Skip to main content
. 2015 Oct 19;201(4):1555–1579. doi: 10.1534/genetics.115.181453

Table 3. Computation times and area under the ROC curves (AUC in percentages) for the analyses of the HsIMM-C, IMM, and SS data sets using the different genome-scan approaches.

Method Criterion Mean (median) computation time, min HsIMM-C IMM SS
BayeScan BF 529 (469) 60.13 53.81 62.05
FLK FLK 0.16 (0.16) 58.92 61.63 62.17
BayEnv2 XtX 660 (358) 70.45 61.00 72.16
BF 70.58 73.84 81.96
BayPass (core model) XtX 22.6 (22.2) 61.66 61.88 65.33
Bfis 74.36 78.91 82.29
eBPis 74.33 78.78 82.22
BayPass (STD model) XtX 21.4 (17.8)a 49.85 49.16 47.72
eBPmc 74.15 78.76 82.22
BayPass (AUX model) XtX 45.3 (44.9)a 60.60 59.82 61.08
Bfmc 58.30 65.24 70.51
BayeScenv Posterior probability 510 (478) 66.93 62.34 70.36
LFMMb P-value 33.0 (30.4)c 75.58 78.29 81.98
LFMM–10repb P-value 310 (248)c 76.27 79.37 82.56

Computation times are averaged over the 300 analyses (100 data sets × 3 scenarios).

a

Not accounting for the time required to estimate the covariance matrix (obtained here after running BayPass under the core model).

b

Analyses were carried out using individual genotyping data rather than (population) allele count, which provides the best performance (see, e.g., de Villemereuil et al. 2014).

c

Not accounting for the time required to estimate the number of latent factor K (set here to K = 15).