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ABSTRACT In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is
critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several
modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (i) to
identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative
covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one
to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium
information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when
compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2,
BayScEnv, BayScan, fik, and trmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18
French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding
the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding
PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 popula-
tions of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant
ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adap-
tive genetic differentiation across populations. The BayPass program implementing the different models is available at http:/
www 1.montpellier.inra.fr/CBGP/software/baypass/.
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ONTRASTING patterns of local genetic variation over the

whole genome represent a valuable strategy to identify
loci underlying the response to adaptive constraints (Cavalli-
Sforza 1966). As further noted by Lewontin and Krakauer
(1973, p. 176), “while natural selection will operate differ-
ently for each locus and each allele at a locus, the effect of
breeding structure is uniform over all loci and all alleles.”
Hence, genome-scan approaches to detect footprints of selec-
tion aim at discriminating among the global effects of the
demographic evolutionary forces (e.g., gene flow, inbreeding,
and genetic drift) from the local effect of selection (Balding
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and Nichols 1995; Vitalis et al. 2001). In practice, applica-
tions of these methods have long been hindered by technical
difficulties in assessing patterns of genetic variation on a
whole-genome scale. However, the advent of next-generation
sequencing and genotyping molecular technologies now al-
lows researchers to provide a detailed picture of the structur-
ing of genetic variation across populations in both model and
nonmodel species (Davey et al. 2011). As a result, in the
population genomics era, a wide range of approaches have
been developed and applied to detect selective sweeps using
population data (see Oleksyk et al. 2010 and Vitti et al. 2013,
for reviews). Among these, population differentiation
(Fst)-based methods still remain among the most popular,
particularly in nonmodel species since they do not require
accurate genomic resources (e.g., physical or linkage maps)
and experimental designs with only a few tens of genotyped
individuals per population are generally informative enough.
Also, Fsr-based methods are well suited to the analysis of
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data from Pool-Seq experiments that consist of sequencing
pools of individual DNAs (Schlétterer et al. 2014) and pro-
vide cost-effective alternatives to facilitate and even improve
allele frequency estimation at genome-wide markers (Gautier
etal. 2013).

In practice, assuming the vast majority of the genotyped
markers behave neutrally, overly differentiated loci that are
presumably subjected to selection might simply be identified
from the extreme tail of the empirical distribution of the locus-
specific Fsy (Akey et al. 2002; Weir et al. 2005; Flori et al.
2009). Even if such a model-free strategy does not rely on any
arbitrary assumptions about the (unknown) demographic
history of the sampled populations, it prevents one from con-
trolling for false positive (and negative) signals. Conversely,
model-based approaches have also been developed and are
basically conceived as locus-specific tests of departure from
expectation under neutral demographic models (e.g., Gautier
et al. 2010a). These include, for instance, demographic mod-
els under pure drift (Nicholson et al. 2002; Gautier et al.
2010a) and at migration—drift equilibrium without (Beau-
mont and Balding 2004; Foll and Gaggiotti 2008; Riebler
et al. 2008; Guo et al. 2009) or with selection (Vitalis et al.
2014). Although robust, to some extent, to more complex
history (Beaumont and Nichols 1996; Beaumont 2005),
these methods remain limited by the oversimplification of
the underlying demographic models. In particular, hierarchi-
cally structured population histories, produced under tree-
shaped phylogenies, have been shown to increase false
positive rates (Excoffier et al. 2009). To cope with these is-
sues, two kinds of modeling extensions have recently been
explored. They either rely on hierarchical island models, thus
requiring a prior definition of the sampled population rela-
tionships (Gompert et al. 2010; Foll et al. 2014), or consist of
estimating the correlation structure of allele frequencies
across the populations that originates from their shared his-
tory (Bonhomme et al. 2010; Coop et al. 2010; Giinther and
Coop 2013).

Whatever the method used, the main limitation of the
indirect genome-scan approaches ultimately resides in the
biological interpretation of the footprints of selection identi-
fied, i.e., to which adaptive constraints the outlier loci are
responding. In species with functionally annotated reference
genomes, the characterization of cofunctional relationships
among the genes localized within regions under selection
might help in gaining insights into the underlying driving
physiological pathways (e.g., Flori et al. 2009). Although,
following a “reverse ecology” approach (Li et al. 2008), they
may further lead to the definition of candidate adaptive traits
for validation studies, such interpretations remain prone to
misleading storytelling issues (Pavlidis et al. 2012). Alterna-
tively, prior knowledge about some characteristics discrimi-
nating the populations under study could provide valuable
insights. Focusing on environmental gradients, several ap-
proaches have recently been proposed to evaluate association
of ecological variables with marker genetic differentiation by
extending Fs-based models (Joost et al. 2007; Hancock et al.
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2008, 2011; Coop et al. 2010; Poncet et al. 2010; Frichot et al.
2013; Glinther and Coop 2013; Guillot et al. 2014; de Villemereuil
and Gaggiotti 2015). The rationale is that environmental var-
iables distinguishing the differentiated populations should be
associated with allele frequencies differences at loci subjected
to the selective constraints they impose (Coop et al. 2010). In
principle, such population-based association studies may also
be more broadly relevant to any quantitative or categorical
population-specific covariable. More generally, as for the cova-
riable-free genome-scan approaches, accounting for the neu-
tral correlation of allele frequencies across populations is
critical for these methods (De Mita et al. 2013; de Villemereuil
et al. 2014).

Overall, the Bayesian hierarchical model proposed by Coop
et al. (2010) and implemented in the BayEnv2 software rep-
resents a flexible framework to address these issues. It indeed
allows one to both identify outlier loci (Giinther and Coop
2013) and further annotate the resulting footprints of selec-
tion by quantifying their association with population-specific
covariables (if available). A key parameter of the model is the
(scaled) population covariance matrix across population al-
lele frequencies. Although this matrix might be viewed as
purely instrumental, it explicitly incorporates their neutral
correlation structure and is in turn highly informative for
demographic inference purposes (Pickrell and Pritchard
2012; Lipson et al. 2013). Elaborating on the BayEnv model
(Coop et al. 2010; Giinther and Coop 2013), the purpose of
this article is threefold. First, we introduce modeling modifi-
cations and extensions to improve the estimation accuracy of
the population covariance matrix and the different related
measures. Second, we propose a posterior checking proce-
dure to identify markers subjected to adaptive differentia-
tion based on a calibration of the XtX statistics (Giinther and
Coop 2013). Third, we investigate alternative modeling
strategies and decision criteria to perform association stud-
ies with population-specific covariables. In particular, we
introduce a model with a binary auxiliary variable to classify
each locus as associated or not. Through the prior distribu-
tion on this latter variable, the approach deals with the
problem of multiple testing (e.g., Riebler et al. 2008). In
addition, if information about marker positions is avail-
able, this modeling also allows us to account for linkage
disequilibrium (LD) between markers via an Ising prior.
As a by-product of this study, a user-friendly and freely
available program, named BayPass (for Bayesian popula-
tion association analysis), was developed to implement
inferences under the different models. To evaluate the
accuracy of the methods, we further carried out compre-
hensive simulation studies. In addition, two real data sets
were analyzed in more detail to illustrate the range of
application of the methods. The first one consists of 453
individuals from 18 French cattle breeds genotyped at
42,056 SNPs (Gautier et al. 2010b) and the second one
consists of Pool-Seq data on 12 Littorina saxatilis populations
from three distinct geographical regions and living in two dif-
ferent ecotypes (Westram et al. 2014).



Models

In the following we describe the different Bayesian hierarchi-
cal models considered in this study and implemented in the
BayPass program. Consider a sample made of J populations
(sharing a common history) with a label, j, which varies from
1 to J. The data consist of I SNP loci, which are biallelic
markers with the reference allele arbitrarily defined (e.g.,
by randomly drawing the ancestral or the derived state).
Let n;; be the total number of genes sampled at the ith locus
(1 =i=1 in the jth population (1 =j=1), that is, twice the
number of genotyped individuals in a diploid population. Let
yij be the count of the reference allele at the ith locus in the jth
sampled population. When considering allele count data, the
yii’s (and the ny’s) are the observations while for Pool-Seq
data, read count are observed instead. In this case, the n;’s
correspond for all the markers within a given pool to its
haploid sample size n; (i.e., twice the number of pooled
individuals for diploid species). Let further c; be the (ob-
served) total number of reads and r;; be the (observed) num-
ber of reads with the reference allele. For Pool-Seq data, to
integrate over the unobserved allele count, the conditional
distribution of the rj given c;,n;, and the (unknown) yj is
assumed binomial (Gautier et al. 2013; Giinther and Coop
2013): rijlc, ny, ¥ ~ Bin(y;i/nj, cij).

Assuming Hardy-Weinberg equilibrium, the conditional
distribution of y; given n; and the (unknown) allele fre-
quency «;; is also assumed binomial:

Yijlnyj, o ~ Bin(aj; ny). €))

Note that this corresponds to the first level (likelihood) of the
hierarchical model when dealing with allele count data and to
the second level (prior) for Pool-Seq data. As previously pro-
posed and discussed (Nicholson et al. 2002; Coop et al. 2010;
Gautier et al. 2010a), for each SNP i and population j an
instrumental variable «; taking value on the real line is fur-
ther introduced such that e;; = min(1, max(0, a};)). As repre-
sented in Figure 1, three different subclasses of models are
considered (each with their allele and read counts version).
They are hereafter referred to as (i) the core model (Figure
1A), (ii) the standard covariate (STD) model (Figure 1B),
and (iii) the auxiliary variable covariate (AUX) model (Figure
1C). Note that the core model is nested within the STD
model, which is itself nested within the AUX model.

The core model

The core model (Figure 1A) is a multivariate generalization of
the model by Nicholson et al. (2002) that was first proposed
by Coop et al. (2010). For each SNP i, the prior distribution of
the vector o = {aj}; ; is multivariate Gaussian,

of A, m; ~ NJ(7Ti1J§7Ti(1_7Ti)A71)a 2
where 1; is an all-one vector of length J, the precision matrix A

is the inverse of the (scaled) covariance matrix Q (A = Q1)
of the population allele frequencies, and ; is the weighted

mean reference allele frequency that might be interpreted
as the ancestral population allele frequency (Coop et al.
2010; Pickrell and Pritchard 2012). The #; are assumed
B-distributed:

~ B(aﬂ'§bﬂ')- 3

7Ti|a777 b’TT

In such models, the parameters a,. and b, are frequently fixed.
For instance, in BayEnv2 (Coop et al. 2010), a,, = b, = 1, lead-
ing to a uniform prior on 7; over the (0, 1) support. However,
these parameters may be easily estimated from the model by
specifying a prior distribution on the mean p, = a,/(a + bx)
and the so-called “sample size” v, = a, + b, (Kruschke 2014).
Hence, a uniform and an exponential prior distribution are re-
spectively considered for these two parameters,

A
an + g

Mp ~ Unif(0;1) “@

and
vp = ay + by ~ Exp(1). (5)

Finally, a Wishart prior distribution is assumed for the pre-
cision matrix A,

1
Alp ~ W) (;IJ,p); ©)

ie., w(Alp) = ((p/2)""2 /T (p/2))|A|"VZe 02N
being the identity matrix of size J). For p =J this is strictly
equivalent to the parametrization introduced in Coop et al.
(2010) who eventually came to fix p = J. Here, weaker in-
formative priors are also explored with 0 < p <J (e.g., Gelman
et al. 2003, p. 581), leading to so-called singular Wishart dis-
tributions. As will become apparent, p = 1 appears as the best
default choice. Note, however, that inspection of the full con-
ditional distribution of A (see Supporting Information, File S1)
suggests the influence of the prior might become negligible
with increasing number of SNPs I and populations J.

The STD model

The STD model represented in Figure 1B extends the core
model as Coop et al. (2010) proposed and allows us to evalu-
ate association of SNP allele frequencies with a population-
specific covariable vector Z. Note that Z is a (preferably
scaled) vector of length J containing for each population the
measures of interest. Under the STD model,the prior distribu-
tion of the vector «; is multivariate Gaussian for each SNP i:

of|A, By, i ~ Ny(mily + BiZ;mi(1 — m)A™?). @)

The prior distribution for the correlation coefficients (B;) is
assumed uniform:

Bi ~ Unif(Bmin; Bmax) €)

Unless stated otherwise, By = — 0.3 and B, = 0.3 instead
of B, = — 0.1 and B,,,x = 0.1 as in Coop et al. (2010).
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C  Auxiliary variable covariate model (AUX)
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= @ Pl i 5 pi0)

o =

U (Bmin Bmax) ~ Ising (bjg; P) U (Bmini Smax) |~ 1sing (big; P)

&

~ Ny (midy + 8:8: 2557 (1 - w)Q) ~ Ny (midy + 8:8: 24 ms(1 — w)Q)

~ Bin (min(1, max(0, a$;))in;)

Yig, Tij|vij ~ Bin (min(l‘mlx(OAu;J)),na-J)

Tij,Cij |rij ~ Bin (%jl A c,—]—)

Figure 1 (A-C) Directed acyclic graphs for the core (A), the standard (B) and auxiliary variable (C) hierarchical Bayesian models as considered in this
study and implemented in the BayPass software. See the main text for details about the underlying parameters and modeling assumptions.
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The AUX model

The AUX model represented in Figure 1C is an extension of
the STD model that consists of attaching to each locus re-
gression coefficient B; a Bayesian (binary) auxiliary variable
;. In a similar population genetics context, this modeling was
also proposed by Riebler et al. (2008) to identify markers
subjected to selection in a genome-wide scan for adaptive
differentiation (under a #-model). In the AUX model, the
auxiliary variable actually indicates whether a specific SNP
i can be regarded as associated with the covariable vector Z
(6;=1) or not (6; =0). As a consequence, the posterior
mean of §; may directly be interpreted as a posterior proba-
bility of association of the SNP i with the covariable, from
which a Bayes factor (BF) is straightforward to derive (Gautier
etal. 2009). Under the AUX model, the prior distribution of the
vector of is multivariate Gaussian for each SNP i:

of |A, B, 8, i ~ NJ(TFilJ +8:iBiZ; mi(1 — 771')/\_1)- C)

Assuming information about marker positions is available, the
8;’s auxiliary variables also make it easy to introduce spatial
dependency among markers. In the context of high-through-
put genotyping data, SNPs associated to a given covariable
might indeed cluster in the genome due to LD with the un-
derlying (possibly not genotyped) causal polymorphism(s).
To learn from such positional information, the prior distribu-
tion of & = {8}, ), the vector of SNP auxiliary variables,
takes the general form of a 1D Ising model with a parame-
terization inspired from Duforet-Frebourg et al. (2014),

7(8|P, bys) o P1 (1—P)% e (10)
where s; = Zf;l 15,-1 (respectively s = I — s1) are the num-
bers of SNPs associated (respectively not associated) with the
covariable, and n = Zi~j15i:5j is the number of pairs of con-
secutive markers (neighbors) that are in the same state at the
auxiliary variable (i.e., §; = 6;11). The parameter P corre-
sponds to the proportion of SNPs associated to the covariable
and is assumed B-distributed:

P~ B(ap,bp). (11)

Unless stated otherwise, ap = 0.02 and bp = 1.98. This
amounts to assuming a priori that only a small fraction of
the SNPs (ap/(ap + bp) = 1%) are associated to the covari-
able, but within a reasonably large range of possible values
(e.g., P[P >10%] = 2.8% a priori). Importantly, integrating
over the uncertainty on the key parameter P allows us to deal
with multiple-testing issues.

Finally, the parameter bj, called the inverse temperature
in the Ising (and Potts) model literature, determines the
level of spatial homogeneity of the auxiliary variables be-
tween neighbors. When by, = 0, the relative marker position
is ignored (no spatial dependency among markers). This is
thus equivalent to assuming a Bernoulli prior for the §;’s:
6; ~ Ber(P) as in Riebler et al. (2008). Conversely, bis >0

leads us to assume that the §;’s with similar values tend to
cluster in the genome (the higher the bj is, the higher the
level of spatial homogeneity). In practice, bj; = 1 is com-
monly used and values of bj; =1 are recommended. Note
that the overall parametrization of the Ising prior assumes
no external field and no weight (as in the so-called com-
pound Ising model) between the neighboring auxiliary var-
iables. In other words, the information about the distances
between SNPs is therefore not accounted for and only the
relative positions of markers are considered. Hence, marker
spacing is assumed homogeneous.

Materials and Methods
Markov chain Monte Carlo sampler

To explore the different models and estimate the full poste-
rior distribution of the underlying parameters, a Metropolis—
Hastings within Gibbs Markov chain Monte Carlo (MCMC)
algorithm was developed (see File S1 for a detailed descrip-
tion) and implemented in a program called BayPass. The
software package containing the Fortran 90 source code, a
detailed documentation, and several example files is freely
available for download at http://www1.montpellier.inra.fr/
CBGP/software/baypass/. Unless otherwise stated, a MCMC
chain first consists of 20 pilot runs of 1000 iterations each,
allowing us to adjust proposal distributions (for Metropolis
and Metropolis—Hastings updates) with targeted acceptance
rates lying between 0.2 and 0.4 to achieve good convergence
properties (Gilks et al. 1996). Then MCMC chains are run
for 25,000 iterations after a 5000-iterations burn-in period.
Samples are taken from the chain every 25 post-burn-in iter-
ations to reduce autocorrelations, using a so-called thinning
procedure. To validate the BayPass samplert, an independent
implementation of the core model was coded in the Bugs
language and run in the opensucs software (Thomas et al.
2009) as detailed in File S2. Analyses of some (small) test
data sets using both implementations gave consistent results
(data not shown).

Finally, as a matter of comparison, in the analysis of prior
sensitivity in ) estimation, the BayEnv2 (Giinther and Coop
2013) software was also used with default options except the
total number of iterations was set to 50,000.

Estimation and visualization of Q

For BayPass analyses, point estimates of each element of
Q consisted of their corresponding posterior means com-
puted over the sampled matrices. For BayEnv2 analyses,
the first 10 sampled matrices were discarded and only the
90 remaining sampled ones were retained. As a matter of
comparison, the frequentist estimate of ) as proposed by
Bonhomme et al. (2010) and implemented in the Fik package
was also considered. Briefly, the rik estimator of the co-
variance matrix relies on a neighbor-joining algorithm on
the Reynolds pairwise population distances matrix to build
a population tree from which the covariance matrix is de-
duced (after midpoint rooting of the tree).
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For visualization purposes, a given Q estimate was trans-
formed into a correlation matrix P with elements pij = @/
\/ @jiwjj, using the cov2cor() R function (R Core Team 2015).
The graphical display of this correlation matrix was done
with the corrplot() function from the R package corrplot
(Wei 2013). In addition, hierarchical clustering of the under-
lying populations was performed using the hclust() R func-
tion, considering 1 — p; as a dissimilarity measure between
each pair of populations i and j. The resulting bifurcating tree
was plotted with the plot.phylo() function from the R pack-
age ape (Paradis et al. 2004). Note that the latter represen-
tation reduces the correlation matrix into a block-diagonal
matrix, thus ignoring gene flow and admixture events.

Computation of the metric to compare Q) matrices

The metric proposed by Forstner and Moonen (2003) for
covariance matrices and hereafter referred to as the FMD
(for Forstner and Moonen Distance) was used to compare
the different estimates of ) and to assess estimation preci-
sion and robustness in the prior sensitivity analysis. Let £
and Q, be two (symmetric positive definite) covariance ma-
trices with rank J; the FMD distance is defined as

J
> In?i(Q1, Q) (12)

Jj=0

FMD(Q1,Q3) =

where A;(4, ;) represents the jth generalized eigenvalue
of the matrices ; and €, that were all computed with the
R package geigen (Hasselman 2015).

Computation and calibration of the XtX statistic

Identification of SNPs subjected to adaptive differentiation re-
lied on the XtX differentiation measure introduced by Giinther
and Coop (2013). This statistic might be viewed as a SNP-
specific Fst explicitly corrected for the scaled covariance of
population allele frequencies. For each SNP i, XtX was esti-
mated from the T MCMC (post-burn-in and thinned) param-
eters sampled values, o (t), ;(t), and A(t), as

s Ly e OA0 e ()
_TZW (1—m(t)

t=1 1

(13)

To provide a decision criterion for discriminating between
neutral and selected markers, i.e., to identify outlying XtX, we
estimated the posterior predictive distribution of this statistic
under the null (core) model by analyzing pseudo-observed
data sets (POD). PODs are produced by sampling new obser-
vations (either allele or read count data) from the core in-
ference model with (hyper)parameters a,, b,, and A (the
most distal nodes in the Directed Acyclic Graph of Figure 1)
fixed to their respective posterior means obtained from the
analysis of the original data. The sample characteristics are
preserved by sampling randomly (with replacement) SNP
vectors of n;’s (for allele count data) or ¢;’s (for read count
data) among the observed ones. For Pool-Seq data, haploid
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sample sizes are set to the observed ones. The R (R Core Team
2015) function simulate.baypass() available in the BayPass
software package was developed to carry out these simula-
tions. The POD is further analyzed using the same MCMC
parameters (number and length of pilot runs, burn-in, chain
length, etc.) as for the analysis of the original data set. The XtX
values computed for each simulated locus are then combined
to obtain an empirical distribution. The quantiles of this em-
pirical distribution are computed and are used to calibrate the
XtX observed for each locus in the original data: e.g., the 99%
quantile of the XtX distribution from the POD analysis provides
a 1% threshold XtX value, which is then used as a decision
criterion to discriminate between selection and neutrality.
Note that this calibration procedure is similar to the one used
in Vitalis et al. (2014) for the calibration of their SNP KLD.

Population association tests and decision rules

Association of SNPs with population-specific covariables is
assessed using BFs or what may be called “empirical Bayesian
P-values” (eBP). Briefly, for a given SNP, BF compares mod-
els with and without association while eBP is aimed at
measuring to which extent the posterior distribution of the re-
gression coefficient B; excludes 0. Note that eBPs are not
expected to display the same frequentist properties as classi-
cal P-values.

Two different approaches were considered to compute
BFs. The first estimate (hereafter referred to as BFj) relies
on the importance sampling algorithm proposed by Coop
et al. (2010) and uses MCMC samples obtained under the
core model (see File S3 for a detailed description). The sec-
ond estimate (hereafter referred to as BFy,) is obtained from
the posterior mean u(8;) of the auxiliary variable §; under the
AUX model,

(8;) b
BFy, — M0 bp (14)
1— () @

where /L/(S\i) /(11— ,u/(ﬁ\i)) is the (estimated) posterior odds
that the locus i is associated to the covariable and ap/bp is
the corresponding prior odds (Gautier et al. 2009). Hereby,
BF . is derived for the AUX model only with b, = 0 (the prior
odds being challenging to compute when bjs # 0). In
practice, to account for the finite number T of MCMC sampled
values, u(8;) is set equal to (T —0.5)/(T — 1) [respectively,
0.5/(T — 1)] when the posterior mean of the §; = 1 (or O,
respectively). Note that, through the prior on P, the compu-
tation of BF . explicitly accounts for multiple-testing issues.
BFs are generally expressed in deciban (dB) units [via the
transformation 10 log,,(BF)]. Jeffreys’ rule (Jeffreys 1961)
provides a useful decision criterion to quantify the strength
of evidence (here in favor of association of the SNP with
the covariable), using the following dB unit scale: “strong
evidence” when 10 < BF < 15, “very strong evidence” when
15 < BF < 20, and “decisive evidence” when BF > 20.

For the computation of eBPs, the posterior distribution
of each SNP was approximated as a Gaussian distribution
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N(M/(.B\i),a-z(ﬁi)), where w(B;) and o(B;) are the estimated
posterior mean and standard deviation of the corresponding
B;. The eBPs are further defined as

05— q>(@> D
a(B;)

where ®(x) is the cumulative distribution function of the
standard normal distribution. Roughly speaking, a value of
B might be viewed as “significantly” different from O at a level
of 107BP%, Two different approaches were considered to
estimate the moments of the posterior distribution of the
Bi’s. The first one, detailed in File S3, relies on an importance
sampling algorithm similar to the one mentioned above and
thus uses MCMC samples obtained under the core model. The
resulting eBP estimates are hereafter referred to as eBP;;. The
second approach relies on posterior samples of the MCMC
obtained under the STD model. The resulting eBP estimates
are hereafter referred to as eBPpyc.

Note finally, that for estimating BF. (under the AUX
model) and eBP,,. (under the STD model), the value of A
was fixed to its posterior mean as obtained from an initial
analysis carried out under the core model.

eBP = —log, (1 -2 (15)

Simulation study

Simulation under the inference model: Simulations under
the core or the STD inference models defined above (Figure 1)
were carried out using the function simulate.baypass() avail-
able in the BayPass software package. Briefly, a simulated
data set is specified by the Q-matrix, the parameters of the
B-distribution for the ancestral allele frequencies (a, and b),
and the sample sizes. As a matter of expedience, ancestral
allele frequencies <0.01 (respectively above 0.99) were set
to 0.01 (respectively 0.99) and markers that were not poly-
morphic in the resulting simulated data set were discarded
from further analyses. For the generation of PODs (see
above), the n;’s (or the c;’s for Pool-Seq data) were sampled
(with replacement) from the observed ones and for the
power analyses, these were fixed to n; = 50 for all the pop-
ulations. To simulate under the STD model, the simulated
Bi’s (SNP regression coefficients) were specified and the
population covariable vector Z was simply taken from the
standard normal cumulative distribution function such that
% = @(0.014+0.98((G—1)/(J — 1))) for the jth population
(of the J ones).

Individual-based simulations: Individual-based forward-in-
time simulations under more realistic scenarios were carried
out under the Simupop environment (Peng and Kimmel 2005)
as described in de Villemereuil et al. (2014). Briefly, three
scenarios corresponding to (i) a highly structured isolation
with migration (HsSIMM-C) model, (ii) an isolation with mi-
gration (IMM) model, and (iii) a stepping-stone (SS) sce-
nario were investigated. For each scenario, one data set
consisted of 320 individuals belonging to 16 different popu-
lations that were genotyped for 5000 SNPs regularly spread

along 10 chromosomes of 1 M length. Polygenic selection
acting on an environmental gradient (see de Villemereuil
et al. 2014 for more details) was included in the simulation
model by choosing 50 randomly distributed SNPs (among
the 5000 simulated ones) and assigning them a selection
coefficient s; calculated as a logistic transformation of the
corresponding population-specific environmental variable
Es, following s; = s((1 — e #Es) /(1 + e PEs)) (with s = 0.004
and B8 = 5). For each individual, the overall fitness was finally
derived from their genotypes, using a multiplicative fitness
function.

To assess the performance of the AUX model in capturing
information from SNP spatial dependency, data sets displaying
stronger LD were generated under HSIMM-C (the least favor-
able scenario, see Results) by slightly modifying the corre-
sponding script available from de Villemereuil et al. (2014).
The resulting HsSIMMId-C (for HsIMM-C with LD) data sets
each consisted of 5000 SNPs spread on five smaller chromo-
somes of 4 cM (leading to a SNP density of ~1 SNP every 4 kb,
assuming 1 cM = 1 Mb). In the middle of the third chromo-
some, a locus with a strong effect on individual fitness was
defined by two consecutive SNPs strongly associated with
the environmental covariable (such that s =0.1 and 8 =1
in the computation of s;, as defined above). Note that for all
the individual-based simulations described in this section,
SNPs were assumed in complete linkage equilibrium in the
first generation.

Comparison with different genome-scan methods: In ad-
dition to analyses under the models implemented in BayPass
(see above), the HSIMM-C, IMM, and SS individual-based
simulated data sets were analyzed with five other popular or
recently developed genome-scan approaches. First, these
include BayeScan (Foll and Gaggiotti 2008), which is a
Bayesian covariate-free approach that identifies overly
differentiated markers (with respect to expectation under
a migration—drift equilibrium demographic model) via a
logistic regression of the population-by-locus Fst on a
locus-specific and population-specific effect. The decision
criterion was based on a Bayes factor that quantifies the sup-
port in favor of a nonnull locus effect. Second, the recently
developed BayScenv (de Villemereuil and Gaggiotti 2015)
model was also used. It is conceived as an extension of BayeS-
can, incorporating environmental information by including a
locus-specific regression coefficient parameter (noted g) in the
above-mentioned logistic regression. The decision criterion to
assess association with the covariate was based on the esti-
mated posterior probability of g being nonnull. In practice, to
limit computation burden for both BayeScan (version 2.1) and
BayScenv, default MCMC parameter options of the programs
were chosen except for the length of the pilot runs (set to
1000), the length of the burn-in period (set to 10,000), and
the number of sampled values (set to 2500). A third and cova-
riate-free approach consisted of computing the Fix statistics
(which might be viewed as the frequentist counterpart of the
XX described above) as described in Bonhomme et al. (2010).
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The fourth considered method relied on latent factor mixed
models (LFMM) as implemented in the trvm (version 1.4)
software (Frichot et al. 2013) to detect association of allele
frequencies differences with population-specific covariables
while accounting for population structure via the so-called
latent factors. Following de Villemereuil et al. (2014), who
analyzed the same data sets, the prior number of latent factors
required by the program was set to K = 15. Note also that
LFMM analyses were run on individual genotyping data rather
than population allele frequencies, which were previously
shown to display better performance (de Villemereuil et al.
2014). For each data set, the decision criterion to assess asso-
ciation of the SNP with the environmental covariable relied on
a P-value that was either computed based on a single analysis
(denoted as Lrmm) or derived after combining Z scores from 10
independent analyses (denoted as 1rmm-10rep) following the
procedure described in the trvm (version 1.4) manual. Finally,
the data sets were also analyzed with BayEnv2 (Coop et al.
2010), following a two-step procedure (as required by the
program) that was similar to the one performed by de
Villemereuil et al. (2014). For each data set, a first MCMC
of 15,000 iterations was run under default parameter settings
and the last sampled covariance matrix was used as an esti-
mate of . For each SNP in turn, an MCMC of 30,000 itera-
tions was further run to estimate the corresponding X'X and
BF based on this latter matrix. To facilitate automation of the
whole procedure, a custom shell script was developed.

Each analysis was run on a single node of the same computer
cluster to provide a fair comparison of computation times. To
further compare the performances of the different models, the
actual (i) true positive rates (TPR) or power, i.e., the proportion
of true positives among the truly selected loci; (ii) false positive
rates (FPR), i.e., the proportion of false positives among the
nonselected loci; and (iii) false discovery rates (FDR), i.e., the
proportion of false positives among the significant loci, were
computed from the analysis of each data set with the different
methods for various thresholds covering the range of values of
the corresponding decision criterion. From these estimates,
both standard receiver operating curves (ROC) plotting TPR
against FPR and precision-recall (PR) curves plotting (1-FDR)
against TPR could then be drawn.

Real data sets

The HSA;,, data set: This data set is the same as in Coop et al.
(2010) and was downloaded from the BayEnv2 software
Web page (http://gcbias.org/bayenv/). It consists of geno-
types at 2333 SNPs for 927 individuals from 52 human pop-
ulations of the Human Genome Diversity Project (HGDP)
panel (Conrad et al. 2006).

The BTA;n, data set: This data setis a subset of the data from
Gautier et al. (2010b) and consists of 453 individuals from
18 French cattle breeds (from 18 to 46 individuals per breed)
genotyped for 42,046 autosomal SNPs displaying an overall
minor allele frequency (MAF) >0.01. As detailed in File S4,
two breed-specific covariables were considered for association
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analyses. The first covariable corresponds to a synthetic mor-
phology score (SMS) defined as the (scaled) first principal
component of breed average weights and wither heights for
both males and females (taken from the French BRG Web
site: http://www.brg.prd.fr/). The second covariable is re-
lated to coat color and corresponds to the piebald coloration
pattern of the different breeds that was coded as 1 for pied
breed (e.g., Holstein breed) and —1 for breeds with a uni-
form coloration pattern (e.g., Tarine breed).

The LSA,s data set: This data set was obtained from whole
transcriptomes of pooled L. saxatilis (LSA) individuals be-
longing to 12 different populations (Westram et al. 2014).
These populations originate from three distinct geographical
regions (UK, the United Kingdom; SP, Spain; and SW, Swe-
den) and lived in two different ecotypes corresponding to the
so-called “wave” habitat (subjected to wave action) and
“crab” habitat (i.e., subjected to crab predation). The mpileup
file with the aligned RNA-seq reads from the 12 pools (three
countries X two ecotypes X two replicates) onto the draft
LSA genome assembly was downloaded from the Dryad Dig-
ital Repository, doi: 10.5061/dryad.21pf0 (Westram et al.
2014). The mpileup file was further processed using a custom
awk script to perform SNP calling and derive read counts for
each alternative base (after discarding bases with a Base
Alignment Quality score <25). A position was considered
variable if (i) it had a coverage of >20 and <250 reads in
each population, (ii) only two different bases were observed
across all five pools, and (iii) the minor allele was repre-
sented by at least one read in two different pool samples.
Note that triallelic positions for which the two most fre-
quent alleles satisfied the above criteria with the third allele
represented by only one read were included in the analysis
as biallelic SNPs (after filtering the third allele as a sequenc-
ing error). The final data set then consisted of allele counts
for 53,387 SNPs. As a matter of expedience, the haploid
sample size was set to 100 for all the populations because
samples consisted of pools of ~40 females with their em-
bryos (from tens to hundreds per female) (Westram et al.
2014). To carry out the population analysis of association
with ecotype and identify loci subjected to parallel pheno-
typic divergence, the habitat is considered a binary covari-
able, respectively coded 1 for the wave habitat and —1 for
the crab habitat.

Results

Performance of the core model for estimation of the
scaled population covariance matrix Q

The scaled covariance matrix 2 of population allele frequen-
cies represents the key parameter of the models considered in
this study. Evaluating the precision of its estimation is thus
crucial. To illustrate how prior parameterization might in-
fluence estimation of {2, we first analyzed the BTA,, (with
J = 18 French cattle populations) and the HSA,, (with J =
52 worldwide human populations) data sets, using both
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BayPass (under the core model represented in Figure 1A
with p = 1) and BayEnv2 (in which p =J and a, = b, =1
according to Coop et al. 2010). Note that the sampled pop-
ulations in these two data sets have similar characteristics in
terms of the overall Fst (Fst = 9.84% and Fst = 10.8% for
the cattle and human sampled populations, respectively).
The resulting estimated -matrices are hereafter denoted
as Q% and QY| respectively, for the cattle data set and
are represented in Figure 2. Similarly, for the human data
set, the resulting Q2% and QP are represented in Figure
S1. For both data sets, the comparisons of the two different
estimates of  reveal clear differences that suggest in turn
some sensitivity of the model to the prior assumption.
Analyses under three other alternative BayPass model
parameterizations, (i) p=1 and a, =b, =1, (ii) p =J,
and (iii) p =J and a, = b, = 1, confirmed this intuition
(Figure S2). For the human data set, the FMD between
the different estimates of ) varied from 1.73 (BayPass
with p =1 vs. BayPass with p=1 and a, =b, =1) to
31.1 (BayPass with p = 1 vs. BayPass with p = 52). How-
ever, for the cattle data set that contains about 20 times as
many SNPs for 3 times fewer populations, the four BayPass
analyses gave consistent estimates (pairwise FMD always
<0.5) that clearly depart from the BayEnv2 one (pairwise
FMD always >14). Note also that BayPass estimates were
in better agreement with the historical and geographic or-
igins of the sampled breeds (see Figure 2 and Gautier et al.
2010Db for further details).

Overall these contrasting results call for a detailed analysis
of the sensitivity of the model to prior specifications on both 2
(p-value) and the 7r; B-distribution parameters (a, and b,),
but also to data complexity (number and heterozygosity of
SNPs). To that end we first simulated under the core infer-
ence model (Figure 1A) data sets for four different scenar-
ios labeled SpsH1, SpsH2, SpsB1, and SpsB2. In SpsH1 and
SpsH2 (respectively SpsB1 and SpsB2), the population co-
variance matrix was set to QPP (respectively Q%) and
in SpsH1 and SpsB1 (respectively SpsH2 and SpsB2) the
7i’s were sampled from a uniform distribution over (0, 1)
[respectively a 8(0.2,0.2) distribution]. Note that the two
different 7r;-distributions lead to quite different SNP fre-
quency spectra, the uniform one approaching (ascertained)
SNP chip data (i.e., good representation of SNPs with an
overall intermediate MAF), while the 8(0.2,0.2) one is more
similar to those obtained in whole-genome sequencing exper-
iments with an overrepresentation of poorly informative
SNPs (see, e.g., results obtained on the LSA,; Pool-Seq data
below). To assess the influence of the number of genotyped
SNPs, data sets consisting of 1000, 5000, 10,000, and 25,000
SNPs were simulated for each scenario. For each set of sim-
ulation parameters, 10 independent replicate data sets were
generated, leading to a total of 160 simulated data sets (10
replicates X 4 scenarios X 4 SNP numbers) that were each
analyzed with BayEnv2 (Coop et al. 2010) and four alterna-
tive BayPass model parameterizations: (i) p =1, (ii) p=1
anda, =b, =1, (iii) p=J,and (iv) p =Jand a, = b, = 1.

As a matter of comparison, the rix frequentist estimate
(Bonhomme et al. 2010) of the covariance matrices was
also computed. FMD distances (averaged across replicates)
of the resulting ) estimates from their corresponding true
matrices are represented in Figure 3. Note that for a given
simulation parameter set, the FMD distances remained quite
consistent (under a given model parametrization) across the
10 replicates (Figure S3).

Except for the BayEnv2 and rix analyses, the estimated
matrices converged to the true ones as the number of SNPs
(and thus the information) increased. In addition, as ob-
served above for real data sets, the BayEnv2 estimates were
always quite different from those obtained with BayPass pa-
rameterized under the same model assumptions (p = npop
and a, = b, = 1). It should also be noted that reproducing
the same simulation study by using the Q5% and QPSY ma-
trices in the four different scenarios led to similar patterns
(Figure S4). Reasons for this behavior of BayEnv2 (possibly
the result of some minor implementation issues) were not
investigated further and we hereafter concentrate only on
results obtained with BayPass.

As expected, the optimal number of SNPs also depends on
their heterozygosity. Hence, when the simulated =;’s were
sampled from a 3(0.2,0.2) (Figure 3, B and D) instead of a
Unif(0,1) distribution, a higher number of SNPs were re-
quired (compare Figure 3, A and B, with Figure 3, C and D,
respectively) to achieve the same accuracy. Likewise, all else
being equal, the estimation precision was found always lower
for the SpsH1 (and SpsH2) than SpsB1 (and SpsB2) scenar-
ios. This shows that the optimal number of SNPs is an in-
creasing function of the number of sampled populations.
One might also expect that more SNPs are required when
population differentiation is lower (although this was not
formally tested here). Regarding the sensitivity of the models
to the prior definition, the parametrization with p = 1 clearly
outperformed the more informative one (p = J), most partic-
ularly for the smaller number of SNPs and more complex data
sets. Naturally, estimating the parameters a, and b, com-
pared to setting them to a, = b, = 1 had almost no effect
in the estimation precision of  for the SpsH1 and SpsB1
scenarios, their resulting posterior means being slightly >1
(~ 1.1 due probably to the simulation SNP ascertainment
scheme described in Materials and Methods). Interestingly,
however, a substantial gain in precision was obtained for
the SpsH2 and SpsB2 data sets (for which wfim ~ B(0.2,0.2)).
Hence, for the SpsB2 data sets (Figure 3D), the FMD curves
reached a plateau with the a,, = b, = 1 parameterization (for
both p =1 and p = 18) as the number of SNPs increased
whereas precision kept improving when a, and b, were
estimated.

We finally investigated to which extent estimation of a,
and b, might improve robustness to SNP ascertainment. To
that end, 10 additional independent data sets of 100,000
SNPs were simulated under both the SspH 1 and SspB1l
scenarios. For each of the 20 resulting data sets, 6 subsam-
ples were constituted by randomly sampling 25,000 SNPs
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Figure 2 (A-D) Representation of the scaled covariance matrices & among 18 French cattle breeds QEST‘X’ (A and C) estimated from BayEnv2 (Coop
etal. 2010) and ﬂg@"}f (B and D) estimated from BayPass under the core model with p = 1. Both estimates are based on the analysis of the BTA,n, data
set consisting of 42,036 autosomal SNPs (see the main text). Breed codes (and branches) are colored according to their broad geographic origins (see File
S4 and Gautier et al. 2010b for further details) with populations in red, blue, and green originating from southwestern and central France, northwestern

France, and eastern France (e.g., The Alps).

with an overall MAF >0, >0.01, >0.025, >0.05, >0.075,
and >0.10, respectively. The 120 resulting data sets (2 sce-
narios X 10 replicates X 6 MAF thresholds) were analyzed
with BayPass (assuming p = 1) by either estimating a,, and
b, or setting a,, = b, = 1. Although the estimation precision
of Q) was found to decrease with increasing MAF thresholds
(Figure S5), estimating a, and b, allowed us to clearly im-
prove accuracy in these examples. Note, however, that the
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effect of the ascertainment scheme remained limited, in par-
ticular for small MAF thresholds (MAF <0.05).

Performance of the XtX statistics to detect overly
differentiated SNPs

To evaluate the performance of the XtX statistics to identify SNPs
subjected to selection, data sets were simulated under the STD
inference model (Figure 1B), i.e., with a population-specific
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Figure 3 (A-D) FMD distances (Forstner and Moonen 2003) between the matrices used to simulate the data sets and their estimates. Simulation
scenarios are defined according to the matrix Qg used to simulated the data (Qgim = Q% in A and B and Qg = Q2% in C and D) and the sampling
distribution of the #;’s [Unif(0, 1) in A and C and 3(0.2,0.2) in B and D]. For each scenario, 10 independent data sets of 1000, 5000, 10,000, and 25,000
markers were simulated (160 data sets in total) and analyzed with BayEnv2 (Coop et al. 2010) and four alternative BayPass model parameterizations:
ip=1,(G)p="1anda, = b, = 1,(iii)p =J,and (iv) p = Jand a,, = b, = 1. As a matter of comparison, the rk frequentist estimate (Bonhomme et al.
2010) of the covariance matrices was also computed. Each point in the curves is the average of the 10 pairwise FMD distances between the underlying
Qgim and each of the §'s estimated in the 10 corresponding simulation replicates.

covariable. This simulation strategy was mainly adopted to
compare covariable-free XtX-based decision (scan for differ-
entiation) with association analyses (based on covariate
models) as described in the next section. Obviously, the
XtX is a covariable-free statistic that is powerful to identify
SNPs subjected to a broader kind of adaptive constraints, as
elsewhere demonstrated (Bonhomme et al. 2010; Giinther

and Coop 2013). Hence, two different (demographic) scenarios,
labeled SpaH and SpaB, were considered. In the scenario SpaH
(respectively SpaB), Q%™ was set equal to QPP (respectively
Q) and the ;s were sampled from a uniform distribution.
For each scenario, 25,600 SNPs were simulated of which
25,000 are neutral SNPs (i.e., with a regression coefficient

B; = 0) and 600 are SNPs associated with a normally distributed
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population-specific covariable (see Materials and Methods) and
with regression coefficients 8; = — 0.2 (n = 100), B; = — 0.1
(n = 100), B; = —0.05 (n = 100), B; = 0.05 (n = 100),
B; = 0.1 (n=100),and B; = 0.2 (n = 100). For each scenario,
10 independent replicate data sets, each with a randomized
population covariable vector, were generated. The resulting
20 simulated data sets (10 replicates X 2 scenarios) were
then analyzed with four alternative BayPass model parameter-
izations corresponding to (i) the core model (Figure 1A) with
p =1, (i) the core model by setting Q) = Qm, (iii) the STD
model (Figure 1B) by setting Q@ = Q™ and (iv) the default
AUX model (Figure 1C), i.e., with bi; = 0 and Q = osim,

As expected, under the core model, the higher |B;] is, the
higher the estimated XtX on average (Figure S6). As a matter
of expedience, for power comparisons, 1% POD thresholds
were further defined for each analysis, using the XtX distri-
bution obtained for SNPs with simulated B; = 0. Note that
the resulting thresholds were very similar to those obtained
using independent data sets (e.g., SpsH1 and SpsB1) that led
to FPR close to 1%. As shown in Table 1, the power was optimal
(> 99.9%) for strongly associated SNPs (|3;| = 0.2) in both
scenarios but remained small (< 10%) for weakly associated
SNPs. In addition, power was always higher with the SpaH
than with the SpaB data probably due to a more informative
design (three times as many populations). Likewise, estimating
Q (ie., including information from the associated SNPs)
slightly affected the performance of the XtX-based criterion
when compared to setting Q = Q™ (see Table 1 and also
the ROC curve analyses in Figure S7). Yet the resulting esti-
mated matrices 2 were close to the true simulated ones
(FMD = 2.4 across the SpaH and FMD = 0.5 across the SpaB
simulated data sets), suggesting in turn that the core model is
also robust to the presence of SNPs under selection (at least in
moderate proportion). Conversely, a misspecification of the
prior €, investigated here by similarly analyzing the SpaH (re-
spectively SpaB) data sets under the core, the STD, and the
AUX models but setting @ = QPSY (respectively & = QFW),
led to an inflation of the XtX estimates (Figure S8). The XtX
mean was in particular shifted away from J (number of
populations) expected under neutrality (see also figure 5
in Glinther and Coop 2013). As a consequence, the overall
performances of the XtX-based criterion were clearly af-
fected (see Table S1 and ROC in Figure S7).

Interestingly, under both the STD and AUX models, the
distribution of the XtX for SNPs associated to the population
covariable was similar to the neutral SNP one, whatever the
underlying B; (Figure S6). Accordingly, the corresponding
true positive rates were close to the nominal POD threshold
in Table 1. This suggests that both covariate models allow us
to efficiently correct the XtX estimates for the (“fixed”) covariable
effect of the associated SNPs.

Performance of the models to detect SNPs associated to
a population-specific covariable

The performances of the STD and AUX models to identify
SNPs associated to a population-specific covariable were
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Table 1 True positive rates (TPR) at the 1% POD threshold as a
function of the simulated |B;| values for four different model
parameterizations

Core model STD model AUX model
Core with with with
Analysis model Q=0 Q=M Q=0
|B;] =0.05 2.90 (2.30) 9.15 (3.35) 0.55 (0.95) 0.70 (1.35)
|B;] =0.1 36.3 (13.5) 82.6 (22.3) 0.45 (1.15) 0.65 (1.50)
|Bi| =0.2 100 (86.3) 100 (96.4) 0.95 (0.60) 1.10 (0.75)

TPR are given in percentages and were computed by combining results over the 10
replicate data sets for each SpaH (and SpaB given in parentheses) scenario.

further evaluated using results obtained on the SpaH and
SpaB data sets (see above). As shown in Figure 4, the impor-
tance sampling estimates of the B; coefficients (computed
from parameter values sampled under the core model) were
found less accurate than posterior mean estimates obtained
from values sampled under the STD or AUX models. For
smaller |B;|, however, the introduction of the auxiliary vari-
able (AUX model) tended to shrink the estimates toward zero
in the SpaB data sets probably due, here also, to a less power-
ful design (three times fewer populations).

Accordingly, the BFs estimated under the AUX model
(BFy) had more power to identify SNPs associated to the
population-specific covariables than the corresponding BFjs
(Table 2 and Figure S9). Indeed, although constrained by
construction to a maximal value (here 53.0 dB) that depends
both on the number of MCMC samples (here 1000) and on
the prior expectation of P (here 0.01), at the “decisive evi-
dence” threshold of 20 dB (Jeffreys 1961), the TPR for SNPs
with a simulated |B;| = 0.05 were, for instance, 81.7% with
BFp for the SpaH data compared to 31.9% with the BFjs-based
decision criterion (Table 2). For the SpaH data (but not for the
SpaB data) a similar trend was observed when comparing de-
cision criteria based on the eBP;s (relying on the importance
sampling algorithm) and the eBP,. estimated under the STD
model (see Table 2 and Figure S10). In addition, Table 2 shows
that the intuitive, but still arbitrary, threshold of 3 on the eBP
performed worse than the 20-dB threshold on the BF, particu-
larly for the smallest |3;|. This suggests that a decision criterion
rule relying on the BF,,. may be the most reliable in the context
of these models.

We next explored how a misspecification of the prior
affected the estimation of the B;’s and the different decision
criteria. As in the previous section, we considered results
obtained for the SpaH (respectwely SpaB) databsets with
analyses setting £ = QHS , (respectively Q = Qg ). Sur-
prisingly, although the importance sampling estimates of
the B;’s obtained under the core model clearly performed
poorer (particularly for the SpaB data), the estimates
obtained under the STD and AUX models were not so affected
(Figure S11). Nevertheless, if the resulting TPR and FPR
were similar to the previous ones for the SpaH data, and
for the SpaB data the power to detect associated SNPs
strongly decreased with both the BF;; and eBPj; criteria. Con-
versely, increased FPR were observed with the BF,. - (up to
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Figure 4 (A and B) Distribution of the estimated SNP regression coefficients ; as a function of tq)elr simulated values obtained fl;om analyses under the

core model (A1 and B1), the STD model (A2 and B2) and the AUX model (A3 and B3) with Q =

Q54 (for SpaH data) and Q = QBI;A (for SpaB data). For

a given scenario (SpaH and SpaB), results from the 10 replicates are combined.

22.5%) and eBP,.-based decision criteria (see Table S2 and
compare with Table 2). These results thus suggest that the
influence of model misspecification, although unpredictable,
may be critical for association studies under the STD and AUX
covariate models.

Comparison of the performances of BayPass with other
genome-scan methods under realistic scenarios

To compare the performances of the different approaches
implemented in BayPass with other popular or recently

developed methods, data sets simulated under three realistic
scenarios were considered. Following de Villemereuil et al.
(2014) (see Materials and Methods), these correspond to (i) a
HsIMM-C model, (ii) an IMM model, and (iii) a SS scenario
with polygenic selection acting on an environmental gradi-
ent. In total 300 data sets (100 per scenario), each consisting
of genotyping data on 5000 SNPs for 320 individuals belong-
ing to 16 different populations, were analyzed with BayPass
under the core model (to estimate XtX, BFj;, and eBPj), the
STD model (to estimate eBPy,. and also the XtX corrected for
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Table 2 True positive rates (TPR) and false positive rates (FPR) as a
function of:cgsasdecision criterion and them)ggel parameterization
(with Q = Q,, for the SpaH and Q = Q;, for the SpaB data
sets, respectively)

Criterion BF;s BFmc eBP; eBPp¢
FPR 0.01 (0.02) 0.39(0.11) 0.00(2.03) 0.17(0.01)
TPR (|B;] = 0.05) 31.9(4.35) 81.7(13.0) 22.7 (30.1) 69.25 (3.6)
TPR (|B;] =0.1)  98.5(47.0) 99.9 (64.1) 94.9(86.8) 99.9 (41.9)
TPR (|B;] = 0.2) 100 (99.9) 100 (99.9) 100 (100) 100 (99.5)

The thresholds are set to 20 dB for both the BF;; and BFy, Bayes factors and to 3 for
both the eBP;s and eBPy,. (empirical) Bayesian P-values. The true and false positive
rates (given in percentages) are computed by combining results over the 10 repli-
cate data sets from the SpaH and SpaB (given in parentheses) scenarios.

the fixed covariable effect), and the AUX model (to estimate
BF;s and also the corrected XtX). These data sets were also
analyzed with five other programs (see Materials and Methods),
two of which, namely BayeScan (Foll and Gaggiotti 2008) and
FIK (Bonhomme et al. 2010), implemented (only) covariate-
free approaches, and the three others, namely BayEnv2 (Coop
et al. 2010), tkmMm (Frichot et al. 2013), and BayScenv (de
Villemereuil and Gaggiotti 2015), allowed us to test for
association with a population-specific covariable.

For each scenario, average ROC and PR curves resulting
from the analyses of the 100 simulated data sets are plotted
for the different methods (and decision criteria) in Figure 5.
In addition, area under the ROC curve (AUC) together with
averaged computation times are detailed in Table 3. In agree-
ment with previous studies (e.g., de Villemereuil et al. 2014),
under such complex scenarios with polygenic selection, the
association-based methods clearly outperformed covariable-
free approaches (BayeScan, rik, and XtX-based criterion). For
the latter, however, the BayPass XtX (estimated under the
core model) always performed better than BayeScan and
FIK in all three scenarios. Surprisingly, for the HSIMM-C and
the SS scenarios, the BayEnv2 XtX-based criterion led to
higher AUC than its BayPass counterpart with a value close
to that of the BayEnv2 BF association test (Table 3).

Among the association-based methods, BayPass was found
to display similar performances (using BF;s, eBP;;, and eBPy,,.)
to LFMM-10rep, being even slightly better than single-run
LFMM analyses for the IMM and SS scenarios. Both methods
outperformed BayeScenv and Bayenv2 in all scenarios (ex-
cept the SS scenario for the latter). It should be noted that
LFMM-10rep analyses were based on individual genotyping
data (and a balanced design) that represent the most favor-
able situation (de Villemereuil et al. 2014). The BF, crite-
rion displayed similar performances in the PR analysis to
the BayPass BFjs, eBPjs, and eBPy, criteria. Nevertheless,
ROC AUC values were always found lower when considering
BFpc probably as a result of the inherent correction in the
AUX model for multiple-testing issues, which, as expected,
affects the power. Interestingly, as expected from previous
results, the XtX calculated under the STD model (and to a
lesser extent the AUX model) led here to a worthless decision
criterion (ROC AUC almost = 0.5), illustrating the efficiency
of the correction for the fixed covariable effect (Table 3).
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Finally, under the parameter options chosen to run the
different programs (see Materials and Methods), BayPass
analyses were always among the most computationally effi-
cient approaches (Table 3). For instance, under the core
model, BayPass was found to run 1.5 times faster than a single
LFMM run.

Performance of the Ising prior to account for SNP spatial
dependency in association analyses

To evaluate the ability of the AUX model Ising prior to capture
SNP spatial dependency information, 100 data sets simulated
under the HsIMMId-C scenario (see Materials and Methods)
were analyzed under the AUX model with three different
parameterizations for the Ising prior: (i) bi; = 0 (no spatial
dependency), (ii) b;s = 0.5, and (iii) b;; = 1. For each data
set, analyses with and without the causal variants were car-
ried out and the required estimate of the covariance matrix
was obtained from a preliminary analysis performed under
the core model. As shown in Figure 6, increasing b;s improved
the mapping precision. Indeed, both a noise reduction at
neutral position and a sharpening of the 95% envelope (con-
taining 95% of the 8; posterior means across the 100 simu-
lated data sets) around the selected locus can be observed
(e.g., compare Figure 6A1 and A3). Interestingly, given the
considered SNP density (and level of LD), excluding the causal
variants had only a marginal effect on the overall results.

Analysis of the French cattle SNP data

The XtX estimates were obtained for the 42,046 SNPs of the
BTA,p data (Figure S12) from the previous analysis under
the core model with p = 1 (e.g., Figure 2). In agreement with
the above results, setting instead Q = QEPF;S (the estimate of
Q obtained in the latter analysis) gave almost identical XtX
estimates (r = 0.995). To calibrate the XtX’s, a POD contain-
ing 100,000 simulated SNPs was generated and further ana-
lyzed, leading to a posterior estimate of £ very close to ng;f
(FMD = 0.098). Similarly, the posterior means/gf a, and b,
obtained on the POD data set (a, = 1.44 and b,, = 3.43, re-
spectively) were almost equal to the ones obtained in the
gziginal analysis of the BTAy,, data set (a, =1.43 and
b, = 3.44, respectively). This indicated that the POD faith-
fully mimics the real data set, allowing the definition of rel-
evant POD significance thresholds on XtX to identify genomic
regions harboring footprints of selection. To that end, the
UMD3.1 bovine genome assembly (Liu et al. 2009) was first
split into 5400 consecutive 1-Mb windows (with a 500-kb
overlap). Windows with at least two SNPs displaying XtX > 35.4
(the 0.1% POD threshold) were deemed significant and over-
lapping “significant” windows were further merged to delin-
eate significant regions. Among the 15 resulting regions, two
regions were discarded because their peak XtX value was
<40.0 (the 0.01% POD threshold). As detailed in Table 4,
the 13 remaining regions lie within or overlap with a core
selective sweep (CSS) as defined in the recent meta-analysis
by Gutiérrez-Gil et al. (2015). This study combined results
of 21 published genome scans performed on European cattle
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Figure 5 (A-C) Comparison of the performances of BayPass with other genome-scan methods based on data simulated under the HsIMM-C (A1 and
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BayPass 1569



Table 3 Computation times and area under the ROC curves (AUC in
percentages) for the analyses of the HsIMM-C, IMM, and SS data
sets using the different genome-scan approaches

Mean (median)
computation

Method Criterion time, min HsIMM-C IMM  SS
BayeScan BF 529 (469) 60.13 53.81 62.05
FLK FLK 0.16 (0.16) 58.92 61.63 62.17
BayEnv2 XtX 660 (358) 70.45 61.00 72.16
BF 70.58 73.84 81.96
BAYPAss XtX 22.6 (22.2) 61.66 61.88 65.33
(core model)
Bfis 74.36 7891 82.29
eBPis 74.33 78.78 82.22
BAYPAss XtX 21.4 (17.8)2 49.85 49.16 47.72
(STD model)
eBPmc 74.15 78.76 82.22
BAYPAsS XtX 453 (44.9)? 60.60 59.82 61.08
(AUX model)
Bfmc 58.30 65.24 70.51
BayeScenv Posterior 510 (478) 66.93 62.34 70.36
probability
LFMMb P-value 33.0 (30.4)¢ 75.58 78.29 81.98
LFMM-10repb  P-value 310 (248)¢ 76.27 79.37 82.56

Computation times are averaged over the 300 analyses (100 data sets X 3 scenar-

jos).

? Not accounting for the time required to estimate the covariance matrix (obtained
here after running BayPass under the core model).

b Analyses were carried out using individual genotyping data rather than (pop-
ulation) allele count, which provides the best performance (see, e.g., de Villemer-
euil et al. 2014).

¢ Not accounting for the time required to estimate the number of latent factor K (set
here to K = 15).

populations, using various alternative approaches. The proximity
of the XtX peak allows us to define positional candidate genes
(Table 4) that have, for most regions, already been proposed (or
demonstrated) either to be under selection or to control genes
involved in traits targeted by selection (see Discussion).

To illustrate how information provided by population-
specific covariables might help in formulating or even testing
hypotheses to explain the origin of the observed footprints of
selection, characteristics of the 18 cattle populations for traits
related to morphology (SMS) and coat pigmentation (piebald
pattern) were further analyzed within the framework devel-
oped in this study. An across-population genome-wide asso-
ciation study was thus carried out under both the STD and the
AUX models (with @ = Q) allowing the computation for
each SNP of the corresponding BF;; and BF,,. estimates (Figure
S12) and eBP;; and eBPy,. estimates (Figure S13). We hereaf-
ter concentrated on results obtained with BF that are more
grounded from a decision theory point of view (and roughly
lead to similar conclusions to eBP). For both traits, the BFjg
resulted in larger BF estimates and a higher number of signif-
icant association signals (e.g., at the 20-dB threshold) than
BF . This trend was confirmed by analyzing the POD. Indeed,
the 99.9% BF;s (respectively BF.) quantiles were 24.9 dB
(respectively 18.3 dB) for association with SMS and 26.3 dB
(respectively 11.7 dB) for association with piebald pattern.
Nevertheless, at the BF threshold of 20 dB, the false discovery
rate for BF;; remained small (0.035%) and similar to the one
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obtained in the simulation studies (e.g., Table 2). Interestingly,
among the 13 regions identified in Table 4, three contained
(regions 4, 11, and 12) at least one SNP significantly associ-
ated with SMS based on the BF;; > 20 criterion and none with
the BFy > 20 criterion (although BF.>5 for the peak of
region 12, providing substantial evidence according to Jeffreys’
rule). For the piebald pattern, results were more consistent
since of the four regions (regions 3, 7, 8, and 11) that con-
tained at least one SNP with a BF;; > 20, the BF,. of the cor-
responding peak SNP was also > 20 (although lower) for all
but region 11 (although BFy,. = 14.4 for the peak, providing
strong evidence according to Jeffreys’ rule). Except for region
7 where both BF peaks lay within the KIT gene (and to a lesser
extent for region 11 with SMS), the BF peaks colocalized with
(regions 3, 4, and 8) or were very close to (<50 kb) the XtX
peaks. Accordingly, the corresponding XtX estimates de-
creased when estimated under the STD model, i.e., account-
ing for the covariables (Figure S14). For instance, the SNP
under the XtX peak dropped from 76.3 to 50.3 (from 40.7 to
19.3) for region 3 (respectively region 8). Overall, the poste-
rior means of the individual SNP B; regression coefficients
estimated under the STD model ranged (in absolute value)
from 2.2 X 1076 (respectively 1.0 X 1078) to 0.166 (respec-
tively 0.233) for SMS (respectively piebald pattern). These
estimates remained close to those derived from the impor-
tance sampling algorithm, although the latter tended to be
lower in absolute value (Figure S15). As expected from the
above simulation studies, estimates obtained under the AUX
model tended to be shrunk toward 0, which was particularly
striking in the case of SMS (Figure S15).

Finally, analyses of association with SMS were conducted
under the AUX model with three different Ising prior param-
eterizations (bjs = 0, bis = 0.5, and bjs = 1), focusing on the
1394 SNPs mapping to BTA14 (Figure 7). Under the bj; = 0
parameterization (equivalent to the AUX model analysis con-
ducted above on a whole-genome basis), four SNPs (all lying
within region 12) displayed significant signals of associa-
tion at the BF = 20-dB threshold with a peak BFy,. value of
28.5 dB at position 24.6 Mb (Figure 7A). These results,
obtained on a chromosome-wide basis, provide additional
support to the region 12 signal previously observed. They
alternatively suggest that power of the BFy,. computed on a
whole-genome basis might have been altered by the small
proportion of SNPs strongly associated to SMS due to multi-
ple-testing issues (which BF;s computation does not account
for). Hence, for SNPs mapping to BTA14, the BF;, estimated
on the initial genome-wide analysis were almost identical
to the BFj; (r =0.993) and highly correlated to the BFp,
(r = 0.805) estimated in the chromosome-wide analysis. As
expected from simulation results, increasing isg led us to re-
fine the position of the peak toward a single SNP mapping
~400 kb upstream the PLAG1 gene (Figure 7, B and C).

Analysis of the L. saxatilis Pool-Seq data

The LSA,, Pool-Seq data set was first analyzed under the
core model (with p = 1). In agreement with previous results
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Figure 6 (A and B) Comparison of the performances of three different Ising prior parameterizations for the AUX model (bis = 0, bis = 0.5, and bis = 1)
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(indicated by an arrow), a locus with a strong effect on individual fitness was defined by two consecutive SNPs strongly associated with the environ-

mental covariable.

(Westram et al. 2014), the resulting estimate of the popula-
tion covariance matrix £ confirmed that the 12 different
Littorina populations cluster at the higher level by geograph-
ical location and then by ecotype and replicate (Figure 8A).
This analysis also allowed us to estimate the XtX for each of
the 53,387 SNPs that were further calibrated by analyzing a
POD containing 100,000 simulated SNPs to identify outlier
SNPs (Figure 8). As for the cattle data analysis, the estimate
of Q on the POD was close to the matrix estimated on the
original LSA,; data set (FMD = 0.516) although the posterior
means of a, and b, were slightly higher (@, = b, =0.370
compared to a, = b, = 0.214 with the LSA, data set). In
total, 169 SNPs subjected to adaptive divergence were found
at the 0.01% POD significance threshold. To illustrate how
the BayPass models may help in discriminating between par-
allel phenotype divergences from local adaptation, analyses
of association were further conducted with ecotype (crab vs.
wave) as a categorical population-specific covariable. Among
the 169 XtX outlier SNPs, 65 (respectively 75) displayed

BFjs > 20 dB (respectively BF,. > 20 dB) (Figure 8B). The
two BF estimates resulted in consistent decisions (113 SNPs
displaying both BFy,. > 20 dB and BFy,. > 20 dB), although at
20 dB more SNPs were found significantly associated under
the AUX model (n = 176) than with BFj; (n = 117). Interest-
ingly, several overly differentiated SNPs (high XtX value)
were clearly not associated to the population ecotype covari-
able (small BF). These might thus be responding to other
selective pressures (local adaptation) but might also, for
some of them, map to sex chromosomes (Gautier 2014). As
a consequence, SNP XtX estimated under the AUX model (i.e.,
corrected for the fixed ecotype effect) remained highly cor-
related with the XtX estimated under the core model (includ-
ing for some XtX outliers) with the notable exception of the
SNPs significantly associated to the ecotype. For the latter,
the corrected XtX dropped to values generally far smaller
than the 0.01% POD threshold (Figure 8C). Finally, Figure
8D gives the posterior mean of the SNP regression coeffi-
cients, quantifying the strength of the association with the
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Table 4 Regions harboring footprints of selection based on the XtX measure of differentiation and association of the underlying SNPs
with SMS (morphology-related trait) and piebald coloration differences across the 18 French cattle breeds

Overlapping CSS3, XtX (peak BF;s—BF,c for BFs—BF, for

ID Region size in Mb size in Mb (no. studies) position) morphology piebald Candidate gene (function)

1 BTAO2: 4.17-8.64 (CSS-32 58.4 NS-NS NS-NS MSTN: 6.214-6.220
4.47 13.8 (8) (6.70) (conformation)

2 BTAO4: 76.7-78.6 (CSS-93 45.8 NS-NS NS-NS NUDCD3: 77.599-77.670
1.93 2.17 (4) (77.6) (unknown)

3 BTAO5: 18.0-19.5 CSS-103 76.3 NS-NS 69.04-52.96 KITLG: 18.318-18.377
1.50 1.77 (2) (18.5) (18.5) (pigmentation)

4 BTAOS5: 54.7-58.6 CSS-109 54.7 26.6-NS NS-NS RPS26: 57.604-57.607
3.93 22.3(9) (57.6) (57.6) (unknown)

5 BTAO6: 17.6-19.2 CSS-117 63.2 NS-NS NS-NS LEF1: 18.335-18.451
1.54 0.01 (1) (18.2) (pigmentation)

6 BTAQ6: 37.8-40.2 (CSS-123 69.4 NS-NS NS-NS LAP3: 38.575-38.600
2.40 5.09 (8) (38.6) (conformation/dairy traits)

7 BTAO6: 65.5-74.9 CSS-130 55.6 NS-NS 37.42-26.45 KIT: 71.796-71.917
9.38 15.3(12) (72.5) NS-NS (71.9) (pigmentation)

8 BTAO6: 89.6-90.6 CSS-130 40.7 NS-NS 52.07-38.76 ALB: 90.233-90.251
1.02 13.3(3) (90.2) NS-NS (90.2) (pigmentation?)

9 BTAQ7: 46.4-47.8 CSS-141 46.5 NS-NS NS-NS VDAC1: 47.248-47.273
1.48 12.5 (10) (47.3) (reproduction?)

10 BTA08: 61.4-63.3 CSS-162 49.8 NS-NS NS-NS PAX5: 61.400-61.580
1.94 0.06 (1) (61.8) NS-NS NS-NS (pigmentation)

11 BTA13: 56.6-58.6 (CSS-248 71.6 23.7-NS 26.58-NS-NS EDN3: 57.571-57.597
1.98 10.4 (5) (57.5) (58.5) (57.6) (pigmentation)

12 BTA14:22.1-28.8 (CSS-254 52.0 35.7-NS NS-NS PLAG1: 25.007-25.009
6.76 7.96 (7) (24.4) (24.6) (conformation)

13 BTA18: 13.3-16.0 (CSS-297 51.8 NS-NS NS-NS MC1R: 14.757-14.759
2.75 14.2 (10) (14.5) (pigmentation)

For each region, shown are the peak XtX value (and position in megabases) and the peak BF;s and BFy, values in deciban units (and positions in megabases) for each trait if
the evidence for association is decisive (NS if BF < 20). Also shown are the overlapping core selective sweep (CSS) regions (with their corresponding sizes and the number of
supporting studies) from the meta-analysis by Gutiérrez-Gil et al. (2015). Finally, putative underlying candidate genes (and associated candidate functions) are proposed (see

the main text).

2 Full descriptions of the CSS (including references to the original studies) are provided in Table S2 by Gutiérrez-Gil et al. (2015).

ecotype covariable. It shows that several SNPs displayed
strong association signals (‘BAI > 0.2), pointing toward can-
didate genes underlying parallel phenotype divergence. As
observed above in the simulation study and in the analysis of
the cattle data set, the AUX model estimates tended to be
shrunk toward 0, except for the highest values (correspond-
ing to SNPs significantly associated to the covariable) when
compared to the estimates obtained under the STD model
(Figure S16A). A similar trend for the B; estimates of the
strongly associated SNPs was observed with the importance
sampling estimates (Figure S16B).

Discussion

The main purpose of this study was to develop a general and
robust Bayesian framework to identify genomic regions sub-
jected to adaptive divergence across populations by extending
the approach first described in Coop et al. (2010) and Giinther
and Coop (2013). Because of the central role played in the
underlying models by the scaled population covariance ma-
trix (€2), a first objective was to improve the precision of its
estimation. To that end, instead of defining an inverse-Wishart
prior on £ as in Coop et al. (2010), a Wishart prior defined on
the precision matrix A (A = Q1) was instead considered and
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equivalently parameterized with an identity scale matrix but
varying the number of degrees of freedom (p). As the extensive
simulation study revealed, the most accurate estimates were
obtained by setting p = 1 (instead of the number of popula-
tions, which is equivalent to Coop et al. 2010), leading to a
weaker (and singular) informative Wishart prior. Although
flexible, the purely instrumental nature of the € prior param-
eterization considered in our models makes it difficult to in-
corporate prior and possibly relevant information about the
populations under study. For instance, a spatially (Guillot
et al. 2014) or even phylogenetically explicit prior might rep-
resent in some context attractive alternatives, borrowing for
the latter on population genetics theory to model the effect of
the demographic history on the covariance matrix (Pickrell
and Pritchard 2012; Lipson et al. 2013). Apart from investigat-
ing different Q prior specification, additional levels in the
hierarchical models were also introduced to estimate the pa-
rameters of the (B) prior distribution on the ancestral allele
frequency. Interestingly, estimating these parameters im-
proved robustness to the SNP ascertainment scheme, in
particular when the allele frequency spectrum is biased to-
ward poorly informative SNPs as generally obtained with
data from whole-genome sequencing experiments (e.g.,
Pool-Seq data). Simulation results on MAF filtered data sets


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.181453/-/DC1/FigureS16.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.181453/-/DC1/FigureS16.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.181453/-/DC1/TableS2.pdf
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Figure 7 (A-C) Results of the BTA14 chromosome-wide association analyses

with SMS under three different Ising prior parameterizations of the AUX

model: (A) bis = 0, (B) bis = 0.5, and (C) bis = 1. Plots give, for each SNP, the posterior probability of being associated (P[5; = 1|data]) according to their

physical position on the chromosome. The main plot focuses on the region s
line) while results over the whole chromosome are represented in the top left
evidence (corresponding to BF = 20 dB).

also suggested that these additional levels might reduce
sensitivity of the models to SNP ascertainment bias charac-
terizing genotyping data obtained from SNP chip. Finally,
inclusion of a moderate proportion of SNPs under selection
did not significantly affect estimation of . Overall, it can be
concluded that the core model parameterized with a weakly
informative Wishart prior (p = 1) and that includes the es-
timation of the parameters a, and b, provides a general

urrounding the candidate gene PLAG1 (positioned on the vertical dotted
inset. In A, the horizontal dotted line represents the threshold for decisive

robust and accurate approach to estimate ) even with a few
thousand genotyped SNPs. It should also be noted that it out-
performs previous implementations carried out under a similar
hierarchical Bayesian framework, as in the BayEnv2 software
(Coop et al. 2010), or relying on moment-based estimators
(Bonhomme et al. 2010; Pickrell and Pritchard 2012; Lipson
et al. 2013) (see, e.g., Figure 3). As the latter are based on
sample allele frequencies, they also remain more sensitive to
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sample size (and coverage for Pool-Seq data) and, more impor-
tantly, they do not allow combining estimation of both the an-
cestral allele frequencies and covariance matrix that represent a
serious issue for small and/or unbalanced designs. Finally, as
briefly sketched with visualizations based on correlation plot or
hierarchical trees in the present study, the estimation procedure
implemented in the BayPass core model might be quite relevant
for demographic inference purposes since the matrix  has
already been shown to be informative about the population
history (Pickrell and Pritchard 2012; Lipson et al. 2013).
Accounting for Q renders the identification of SNPs sub-
jected to selection less sensitive to the confounding effect of
demography (Bonhomme et al. 2010; Giinther and Coop
2013). To that end the XtX introduced by Giinther and Coop
(2013) provides a valuable differentiation measure for a
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genome scan of adaptive divergence. While XtX might be
viewed as a Bayesian counterpart of the FLK statistic (Bonhomme
et al. 2010), its computation allows considering population
histories more complex than bifurcating trees (i.e., including
migration or ancestral admixture events), not to mention im-
proved precision in the estimation of the underlying Q. For
practical purposes, however, defining a significance threshold
for the XtX remains challenging. Indeed, although the XtX are
expected under the neutral model to be chi-square distributed
(Glinther and Coop 2013), the Bayesian (hierarchical) model-
based procedure leads to shrinking the XtX posterior mean
toward the prior mean (Gelman et al. 2003). As a conse-
quence, an empirical posterior checking procedure, similar in
essence to the one previously used in a similar context (Vitalis
et al. 2014), was evaluated here. It represents a relevant



alternative to an arbitrary threshold although it comes at a cost
of some additional computational burden. The procedure in-
deed consists of analyzing (POD) data simulated under the
inference model with hyperparameters , a,;, and b, set equal
to those estimated on the real data. Comparing the Q, a,;, and
b estimates obtained on the POD to the original ones ensures
that the simulated data provide good surrogates to neutrally
evolving SNPs under a demographic history similar to that of
the sampled populations. More generally, given the efficiency
of the simulation procedure, such simulated data sets might
also be relevant to investigate the properties of other estima-
tors of genetic diversity or to evaluate the robustness of various
approaches to demographic confounding factors. In the con-
text of this study, a better estimation of {2 was hence shown to
improve the performance of the XtX-based differentiation test
and association studies with population-specific covariables
under the STD and AUX covariate models.

Based on the STD model, Coop et al. (2010) relied on
importance sampling (BFjs) estimates of the BF to assess as-
sociation of allele frequency differences with population-
specific covariables. A major advantage of this algorithm
stems from its computational efficiency, since only parameter
samples drawn from the core model are required. However,
the simulation study showed that estimating the B; regres-
sion coefficients with this approach tended to bias (some-
times strongly) the estimates toward zero, as opposed to
the posterior means from MCMC parameter values sampled
under the STD model. Accordingly, the performances of de-
cision criteria based on eBPs that measure to which extent the
posterior distribution of the 3; departs from 0 were generally
poorer for the eBP;; than for the BFp.. In addition, while a
POD calibration similar to the XtX one considered above is
straightforward to apply in practice, eBP (eBP;; and eBPy,.)
and BFj; could not per se deal with multiple-testing issues. As
previously proposed in a similar modeling context (Riebler
et al. 2008), introducing binary auxiliary variables attached
to each SNP to indicate whether they are associated to a given
population covariable allows us to circumvent these limita-
tions. The resulting BF,,. showed indeed improved power at a
stringent decision threshold in the simulation study under
the inference model compared to BFjs. In analyses of real data
sets, whereas BF;; estimates were found similar to the BF .
ones in analysis of association with ecotype in the Littorina
data set, they led to inflated estimates with the cattle data
and thus more (possibly false) significant signals. As shown
by analyses on data sets simulated in more realistic scenarios,
the intrinsic multiple-testing correction (through the prior on
the auxiliary variable) might in turn affect the power of the
BFp. decision-based criterion. This might explain differences
between the results obtained with genome-wide and
chromosome-wide analyses of association with the morphology
trait in cattle for the region surrounding the PLAG1 gene
(BTA14). Besides, in the context of dense genomic data,
the AUX model might also be viewed as relevant to more
focused analyses for validation (e.g., of genome-wide BFjs
signals) and fine-mapping purposes. Hence, the Ising prior

on the SNP auxiliary variable provides a straightforward and
computationally efficient modeling option to account for the
spatial dependency among the neighboring markers
(Duforet-Frebourg et al. 2014). Prior definition of the b pa-
rameter represents, however, a first limitation of the AUX
model, as defined in this study, and estimating it via an ad-
ditional hierarchical level would be computationally de-
manding due to the handling of the normalizing constant
(e.g., Marin and Robert 2014, Chap. 8.3). Comparing the
results from different analyses with increasing values of b
thus appears as a valuable empirical strategy. More impor-
tantly, it should also be noted that the Ising prior essentially
consists of a local smoothing of the association signals whose
similarity stems from a correlation of the underlying allele
frequencies (across all the populations). It thus does not fully
capture LD information contained in the local haplotype
structure. To that end further extensions of the AUX (and
STD) model following the hapFLK method (Fariello et al.
2013) that directly relies on haplotype information might
be particularly appropriate although difficult to envision for
data originating from Pool-Seq experiments.

As expected, in both simulated and real data sets, SNPs
strongly associated (|B;] > 0.2) with a given covariable
tended to be overly differentiated (high XtX value). Interest-
ingly, however, the STD and AUX covariate models remained
more powerful to identify SNPs displaying weaker associa-
tion signal (typically with |B;| < 0.1) for which the XtX values
did not overly depart from that of neutral SNPs. Assuming
information on an underlying covariable (or a proxy of it) is
available, the STD and AUX models might thus allow us to
identify SNPs within soft adaptive sweeps or subjected to
polygenic adaptation, these types of selection schemes lead-
ing to more subtle population allele frequency differences
that are difficult to detect (e.g., Pritchard et al. 2010). Con-
versely, the covariate models were shown to correct the XtX
differentiation measure for the fixed effects of the considered
population-specific covariables, refining the biological inter-
pretation of the remaining overly differentiated SNPs by
excluding these covariables as key drivers. In principle, across-
population association analyses could be performed with any
population-specific covariable like environmental covariables
(Coop et al. 2010; Giinther and Coop 2013) but also categor-
ical or quantitative traits as illustrated in examples treated in
this study. As such, the STD and AUX covariate models might
also be viewed as powerful alternatives to Qsr—Fst compari-
sons to assess divergence of quantitative traits (see Leinonen
et al. 2013, for review) by accurately incorporating genomic
information to account for the neutral covariance structure
across population allele frequencies. Yet, it should be kept
in mind that the considered models capture only linear rela-
tionships between allele frequency differences and the cova-
riable. Apart from possibly lacking power for more complex
types of dependency, the correlative (and not causative) na-
ture of the association signals might be misleading, notably
when the (unobserved) causal covariable is correlated with
the analyzed trait or with the principal axes of the covariance
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matrix (Giinther and Coop 2013). Nevertheless, increasing
the number of populations and (if possible) the number of
studied covariables should overcome these limitations. Still,
when jointly considering several covariables, this also advo-
cates for an orthogonal transformation (and scaling) step,
e.g., using principal components analysis, to better assess
their relationships and to further perform analysis of asso-
ciation on an uncorrelated set of covariables (e.g., principal
components).

Asa proof of concept, analyses were carried out on real data
sets from both model and nonmodel species. Results obtained
for the French cattle data demonstrated the versatility of the
approach and illustrated how association studies could give
insights into the putative selective forces targeting footprints
of selection. As a matter of expedience we hereby focused only
on the 13 strongest differentiation signals. As expected from
the importance of coat pigmentation in the definition of breed
standards, at least six genomic regions contained genes
known to be associated to coat color and patterning variation,
in agreement with a previous genome scan for footprints of
selection (see Gutiérrez-Gil et al. 2015, for review). These
include MCIR (region 13) that corresponds to the locus Ex-
tension with three alleles identified to date in cattle respon-
sible for the red and black (or combination of both) colors
(Seo et al. 2007). Similarly, variants localized within the KIT
(region 7) and PAX5 (region 10) genes were found highly
associated to patterned pigmentation (proportion of black) in
Holsteins, accounting for respectively 9.4% and 6.0% of the
trait variance (Hayes et al. 2010). Within region 7, KIT clus-
ters with KDR (closest to the XtX peak) and PDGFRA, two
other tyrosine kinase receptor genes that have also been pro-
posed as candidate coloration genes under selection in other
studies (Flori et al. 2009; Qanbari et al. 2014; Gutiérrez-Gil
et al. 2015). Inregion 11, the XtX peak was <25 kb upstream
of EDN3 that is involved in melanocyte development and
within which mutations were found associated to pigmenta-
tion defects in mice, humans, and also chickens (Bennett and
Lamoreux 2003; Saldana-Caboverde and Kos 2010; Dorshorst
et al. 2011). Accordingly, Qanbari et al. (2014) recently found
a variant in the vicinity of EDN3 strongly associated with coat
spotting phenotype of bulls (measured as the proportion of
their daughters without spotting) in the Fleckvieh breed.
The peak in region 2 was 100 kb upstream the KITLG gene,
which is involved in the roan phenotype (mixture of pig-
mented and white hairs) observed in several cattle breeds
(Seitzet al. 1999). Mutations in this gene have also been found
to underlie skin pigmentation diseases in human (Picardo
and Cardinali 2011). Finally, region 5 contains the LEF1 gene
(100 kb from the XtX peak) that has recently been demon-
strated to be tightly involved in blond hair color in (human)
Europeans (Guenther et al. 2014). Three other regions con-
tained genes that affect cattle body conformation. These in-
clude region 1, containing the myostatin gene (MSTN), one of
the best-known examples of economically important genes in
farm animals since it plays an inhibitory role in the develop-
ment and regulation of skeletal muscle mass (Stinckens et al.
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2011). MSTN is in particular responsible for the so-called double-
muscling phenotype in cattle (Grobet et al. 1997). Region
12 contains PLAG1 that has been demonstrated to influence
bovine stature (Karim et al. 2011). Similarly, region 6 encom-
passes the NCAPG-LCORL cluster in which several polymor-
phisms have been found strongly associated to height in
humans (Allen et al. 2010), horses (Signer-Hasler et al.
2012), and cattle (Pryce et al. 2011). However, combining
results from a genome scan for adaptive selection with a com-
prehensive genome-wide association study with milk produc-
tion traits in the Holstein cattle breed, Xu et al. (2015)
proposed the LAP3 gene (within which the XtX peak mapped)
as the main driver of a selective sweep overlapping with region
12. Regarding the four remaining regions (2, 4, 8, and 9), the
retained candidate genes corresponded to the gene within
which the XtX peak is located (NUDCD3, RPS26, and VDAC1
for regions 2, 4, and 9, respectively) or is the closest (<15 kb
from ALB for region 8). As for RPS26, although NUDCD3 has
been highlighted in other studies (e.g., Flori et al. 2009; Xu
et al. 2015), the poorly known function of these genes makes
highly speculative any interpretation of the origin of the sig-
nals. Conversely, the various and important roles played by
ALB (bovine serum albumin precursor) do not allow a clear
hypothesis to be formulated about the trait underlying the
region 8 signal. More presumably, due to the role of VDAC1
in male fertility (Kwon et al. 2013), the footprint of selection
observed in region 9 might result from selection for a trait
related to reproduction. Overall, association analyses carried
out under the covariate models revealed strong association of
SNPs within KITLG (region 3), KIT (region 7), and EDN3 (re-
gion 11) with variation in the piebald pattern across the pop-
ulations thereby supporting the hypothesis of selection on coat
coloration to be the main driver of the three corresponding
signatures of selection. These results also confirm the already
well-known key role of these genes in coloration patterning.
Interestingly, the observed association signals within ALB
(region 8) also suggest that this gene might influence coat
coloration in cattle, which, to our knowledge, has not been
previously reported. Finally, association studies on the SMS
trait suggested that PLAG1 (region 12) has been under strong
selection in European cattle and contributes to morphological
differences across the breeds. Yet, the strongest association
signal was 400 kb upstream of PLAG1, suggesting the exis-
tence of some functional variants (possibly in regulatory re-
gions) different from those already reported (Karim et al
2011), although such results need to be confirmed with denser
SNP data sets. Conversely, no association signal was found
within the selection signature under region 6, adding more
credit to selection for milk production (Xu et al. 2015) as the
main underlying adaptive constraint rather than a morpholog-
ical trait as previously hypothesized (see above). Analysis of
the L. saxatilis Pool-Seq data (Westram et al. 2014) illustrates
how BayPass can be helpful to realize a typology of the
markers relative to an ecological covariable in a nonmodel
species. In agreement with the original results, several genes
represent good candidates to underlie parallel phenotypic



divergence in this organism and might deserve follow-up val-
idation studies. From a practical point of view, however, com-
pared to combining several pairwise Fsr population tests
(Westram et al. 2014), the approach proposed here greatly
simplified the analyses and the biological interpretation of
the results while allowing both an optimal use of the data
and a better control for multiple-testing issues.

Overall, the models described here and implemented in the
software package BayPass provide a general and robust frame-
work to better understand the patterns of genetic divergence
across populations at the genomic level. They allow (i) an
accurate estimation of the scaled covariance matrix whose
interpretation gives insights into the history of the studied
populations, (ii) a robustidentification of overly differentiated
markers by correcting for confounding demographic effects,
and (iii) robust analyses of association of SNP with popula-
tion-specific covariables, giving in turn insights into the origin
of the observed footprints of selection. In practice, when
compared to BayEnv2, BayPass led to a more accurate and
robust estimation of the matrix € (and the related measures)
and thus improved the performances of the different tests. In
addition, various program options were developed to inves-
tigate the different modeling extensions, including analyses
under the STD and AUX models and exploration of the Ising
prior parameters to incorporate LD information. More gener-
ally, as demonstrated by the analysis of individual-based
simulated data sets, the method developed in this study
was found to be among the most efficient in terms of power,
robustness, and computational cost when compared to the
other state-of-the-art or recently developed genome-scan
methods. Moreover, as opposed to most of the currently avail-
able approaches, the different decision measures (XtX, eBP,
and BF) can be computed for both allele (from standard in-
dividual genotyping experiments) and read (from Pool-Seq
experiments) count data (while also accommodating missing
data). Finally, although computation times scale roughly lin-
early with the data set complexity (number of populations X
number of markers), for very large data sets, several strate-
gies might be efficient to reduce computational burden. For
instance, because estimation of  was found robust to mod-
erate ascertainment bias, one may filter low polymorphic
markers (e.g., overall MAF <0.01) since those are not infor-
mative for genome-scan purposes and/or consider subsam-
pling of the initial data set (e.g., chromosome-wide analyses).
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Figure S1: Representation of the scaled covariance matrices {2 among 52 human populations
Qb (A and C) as estimated from BavExv2 (Coop ez al., 2010) and Q0% (B and D) as esti-
mated from BayPass under the core model with p = 1. Both estimates are based on the analysis
of the HSA,, data set consisting of 2,333 autosomal SNPs (see the main text). Population
codes (and branches) are colored according to the broad group origins as defined in

(2006)) (see|Giinther and Coop| (2013)))
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Figure S2: Comparison of the estimates of the scaled covariance matrices {2ysp among the
J = 52 human populations (lower diagonal panels of the scatterplot in blue) and {2g1s among the
J = 18 French cattle breeds (upper diagonal panels of the scatterplot in red) between BAYEnv2
(Coop et all, 2010) and four alternative BayPass model parameterizations (i) p = 1; ii) p = 1

and a, = b, = 1;1iii)) p = J and ; iv) p = J and a, = b, = 1). For each pairs of (2 estimates,
the FMD distance (Forstner and Moonen|, 2003)) between the two corresponding matrices is also

given.
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Figure S3: FMD distances (Forstner and Moonen, [2003)) between the matrices used to simulate

—_

the data sets (QprSa; or ﬁ;‘?[i) and their estimates obtained with BAyExv2 (Coop et al.,2010) and
four alternative BayPass model parameterizations (i) p = 1;11))p =l anda, = b, = ;1) p=J
and ; iv) p = J and a, = b, = 1). Each boxplot contains 10 FMD distances computed with
estimates from 10 independent data sets simulated with the same parameters (scenarios SspH1,
SspH2, SspB1 or SspB2; and 1,000, 5,000, 10,000 or 25,000 markers). In total, 160 different

data sets were thus considered (10 replicates X 4 scenarios X 4 SNP numbers).
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Figure S4: FMD distances (Forstner and Moonen, |2003) between the matrices used to simulate
the data sets and their estimg}es. Simulation scenarjgs are defined according to the matrix g,
used to simulated the data (Q%"S“X in A and B; and Q‘I’;’:FX in C and D) and the parameters of the
Beta distribution used to sample the simulated ancestral allele frequencies x; (Unif(0,1) in A
and C; and Beta(0.2,0.2) in B and D). For each scenario, ten independent data sets of 1,000,
5,000, 10,000 and 25,000 markers were simulated (160 data sets in total) and analyzed with
BayEnv2 (Coop et al.l, 2010) and four alternative BayPass model parameterizations (i) p = 1;
i)p=1anda, = b, = 1;i1ii) p = Jand ; iv) p = J and a, = b, = 1). As a matter of
comparisons, the FLK frequentist estimate(Bonhomme e al., 2010) of the covariance matrices
was also computed. Each point in the curves is the average of the ten pairwise FMD distances
between the underlying €2, and each of the {2 estimated in the ten corresponding simulation
replicates.
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Figure S5: FMD distances (Forstner and Moonen,, 2003) between the matrices used to simulate
the data sets and their estimates for different SNP ascertainment schemg. Two simulation sce-

narios defined according to the matrix g, used to simulated the data (Qg?/i in A; and ﬁg‘?ﬁ in
B) were considered. Ancestral allele frequencies were sampled from a Unif(0,1) distribution.
Ten independent data sets of 100,000 SNPs were simulated per scenario and each divided in six
subsamples by randomly sampling 25,000 SNPs with a MAF>0, >0.01, >0.025, >0.05, >0.075
and >0.10 respectively. The resulting data sets were analyzed with BayPass (assuming p = 1)
by either estimating a, and b, or setting a, = b, = 1. Each box-plot contains 10 FMD distances

computed with estimates from the 10 independent data sets.
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Figure S6: Distribution of the estimated XtX of the SNPs as a function of their underlying
regression coefficient §; from analyses under different model parameterizations. For a given
scenario (SpaH and SpaB), results from the ten replicates are combined. In each plot, the solid
line represent the theoretical expectation of the XtX statistic (i.e., the number of populations J)
and the dashed line the 1% threshold defined using values obtained for SNPs with 3; = 0.
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Figure S7: Comparison of the Receiver Operating Characteristics (ROC) curves based on the
XtX statistics estimaggd under three different paramqgerizations of the core model: 1) p = 1;
i) @ = Q" (Q = Q) for SpaH data and Q = Qf; for SpaB data) and iii) © = Q™
(Q = Q™ for SpaH data and 2 = Qb for SpaB data). For a given scenario (SpaH and
SpaB), results from the ten replicates are combined. In addition, the resulting AUC (Area

Under the Curve) are indicated in the legend.
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Figure S8: Distribution of the estimated XtX of the SNPs as a function of their underlying
regression coefficient B; from analyses under different model parameterizations (same as Fig-
ure [S6| except that Q = Q™ for SpaH and Q = QY for SpaB data). For a given scenario
(SpaH and SpaB), results from the ten replicates are combined. In each plot, the solid line rep-
resent the theoretical expectation of the XtX statistic (i.e., the number of populations J) and the

dashed line the 1% threshold defined using values obtained for SNPs with §; = 0.
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Figure S9: Distribution of the BF;; (estimated under the core model) and the BF,,. (estimated
under the AUX model) expressed in dB units as a function of the regression coefficients §; of
the underlying SNPs. For a given scenario (SpaH and SpaB), results from the ten replicates are

combined.
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Figure S10: Distribution of the eBP; (estimated under the core model) and the eBP,,,. (estimated
under the STD model) as a function of the regression coefficients §; of the underlying SNPs.
For a given scenario (SpaH and SpaB), results from the ten replicates are combined.
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Figure S11: Distribution of the estimated regression coefficients 5; of the SNPs as a function of
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Figure S12: Manhattan plot summarizing results of the genome scan for footprints of selection
based on the XtX statistics (A) and association with the synthetic morphological traits (B and D)
and piebald coloration pattern (C and D) among 18 European cattle breeds. For the association
analyses, Bayes Factor were derived from an Importance Sampling algorithm (B and C) or under
the AUX model (D and E). The dotted horizontal lines represent the 0.1% POD significance
thresholds (A) and the threshold of BF = 20 dB (B, C, D and E) that corresponding to decisive
evidence according to the Jeffreys’ rule. The vertical dotted lines indicate the positions of the
footprints of selection and the underlying candidate genes are explicitly given in A (see the

main text).

12




A) XtX
i g
80 E g
o
3
2 .
w©
K . -
IR il L iy HoE v BY ool ia 5
T ——— T ——————————
1 2 3 . s . 7 8 s 1 w12 1 14 15 1 1w 18 18 0 2 2 2 24 25 2% 2728 B
Chromosome
B) eBP;s (morphology)
154
104 .
&
o .
s L e
o]
: T T T T ——
1 2 3 . s s 7 8 s o m 12 1
Chromosome
C) eBPy,c (morphology)
s
.
2 P . ) L .
PR . .
@ . . M RS - .
N D o
(3 . Ry e e -~ - ~
22 % . Fadi i R . 5
o]
— T T T T T T
1 2 3 . s s 7 8 s 1 w12 1 14 15 1 1w 18 19 0 2 2 2 24 2 2% 2728 2
Chromosome
D) eBP;s (piebald pattern)
15
104 .
[ . . M . .
7 5 wiy
o]
T —— T —— T T T
1 2 3 . s s 7 ® s 1 w12 1w 14 15 1 1w 18 19 20 2 2 2 24 25 2 2728 2
Chromosome
E) eBPy, (piebald pattern)
10
o]
o
o
G .
4 . - E
2 i SF gt i ke B Sz B R Y1 RN 12w 0 VT S L LN Y O b REN S S
e e e e B M W W e W aw
T — T T — T T T T T T T T T T
1 2 3 . s 6 7 8 o 1 w12 1w 14 15 1 1w 18 19 20 2 2 2 24 25 2 2728 2
Chromosome

Figure S13: Manhattan plot summarizing results of the genome scan for footprints of selection
based on the XtX statistics (A) and association with the synthetic morphological traits (B and D)
and piebald coloration pattern (C and D) among 18 European cattle breeds. For the association
analyses, eBP were derived from an Importance Sampling algorithm (B and C) or from the
MCMC output of the STD model (D and E). The dotted horizontal lines represent the 0.1%
POD significance thresholds (A) and the threshold of eBP = 4 (B, C, D and E). The vertical
dotted lines indicate the positions of the footprints of selection. The underlying candidate genes
are explicitly given in A.
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Figure S14: Manhattan plot summarizing results of the genome scan for footprints of selection
among 18 European cattle breeds based on the XtX statistics under the core model (A), the
STD model with the population morphology covariable (B), the piebald coloration covariable
(C) and both covariables (D). The dotted horizontal lines represent the 0.1% POD significance
thresholds. The vertical dotted lines indicate the positions of the footprints of selection. The
underlying candidate genes are explicitly given in A.
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Figure S15: Comparison of the estimates of the individual SNP regression coefficents (5;) on
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posterior mean computed from the MCMC samples generated under the STD model and iii) the
posterior mean computed from the MCMC samples generated under the AUX model.
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Figure S16: Comparison of the estimates of the individual SNP regression coefficents (8;) on the
ecotype population covariable based on i) the Importance Sampling algorithm, i1) the posterior
mean computed from the MCMC samples generated under the STD model and iii) the posterior
mean computed from the MCMC samples generated under the AUX model. The point symbols
nomenclature is the same as in the main text.
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Criterion BF; BF,.. eBP; eBP,.
FPR 0.01 (0.01) 0.13(22.5) 0.17 (0.00) 0.03 (8.57)
TPR (|8;] = 0.05) 39.5(1.00) 69.0(72.1) 63.2(0.00) 53.6(49.8)
TPR (|8; = 0.1) 99.6 (5.60) 99.9 (98.3) 99.7 (0.00) 99.8 (92.0)
TPR (|8; = 0.2) 100 (58.6) 100 (100) 100 (0.75) 100 (99.9)

Table S2: True (TPR) and False (FPR) Positive Rates as a function of the decision criterion and
the model parametrization (with = QP for the SpaH and © = QB for the SpaB data sets
respectively). The thresholds are set to 20 dB for both the BF;; and BF,,. Bayes Factors; and to
1073 for both the eBP;; and eBP,,. (empirical) Bayesian P—values. The true and false positive
rates (given in %) are computed by combining results over the ten replicate data sets from the

SpaH and SpaB (given in parenthesis) scenarios.
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File S1: Details on the Metropolis—Hastings within
Gibbs MCMC algorithm implemented in the BayPass
program

The purpose is to sample from the posterior distributions of the parameters defined in the models
represented in Figure 1. To that end, each parameter is initialised to standard moment-based estimate
and sequentially updated using a standard Metropolis—Hastings (M—H) within Gibbs MCMC algorithm.
The same notations as in the main text are used in the following.

1 Update of the y;;’s (Pool-Seq data):

The parameters y;; are updated iteratively in each population, one locus at a time. The full conditional
distribution has the form:

f(yij | ) o f(yij | afij)f(”ij | yijacij)

. o
n; .. i—Vii ALY A\
o ( j)a,y"’ (1 - a’ij)nj " (y_,,) (1 -~ y—”)
vij) Y n; n;

Because this full conditional is not of usual form, a Metropolis update is implemented. A candidate
yfj is sampled uniformly over the integer interval {kg) e lg)} where kg) =yij— 65}” and lg.) =y + 68.7).
The (integer) 68.') are adjusted for each y;; during pilot runs to obtain acceptance rates ranging between

Tmin and Thax. As a default, T, = 0.25 and Tax = 0.4 as usually recommended (Gilks e al.l [1996).
In practice however, it is important to note that each yl.cl. should take values within the (integer) interval

{y;‘;i“ . .y?}ax}, with:

. y?}i“ =0(@fr;=0) Or)’?}in = 1 (if ri; > 0)

max

max
[ ylj

=n; (if rij = C,'j) ory.

ij =n;— 1 (ifr,j < C,'j)

To account for these constraints, if yfj 1s outside this interval, the excess is reflected back; that is:

min _ ¢

o if y{; <yP™ then y, is reset to 2 Xy — y¢.

max _ ,C
ij  ~Yij

o if yl‘j > y?}a" then it is reset to 2 X y
This leads to a symmetric proposal (Yang, 2005) and the candidate value yl‘.’j is thus accepted with
probability min(1, ng)) according to the Metropolis rule where :

o _ f(yfj | )

v £l



2 Update of the o’s:

Two different algorithms are implemented in BayPass to update a/l?} (recall that ;;; = 1 A (O V a/;;.)). The
first algorithm is expected to have better mixing properties, in particular for unbalanced designs (in terms
of population representativeness), because each alfj are updated in turn (this statement has not been tested
extensively). Unless otherwise stated, the second algorithm identical to the one described by |Coop et al.
(2010), in which vectors of allele frequencies are updated iteratively, is however generally used because
computationally (slightly) faster.

2.1 Algorithm 1:

The parameters a/l?‘j are updated iteratively in each population, one locus at a time. The full conditional
distribution has the general form:

f(a;} | ) « f(a/.*. a?" A ﬂiaﬁiﬁi)f()’ij | a’ijanij)
o f( *|a " A)f()’ijldij,nij)
where ;; = o h 2 and thus a* | A ~N (I Q=A" ) Note that, for the core model
/ﬂ.(l ﬂl L. ) J J7

model B; = 0 and for the STD model ¢; = 1. Hence, from the properties of the multivariate Gaussian
(@nij = Wij CQyj. Here
C=0Q jkﬂi}‘ represents the matrix of regression coefficients and, €2x;, 2k and €2;; are blocks of the
matrice 2. For instance, for j = 1:

distribution: a;;. | ai,_j,A ~N (y(a),ij, (a),u) where pq)ij = = Ca;_ —j and o2

Q- [@n Q2
Q1 Q2
As a consequence:
R (a*— ..)2
- M ().ij o
f(a'l.*. | ) x e X@ij "’ x (1 - a/ij) s
J i

Because this full conditional is not of usual form, a (random walk) Metropolis update is implemented.

* (c)

A candidate ;" is sampled from a uniform distribution: Unlf( 6(") af + 6(“)) The 6(")’ > are

adjusted for each a/l.j during pilot runs to obtain acceptance rates rangmg between Tmin and Tmax Asa

default, 7,;, = 0.25 and T« = 0.4 as usually recommended (Gilks et al.,|1996).

As the proposal is symmetric, the candidate value aj(‘)

according to the Metropolis rule where :

is accepted with probability min(1, (/,5}1))

o)

fe1)

(@) _



2.2 Algorithm 2 (Coop et al., 2010):

This Metropolis update was adapted from (Coop et al.| (2010) (Appendix A). The vectors al?" are updated
iteratively one locus at a time. he full conditional distribution has the general form:

j=J
flaf1) o« flof A,ﬂi,ﬁi,éi)n (f (ij | @ijamiz))
j=1
— J=t
o f(af | A) (f (yij | a’ij’”ij))
j=1
Lt A X =
* * p nj=yij
o 2 of A l_l (a/fj‘:’ (1 - a/ij) ! h)
j=1
(see for a definition of Z;i;)
Because this full conditional is not of usual form, a joint Metropolis update is implemented. A vector
e

of candidate values ;" is sampled from the following Multivariate Gaussian proposal:

a© ~ MNV (Zx‘f,réﬁ”’))

where T is obtain from the Cholesky decomposition of @ = A~! (i.e., Q = TT) and the 65”)
are adjusted during pilot runs to obtain acceptance rates ranging between Ty, and Tpax. As a default,
Tmin = 0.25 and Ty, = 0.4 as usually recommended (Gilks et al., [1996).

As the proposal is symmetric, the candidate vector a/f’(c)

according to the Metropolis rule where :

is accepted with probability min(1, d/ga))

s = f (ai*,@) | )
L slern)

3 Update of the r;’s:

The parameters mr; are updated iteratively one locus at a time. The full conditional distribution has the
general form:

Flril) o f(of| A i 6i) f (i | ag, be)

-4 A N - _
o 71'1.2(1—711-) Te71 fog A Xﬂ'?” 1(1—71',‘)([”' b

a;—1-1 _1=d Ll toX Aox
ﬂ_iﬂ z(l_ﬂ_i)h,r 1 Te 2 o; Aai

(see 2.1 for a definition of o)

Because this full conditional is not of usual form, a (random walk) Metropolis—Hastings update is
implemented. A candidate ngc) is sampled from a uniform distribution whose support is centred on the
current value of ;:

i) ~ Unif (max(e, 7; - 6{), min(1 - €, 7; - 6{"))

(€ = 1078 in BayPass)
The 61(.”)’3’ are adjusted for each 7; during pilot runs to obtain acceptance rates ranging between Tpiy
and Tyax. As a default, Tpin = 0.25 and T = 0.4 as usually recommended (Gilks et al.l |1996).



As the proposal may not be symmetric, the candidate value ;) is accepted with probability min(1, zﬁl(.”))
according to the Metropolis—Hastings rule where :

w_ I (1) g 1 1)
" fil ) )

with:
© )y = 1
¢ q(ni | i) min(l—5;71',-—6?”))—max(e;7r,-—6§”))
. (c) — 1
* qlmi| 7 ) min(l—6;71'1?‘1’—61(.”))—max(e;ﬂf‘“—égm)

4 Update of A:

From the conjugacy properties a simple Gibbs update is possible consisting in directly sampling A = Q™!
in its full conditional distribution. Indeed the full conditional of A is a Wishart distribution:

i=/

FALY) o fA x| | a1

i=1

i=I
e 1 —
o |A|° S exp —E(ptr(A) + Z(’a;‘Aa;‘)]]

i=1
e 1 S
o |A|szl : exp|—5 (ptr (A) + tr( (a:‘ taZ‘A)]]]

i=1

. 1 =l
o |A|/4jzl 1 exp —Etr((ph + ) ar ta:] A)]
i=1

.. *
(see2.1{for a definition of o))
Hence:

i=J -1
A|.~W[[pIJ+Za§ta§] ;p+1]
i=1

Working on €2, Coop et al.|(2010) found an equivalent result (Appendix Af]

5 Update of a, and b,:

To update a, and b,, we follow the reparametrization in terms of mean u, = o and "sample size"
Vr = ap + by (e.g.[Kruschke, [2014). Equivalently, a, = pu,v; and b, = (1 — p;)v,. The parameters u, and
v, are updated one at a time.

. . I=L
! Note that there is a typo in eq. Al since the equation $ should read § = | ¥, (m(@ — )6 - e,)T).

~

I=L i=J
According to the notations employed here: }; (ﬁ(&; — )6, — e,)T) =Y o;lag
i=1 i=1



5.1 Update of p,:

The full conditional distribution of u, has the form:

j=I
Flunl) o« Fo | | £l v
i=1

1 1 i=I e s
(F(Vnﬂn)r(vn(l _M”))) | ] (7Ti (1 —=m) M )

Because this full conditional is not of usual form, a (random walk) Metropolis—Hastings update is
implemented. A candidate ,uff) is sampled from a uniform distribution whose support is centred on the
current value of y,:

19 < Unif (max(e, 7 — ™), min(1 — €, 7; — 6(”)))

(€ = 107* in BayPass)

6™ is adjusted during pilot runs to obtain an acceptance rate ranging between Tpi, and T As a
default, T, = 0.25 and T« = 0.4 as usually recommended (Gilks et al., [1996).

As the proposal may not be symmetric, the candidate value ,u,(f) is accepted with probability min(1, y®)

according to the Metropolis—Hastings rule where :
,’[,(/1) _

£ 1) a1 15
F 1) g | )

with:

(c) _ 1
* q(ux |'u”) " min(1-€;ur—6®)-max(€;ur—6™)

©y _ 1
* qluxn [ px7) = min(1—e;,uﬁf)—6(/1))—max(e;;1,(f)—6(ﬂ))

5.2 Update of v,:

The full conditional distribution of nu, has the form:
j=1

Forl) o« fOR] ] f Gl v
i=1

N ( I (o) )’ 1 (x4 (1 = el
r (Vn/ln) r (Vn(l - /171)) —1 !

1

Because this full conditional is not of usual form, a (random walk) Metropolis—Hastings update is

implemented. A candidate vff) is sampled from a log—normal distribution is centred on the current value

of v:
log (vff)) ~N (log (vgf)) ; 6(”))

6™ is adjusted during pilot runs to obtain an acceptance rate ranging between Tpi, and Tpax. As a
default, 7, = 0.25 and T« = 0.4 as usually recommended (Gilks et al., [1996).
As the proposal is not symmetric, the candidate value vgf) is accepted with probability min(1, ™)

according to the Metropolis—Hastings rule where :

w _ L1 a0 1)
F Ol g | v

qUave) _

where =5
90z Ivz)

(©)
*Z from the definition of the log—normal distribution.
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6 Update of the 5;’s (AUX and STD models):

The parameters S; are updated iteratively one locus at a time.

6.1 In the STD model or if 6; = 1 in the AUX model:

* .
al—;

. . . . —1 . _
To simplify further notations, let ¢; = I’ { m}a..]) where I' results from the Choleski decom

position of 2 = A~! (i.e., @ = !I'T). Note that with this transformation, ¢; ~ N; (ﬁi:I;,IJ) where

= o Z.
®= {¢f}(1..1) =T { M}
The full conditional distribution of 3; has the form:

frl) o f(B)f(&ilB)

J
o e—%(ffi_/—ﬁitb_/)z
1

J
=] _ =T
ﬁi(J_Z ¢_/fiij—%’ ,_Z ¢j2]
oc e Jj=1 Jj=1
Because this full conditional is not of usual form, a (random walk) Metropolis—Hastings update is
implemented. A candidate ﬁl@ is sampled from a uniform distribution whose support is centred on the

current value of §3;:
B9 ~ Unif (max(ming, 8; — 5¢"), min(maxg. 5 — 5))

The 6§ﬁ)’s’ are adjusted for each §; during pilot runs to obtain acceptance rates ranging between Ty
and Timax. As a default, Tnin = 0.25 and Tpax = 0.4 as usually recommended (Gilks et al.l |1996).

As the proposal may not be symmetric, the candidate value 8;( is accepted with probability min(1, wl(.ﬁ))
according to the Metropolis—Hastings rule where :

o _ £(B 1) aBi 1B
L fBi1)aBE 1)

with:
(c) N\ = 1
¢ qwi |ﬁ[) min(maxﬁ;,6',-—6Eﬁ))—max(minﬁ;ﬁ,~—6gﬂ))
o qBi 1) = :

min(max/3 ;,B;’d’ —6gﬂ))—max(min/3;ﬁf“” —6@)

6.2 If6; = O0in the AUX model

In this case, §; is simply sampled from its prior distribution since:

Bi 1 6; = 0,. ~ Unif(ming, maxg)

7 Update of the 6,’s (AUX model)

The parameters ¢; are updated iteratively one locus at a time. Since these variables are binary auxiliary
variables, the full conditional distribution is a Bernoulli distribution allowing a simple Gibbs update.
Indeed:

P(6;i1.) o P(6;]| P bis,0-p) f (| Bi,6i)

J
o P(sl(l _ P)l_(siebis(ﬂ‘iiz(sifl +]I5i=5i+1)‘l_[e_%(&ij_(siﬁi‘ﬁj)z
J=1



(see|6.1|for a definition of the definitions of ¢;; and ¢,)
Hence:

Pebis(ﬂﬁH 1415, -1) HJ'—1 o3P )’
0;|.~ Ber =

Pebis(]l‘si—l=1+]l‘5i+l=1)H;zle_%(d’ij_ﬁi‘;j)z +(1- P)ebis(ﬂéi—l=°+ﬂ5i+1=°)H;zle_T

8 Update of P (AUX model)

The full conditional distribution of P is a Beta distribution allowing a simple Gibbs update. Indeed:

fPL) o« f(P)f@B]P)
o Pl - Pyt PlERO ) - pyli-Ziol]
o P[ap+2{:15i—l](1 _ P)[bP+I—ZII:1(5,'—1]

Hence:

1 I
P|.~ Beta ap+25[;bp+1—25,-
i=1 i=1
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File S2: Implementation of the core model in
OpENBUGS

This document describe how to sample from the posterior distributions of the parameters under the
core model (Figure 1A) using the freely available OPENBUGS software(Thomas et al.| 2009). For the
sake of simplicity, only the model for allele count data is presented (Figure 1A1). In addition, following
the same notations as in the main text, it is assumed that, like in the Bayenv software (Coop et al., [2010),
ay =by=1andp =J.

1 Code of the MCMC algorithm in the BUGS language

model
{
for(i in 1:I){
for(j in 1:1){
YY[i,j]l dbinCa_tr[i,j],NN[i,j])
a_tr[i,jl<-min(1l,max(0®,alphali,jl))
}
}
for(i in 1:I){
for(j in 1:1){
pi_mat[i,jl<-p[i]
for(k in 1:)){mat_mnv[i,j,k]l<-Lambda[j,k]/(p[i]l*(1-p[i]))}
}
alphafli,1:]J] ° dmnorm(pi_mat[i,1:]],mat_mnv[i,1:],1:1])
}
Lambdal1:J,1:]] dwish(RR[1:],1:]],1)
for(i in 1:D{p[i] dunif(®,1)}
Omegall:],1:]] <- inverse(Lambda[1:],1:1])

}

Warning: In the BUGS language, writing X ~ dwish (R, v) for a matrix with rank K means f (X) =

|R|Z| X |%exp (—%tr (RX )) (Ntzoufras,[2011, p91) i.e. R is the inverse-scale (or shape) matrix. Hence
the definition of the RR matrix in the script above.

2 Preparing the data using R(R Core Team, 2015)

The following R script (that uses the function writeDatafileR by Terry Elrod: http://www.public.
iastate.edu/~alicia/stat544/writeDatafileR. txt) allows preparing input files for OPENBUGS:


http://www.public.iastate.edu/~alicia/stat544/writeDatafileR.txt
http://www.public.iastate.edu/~alicia/stat544/writeDatafileR.txt

YY=as.matrix(read.table("YY"))
NN=as.matrix(read.table("NN"))
nsnp=nrow(YY) ; npop=ncol (YY)
RR=diag(npop,npop,npop)

zz=list(I=nsnp, J=npop,YY=YY,NN=NN,RR=RR)
writeDatafileR(zz, towhere="data.openbugs")
##init values

pi=rowSums (YY) /rowSums (NN)
invT=diag(10,npop,npop)
zz=list(p=pi,invT=invT)

writeDatafileR(zz, towhere="inits.openbugs")

where YY and NN are files containing count data for the reference allele and in total respectively (SNP
by rows and population by column).

3 Running OprenBUGS in batch mode:

The model may be ran in batch mode under OpENBUGS using the following script (e.g., using the com-
mand OpenBUGS script.txt >res.log):

modelCheck(’./coremodel.txt’)
modelData(’./data.openbugs’)
modelCompile(1)
modelSetRN(1)
modelInits(’./inits.openbugs’, 1)
modelGenInits()

modelUpdate (5000)

samplesSet (Lambda)
samplesSet (Omega)
samplesSet (p)
samplesSet(a_tr)

samplesSet (deviance)
summarySet (Lambda)
summarySet (Omega)
summarySet (p)

summarySet (a_tr)

summarySet (deviance)
dicSet()
modelUpdate(1000,25,1)
summaryStats(’*’)

dicStats()

modelQuit(’y’)
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File S3: Estimating the §;’s and the Bayes Factors
(BF) under the core model using an Importance
Sampling algorithm

Here we detail the Importance Sampling algorithm used to estimate the §;’s and the Bayes Factors
under the STD model (Figure 1B in the main text) using MCMC samples drawn from the posterior
distribution of the core model. Proposed in |Coop et al.|(2010) for the Bayes Factors (Appendix B), this
approach is computationally efficient and allows to consider simultaneously any number of covariates.
However it suffers from some limitations (see the main text).

For the sake of simplicity, derivations are only presented here for allele count data. Notations are the
same as in the main text but locus indices i are omitted.

1 Estimation of the BF’s

1.1 Derivation

We hereby elaborate on the results described in the Appendix B by |(Coop et al.|(2010) By definition:

BF = P(Ml | y7n9Z)
P(Mo|y,mn)
Here:
P(M;|y.n, Z) f P(yIn o) f(o* | A .. Z) f(A)f(m)f(B)dAdmdp
and
P (Mo |y,m, Z) o f P(y | n.o) f(a* | A7) f(A)f(m)dAdm
Hence
N @) f(a* | A, 7,8, Z) f(A)f(m) f(B)dAddB

[P(y|n,a)f(a*]| A x)f(A)f(r)dAdmr

. P(y | n, ) f(A)f(m)f(B)

f flo?18mp Z)[ JE@In, a)f(a*IA,Tr)f(A)f(W)dAdw]f (ImIEitdmdp
) ff(a* | A ™8, Z)( PB(ylna)f(a* | A ) f(A)f(m)f(B)

- fl@*[Am) | [Pyln,a)f(o*|Am) f(A)f(r)dAdr

ff(a* | A, 7, B, Z)

fla* [ A, )

] Jf(m) f(B)dAdmdp

f(a*, A |y, m, Mo) (M) f () f(B)dAdmdp

fﬁ ( f w(@* A 7B Z) f(a* A | y,n. M) f(A)f(w)dAdTr) f®)dp

By B | (o, A .. 2|



(where T results from the Choleski decomposition of Q = A™!,i.e.,, Q = TT):

Note that denoting (as in File S1), ¢; = I'"! { Sy T }(1 ) and ® = {¢-j}(1..1) = ! { BiZ; }

fla*1Amp2) fla*IAmp2Z) [3am|lyra
a)(a*’ A, B, Z) = T | A = f(a* A 77) = e(.z— ] (.r— ]

Therefore, the Bayes Factor can simply obtained from posterior samples of the parameters a*,A
and 7 obtained under the null model (M) that corresponds to core model (Figure 1A).

1.2 Computation (as in BayPass)

The Importance Sampling approximation of the BF of a given locus is simply the expectation of w (a*, QB Z )
integrated over the core model. Hence, BF might simply be obtained by averaging w (a*, Am.B,Z )
over the MCMC (Coop et all, 2010) and integrating on the whole support of the S parameter, i.e.
(Bmin: Pmax)- To that end numerical integration is performed over a grid of nintg uniformly distributed
values of (.
Let:
° B, = Bomax—Pin e grid step

nintg

° ﬂig“f = PBmin + (g — 1)B), and ,Bfgnf = Bmin + gB, the boundaries of the g™ grid interval

B"
o P (ﬂg) = f f (B) dp the prior over interval g. If the prior is uniform, then P( g) = @
ﬁfgﬂf
B"
o wy= [ w(o, A7 B. Z) f(B)dp for all g interval.

ﬁi‘,’nf
e ;=1 (w (a*, A, B, Z) +w (a*, A, w87, Z))P( g) approximates wg

If the support  is bounded, then:

BF

fﬁ ( f w(a* A .. Z) f (* A | y.n, Mo) f(A)f(Tr)dAdﬂ) f®)dp

f ( fﬂ w(a* A, 7.5, Z) f(ﬂ)dﬁ) fe* A m | y.n. Mo) f(A)f(m)dAdm

g=nintg
- f [ > wg] f(@* A, | y.n, Mo) f(A)f(m)d Adr
g=1
g=nintg
= > ( f wef (@*, A, 7 | y. . Mo) f(A)f(fr)dAdﬂ-)
g=1

Hence, with a)i,’) =1 (a) (a,*, A,, w,,ﬁ;nf, Z) + w(a;“, AL 7,80, Z)) P( g) at iteration ¢ of the
MCMC (under the core model), we obtain:

__ g=ningg 1 t:niter"(T) 1 t=niter (g=nintg 0
BF = Z niter Z wg = niter tZ:1 Zl wg
= g:




2 Estimation of the 3;’s

As for the BF, the moments of the posterior distribution of each B; can be estimate via Importance
Sampling as exemplified for the posterior mean below: S = f Bf (B | data)dB. where:

fBldata) o f(a™ |8, A, m)f(M)f(m)fB)
o« wfB)f(@* | A m)f(A)f(m)
Using the same notations as above, and further defining:

 po=H(er 4 2")

sup

8 — .
o Py = [ f(B|data)dp approximated by P, = 1 (f(B1 | data) + f(B;" | data))

: g
ﬁ;;nf
B* — —
e by = f Bf(B | data)dp approximated by b, = 5, P,
ﬂ;nf
~ — niter . .
P, can be estimated from MCMC samples as P, = — 3 g:rffl—m where p,(f) = w (a;, Q7. BN, Z ) B+
=1 2 pg([)
g=1
w (ab Q[9 Trl’ﬁ;up’ Z) f(ﬂ;up)
Hence,
__  g=nintg . niter Pe(®) | niter | g=nint
ﬁ: Z ﬁgm‘ Z g=nint = m Z g=nint Z ﬁgpg(t)
8=1 =13 pe(n) =LY oo 8=1
g=1 g=1
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File S4: Cattle breed-specific covariables

The table [S4.1|below gives details about each of the 18 cattle breeds from the BTA,,, data

set.
Breed Code Breed Name Region of Origin Sample Size | SMS | Piebald pattern
ABO Abondance South-Eastern France (Alps) 22 -0.2542 1
AUB Aubrac Southern France (Massif Central) 22 -0.5484 -1
BLO Blonde d’ Aquitaine South-Western France 29 2.0671 -1
BPN Bretonne Pie-Noir North-Western France (Brittany) 18 -2.0859 1
BRU French Brown Swiss Switzerland (Alps) 18 -0.098 -1
CHA Charolaise Center France (Burgundy) 20 0.3208 -1
GAS Gasconne South-Western France (Pyrénées) 22 -0.2549 -1
HOL French Holstein Northern Europe 30 0.7083 1
JER Jersiaise Jersey Island 21 -1.7698 -1
LIM Limousine Center France 44 0.1509 -1
MAN Rouge des Prés North-Western France 46 1.3074 1
MAR Maraichine North-Western France 19 0.3085 -1
MON Montbéliarde Eastern France (Jura) 30 0411 1
NOR Normande North-Western France 30 0.6308 1
PRP Pie Rouge des Plaines North-Western France (Brittany) 22 0.398 1
SAL Salers Southern of France (Massif Central) 22 0.364 -1
TAR Tarine South-Eastern France (Alps) 18 -1.0961 -1
VOS Vosgienne Eastern France (Vosges) 20 -0.5595 1

Table S4.1: Origin, sample size, Synthetic Morphology Scores (SMS) and piebald pattern (1
for pied breed and —1 for breed with a uniform color pattern) of the 18 cattle breeds.

The Synthetic Morphology Score (SMS) covariable was derived from a Principal Compo-
nent Analysis (see Figure [S4.1 below) of the average Female Weight, Female Wither Height,
Male Height and Male Wither Height of each breed as reported in the French BRG website
(http://www.brg.prd. fr/). More precisely, the SMS corresponds to the scaled first princi-
pal components that explained 88.0% of the variance.
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Figure S4.1: Biplot from the Principal Component Analysis of the four morphological traits at
the 18 cattle breeds. The analyses were carried out with the R package ade4 (Dray and Dufour,
2007).



File S5. References for Figures S1-S16 and Tables S1-S2.
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