

categorization of disease entities than can be provided by ultrasound imaging or 

histopathology alone. Such assignments may have prognostic implications for patients with 

CAKUT.
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Figure 1. Mechanisms of kidney development and corresponding CAKUT-causing genes in mice 
and humans
Steps of nephrogenesis (left column, a to d) and the corresponding CAKUT-causing genes in 

mice (orange column) and human (right yellow column). The kidney is formed via 

reciprocal induction between the ureteric bud (UB) and the metanephric mesenchyme (MM) 

(a). The UB invades the MM cells, which in turn condense around the tip of the branching 

UB (pre-tubular aggregate). Polarized renal vesicles subsequently develop in mesenchyme-

to-epithelial transition (MET) (b). The cells sequentially form comma-shaped and S-shaped 
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bodies and finally give rise to the mature nephron segments (distal and proximal tubule, loop 

of Henle, and glomerulus) (d). At the same time, the uretric bud branches in a highly 

reproducible manner and nephrons are induced at each ureteric bud tip (c). These branches 

eventually form the collecting system, including collecting ducts, renal pelvis, ureter and 

bladder trigone.

WD Wolffian duct; UB ureteric bud; MM matanephrogenic mesenchyme; CD collecting 

duct; DT distal tubule; PT proximal tubule.
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