Table 3. Computation times and area under the ROC curves (AUC in percentages) for the analyses of the HsIMM-C, IMM, and SS data sets using the different genome-scan approaches.
Method | Criterion | Mean (median) computation time, min | HsIMM-C | IMM | SS |
---|---|---|---|---|---|
BayeScan | BF | 529 (469) | 60.13 | 53.81 | 62.05 |
FLK | FLK | 0.16 (0.16) | 58.92 | 61.63 | 62.17 |
BayEnv2 | XtX | 660 (358) | 70.45 | 61.00 | 72.16 |
BF | 70.58 | 73.84 | 81.96 | ||
BayPass (core model) | XtX | 22.6 (22.2) | 61.66 | 61.88 | 65.33 |
Bfis | 74.36 | 78.91 | 82.29 | ||
eBPis | 74.33 | 78.78 | 82.22 | ||
BayPass (STD model) | XtX | 21.4 (17.8)a | 49.85 | 49.16 | 47.72 |
eBPmc | 74.15 | 78.76 | 82.22 | ||
BayPass (AUX model) | XtX | 45.3 (44.9)a | 60.60 | 59.82 | 61.08 |
Bfmc | 58.30 | 65.24 | 70.51 | ||
BayeScenv | Posterior probability | 510 (478) | 66.93 | 62.34 | 70.36 |
LFMMb | P-value | 33.0 (30.4)c | 75.58 | 78.29 | 81.98 |
LFMM–10repb | P-value | 310 (248)c | 76.27 | 79.37 | 82.56 |
Computation times are averaged over the 300 analyses (100 data sets × 3 scenarios).
Not accounting for the time required to estimate the covariance matrix (obtained here after running BayPass under the core model).
Analyses were carried out using individual genotyping data rather than (population) allele count, which provides the best performance (see, e.g., de Villemereuil et al. 2014).
Not accounting for the time required to estimate the number of latent factor K (set here to K = 15).