
Mitochondrial targeting sequence variants
of the CHCHD2 gene are a risk for Lewy
body disorders

ABSTRACT

Objective: To assess the role of CHCHD2 variants in patients with Parkinson disease (PD) and
Lewy body disease (LBD) in Caucasian populations.

Methods: All exons of the CHCHD2 gene were sequenced in a US Caucasian patient-control
series (878 PD, 610 LBD, and 717 controls). Subsequently, exons 1 and 2 were sequenced in
an Irish series (355 PD and 365 controls) and a Polish series (394 PD and 350 controls). Immu-
nohistochemistry and immunofluorescence studies were performed on pathologic LBD cases with
rare CHCHD2 variants.

Results: We identified 9 rare exonic variants of unknown significance. These variants were more
frequent in the combined group of PD and LBD patients compared to controls (0.6% vs 0.1%, p5

0.013). In addition, the presence of any rare variant was more common in patients with LBD
(2.5% vs 1.0%, p 5 0.050) compared to controls. Eight of these 9 variants were located within
the gene’s mitochondrial targeting sequence.

Conclusions: Although the role of variants of the CHCHD2 gene in PD and LBD remains to be
further elucidated, the rare variants in the mitochondrial targeting sequence may be a risk factor
for Lewy body disorders, which may link CHCHD2 to other genetic forms of parkinsonism with
mitochondrial dysfunction. Neurology® 2015;85:2016–2025

GLOSSARY
CHCHD2 5 coiled-coil-helix-coiled-coil-helix domain containing 2; COX5 cytochrome c oxidase; LBD 5 Lewy body disease;
MAF 5 minor allele frequency; MTS 5 mitochondrial targeting sequence; OxPhos 5 oxidative phosphorylation; PD 5 Par-
kinson disease.

Parkinson disease (PD) is the second most common neurodegenerative disorder, with an esti-
mated prevalence of 1%–2% among individuals older than 60 years.1 Approximately 5%–

10% of patients have a positive family history of PD.2 Recently, heterozygous mutations in
the coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) gene were identified in 4 of
341 independent Japanese families with an autosomal dominant pattern of inheritance of PD.3

CHCHD2 protein contains an N-terminal mitochondrial targeting sequence (MTS) and a twin
Cx9C motif in a C-terminal coiled-coil-helix-coiled-coil-helix (CHCH) domain4 and it is local-
ized to the mitochondria.5 To date, functional analyses have elucidated several important roles
for CHCHD2; it regulates cytochrome c oxidase (COX) activity, and acts as a transcription
factor to regulate COX expression, thereby facilitating mitochondrial electron transport chain
flux under low oxygen conditions. CHCHD2 also inhibits mitochondria-mediated apoptosis.5
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Mitochondrial dysfunction has been impli-
cated in both early-onset genetic forms of
PD (via the PINK1 and PARKIN mediated
mitophagy pathway) and late-onset sporadic
disease.6,7 Interestingly, it was also reported
that specific variants in the CHCHD2 gene
may affect susceptibility to sporadic PD.3

The role of variation in the CHCHD2 gene
in Caucasian patients with PD and in patho-
logically confirmed Lewy body disease (LBD)
is unclear. The aim of this study was to eval-
uate the association of CHCHD2 variants with
risk of clinically diagnosed PD and patholog-
ically diagnosed LBD.

METHODS Participants. A total of 3,669 participants,

including 1,627 patients with clinical PD, 610 patients with

pathologically confirmed LBD, and 1,432 controls, were

included in this study (see details in table 1), and collected

between the years 1998 and 2014. The clinical and pathologic

diagnoses were established according to the consensus criteria for

PD8 and LBD.9,10 Controls were individuals free of PD or a

related movement disorder at the time of examination. All par-

ticipants were non-Hispanic Caucasian and were unrelated

within and between disease groups. There was no overlap

between the PD and LBD groups. Information was collected

regarding age (age at onset in patients with PD, age at death in

the patients with LBD from the US series, age at blood sample

collection in controls) and sex. Family history of PD in first or

second degree was also collected for patients with PD and

controls.

Standard protocol approvals, registrations, and patient
consents. Written informed consent was obtained from all par-

ticipants and the study was approved by all institutional review

boards from the participating centers. Informed consent for path-

ologically confirmed cases was obtained from the next of kin.

Genetic analysis. For direct sequence analysis, each exon was

amplified by polymerase chain reaction using published primers

for CHCHD2.3 DNA was extracted from frozen brain tissue

and whole blood samples using standard protocols. Genomic

sequences were analyzed with SeqScape version 2.5 using

3730XL DNA Analyzer (ABI; Applied Biosystems, Foster City,

CA). RefSeq accession NM_016139.2 was used to number all

variants within the CHCHD2 gene and protein. In the discovery

stage, we sequenced all 4 exons of CHCHD2 in a US series

including PD, LBD, and controls. We found 9 exonic variants

located in exons 1 and 2 and none in exons 3 and 4. In the second

stage, we sequenced exons 1 and 2 in the Irish and Polish series.

The 3 variants in intron 3 and the 6 variants in the 39UTR were

not assessed in the Irish or Polish series. There was no evidence of

a departure from Hardy-Weinberg equilibrium in controls in any

of the series (all p . 0.01).

Statistical analysis. For common variants (defined as those

with a minor allele frequency [MAF] of 1% or greater), associa-

tions with disease were evaluated using logistic regression models.

Associations were examined for the separate disease outcomes of

PD, LBD, and PD or LBD. Models in the US series and Polish

series were adjusted for age (age at PD onset in patients with PD,

age at death in patients with LBD, age at blood collection in con-

trols) and sex, models in the Irish series were adjusted for sex (age

was not adjusted for due to missing data), and models in the com-

bined series were adjusted for sex and series (age was not adjusted

for due to missing data in the Irish series). Each variant was exam-

ined under an additive model (i.e., effect of each additional minor

allele). Odds ratios and 95% confidence intervals were estimated.

For rare variants (defined as those with a MAF of less than

1%), we did not perform any single-variant analysis owing to

the low power such analysis would have. Instead, separately in

each series and in the combined series, we performed gene burden

tests by collapsing across rare variants and comparing the fre-

quency of the presence of any rare variant in controls to that of

PD, LBD, and the combined PD and LBD patient groups using

Fisher exact test.11 Since variants in intron 3 and 39UTR were not

assessed in the Irish and Polish series, we did not examine the

presence of rare variants in the combined series (US, Irish, and

Polish). However, we did examine the presence of rare exonic

variants found in exons 1 and 2 in the combined series. p Values
of 0.05 or lower were considered statistically significant. Statisti-

cal analysis was performed using R Statistical Software (version

2.14.0; R Foundation for Statistical Computing, Vienna,

Austria).

In silico analyses. For prediction of the functional consequen-

ces of coding variants on CHCHD2 protein sequence, we used

software programs available on the Internet: PolyPhen-2

(http://genetics.bwh.harvard.edu/pph2/),12 SIFT (http://sift.jcvi.

org/),13 and Mutation Taster (http://www.mutationtaster.org/).14

The results are shown in table e-1 on the Neurology® Web site at

Neurology.org. Splice site prediction of exonic variants identified

in the CHCHD2 gene was calculated by using the online

bioinformatics tool Human Splicing Finder (version 2.4.1;

http://www.umd.be/HSF/HSF.html).15

Neuropathologic analysis. All 610 cases in the LBD series

underwent a standardized neuropathologic assessment for

Alzheimer-type and Lewy-related pathologies by a single

pathologist (D.W.D.) as reported previously.16 Braak neurofibrillary

tangle stage17 and Thal amyloid phase18 were assigned to each case
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Table 1 Participant characteristics

Series

Age at onset (PD), age at
death (LBD), or age at
blood collection (controls),
y, mean 6 SD (range) No. (%) male

No. (%) with
a family
history of PD

US

Patients with PD (n 5 878) 63.7 6 11.6 (28–94) 557 (63.4) 356 (40.9)

Patients with LBD (n 5 610) 78.7 6 8.5 (48–103) 363 (59.7) NA

Controls (n 5 717) 64.5 6 10.0 (18–92) 300 (41.8) 0

Irish

Patients with PD (n 5 355) 52.0 6 10.6 (18–77) 202 (56.9) 16 (9.7)

Controls (n 5 365) 66.1 6 22.3 (17–97) 134 (36.7) 0

Polish

Patients with PD (n 5 394) 60.5 6 8.9 (23–82) 230 (58.4) 58 (21.7)

Controls (n 5 350) 58.9 6 15.1 (19–96) 187 (53.4) 0

Abbreviations: LBD 5 Lewy body disease; NA 5 not available; PD 5 Parkinson disease.
Information was unavailable regarding age (US series: 2 patients with PD, 1 patient with
LBD; Irish series: 111 patients with PD; Polish series: 9 patients with PD, 3 controls), sex
(US series: 2 patients with LBD), and family history of PD (US series: 8 patients with PD, all
patients with LBD; Irish series: 190 patients with PD; Polish series: 127 patients with PD).
Pathologically confirmed LBD cases are collected and examined at Mayo Clinic Jacksonville.
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based upon thioflavin S fluorescent microscopy.19 Immuno-

histochemistry for a-synuclein (non-Ab component precursor;

1:3,000; Mayo Clinic, Jacksonville, FL)20 was used to establish

neuropathologic diagnosis of LBD,10,21 with deparaffinized and

rehydrated sections pretreated with 95% formic acid for

30 minutes and then steamed in distilled water for 30 minutes.

Lewy-related pathology was assessed in cortex, amygdala, basal

forebrain, and brainstem and classified as brainstem, transitional,

or diffuse Lewy body disease.9 Five brain samples with CHCHD2
variants (p.P2L, p.G4R, p.A37V, and p.A93V) were available for

further analysis. We performed immunohistochemistry with

polyclonal CHCHD2 antibody (1:800; Proteintech, Chicago, IL)

on temporal lobe and midbrain sections. The deparaffinized and

rehydrated sections were steamed in pH6 citrate buffer for

30 minutes. We also performed immunofluorescence double

staining with polyclonal CHCHD2 antibody (1:400,

Proteintech) and monoclonal Tom20 antibody (1:500, Santa

Cruz Biotechnology, Dallas, TX) on hippocampal sections

from participants with CHCHD2 variants (n 5 5) as well as

LBD cases without CHCHD2 variants (n 5 3) and control

brains (n 5 2).

RESULTS We identified a total of 23 variants in our
US series (PD, LBD, and controls; total 2,205 sam-
ples), Irish series (PD and controls; total 720 sam-
ples), and Polish series (PD and controls; total 744
samples); 4 are common variants and 19 are rare var-
iants of whichMAF is less than 1%. Nine were exonic
variants within exons 1 and 2 (table 2 and figure 1).
Of the 4 common variants (rs816406, rs816407,
rs10043, rs8406), 3 of them (rs816407, rs10043,
rs8406) were in strong linkage disequilibrium (r2 .
0.96). The frequency of each CHCHD2 variant is
displayed in table 2 for the US series, Irish series,
Polish series, and combined series, while associations
with disease for common variants and gene burden
tests for rare variants are shown in table e-2. None of
the 4 common CHCHD2 variants were associated
with disease in any of the series (all p $ 0.15).

Rare exonic CHCHD2 variants were more com-
mon in the combined group of patients with PD and
LBD compared to controls (0.6% vs 0.1%, p 5

0.013, table e-2). This finding was driven mostly by
the US series, where although not significant, rare
exonic variants were more common compared to con-
trols for both patients with PD (0.7% vs 0.1%, p 5
0.14, table e-2) and patients with LBD (1.0% vs
0.1%, p 5 0.053, table e-2). In the US series, rare
exonic variants were found in 6 patients with PD and
6 patients with LBD. Only one healthy control with a
rare variant (p.P2L) was found and the age at exam-
ination was 55 years. No rare exonic variants were
observed in the Irish series in either patients with
PD or controls, and in the Polish series rare exonic
variants were observed in only one patient with PD
(0.3%) and no controls. Rare exonic variants were
also more common in the combined group of patients
with PD (not including the US series patients
with LBD) compared to controls (0.4% vs 0.1%,

p5 0.074, table e-2). Within the US series, the pres-
ence of any rare variant was more common for pa-
tients with LBD, although this was only borderline
significant (2.5% vs 1.0%, p 5 0.050, table e-2).

Characteristics of the variants found in this study
are summarized in table e-1, including MAF of public
databases (Exome Variant Server [http://evs.gs.
washington.edu/EVS/], Exome Aggregation Consor-
tium [http://exac.broadinstitute.org/], and 1000 Ge-
nomes [http://www.1000genomes.org/]) and in silico
analyses. We identified 9 rare exonic variants with
unknown significance (p.P2L, p.G4R, p.P14S,
p.A16A, p.V31V, p.P34L, p.A37V, p.A49V, and
p.A93V; figure 1) in patients with PD or LBD in this
study. Eight of these (p.P2L, p.G4R, p.P14S,
p.A16A, p.V31V, p.P34L, p.A37V, and p.A49V)
were located in the MTS of CHCHD2 (figure 1).
Seven variants (p.P2L, p.G4R, p.P14S, p.A16A,
p.V31V, p.A49V, and p.A93V) were predicted as
damaging by at least one of the prediction tools.
Two variants (p.A37V and p.A93V) were extremely
rare even in large public databases. We found 2 syn-
onymous variants (p.A16A; c.48C.T and p.V31V;
c.93C.T) not seen in our control series and the
MAF in the public databases are exceedingly low.
They were predicted as disease-causing by Mutation
Taster due to splicing site changes; however, Human
Splicing Finder found no potential new sites for
p.A16A and p.V31V variants. Human Splicing Finder
did, however, predict one new enhancer motif at c.44
in p.A16A and 2 sites broken (at c.88 and c.89) and
one new enhancer motif (at c.93) in p.V31V.

The clinical information of patients with rare
exonic variants is shown in table 3. Seven patients
had clinically diagnosed PD and 6 pathologically
diagnosed LBD. Mean age at onset was 72.8 6 6.8
years (range 60–90), mean age at death was 85.1 6

7.6 years (range 73–94), and disease duration was
8.0 6 5.5 years (range 2–16). Two patients
(p.A49V and p.P14S) have a family history of PD
or dementia, but DNA from their affected relatives
was not available. Parkinsonism was the most com-
mon feature (12/13) among carriers although one
individual with p.A37V was reported to have pre-
sented with cognitive impairment without significant
parkinsonism. Dementia and hallucinations were fre-
quently observed (7/13), as were depression (8/13)
and orthostatic hypotension (7/13) in CHCHD2 var-
iant carriers.

Neuropathologic data are available for 6 LBD
cases with exonic variants and is presented in table 3.
Five patients were classified as diffuse type of Lewy
body pathology and one as a transitional type.9,22 To
assess the expression of CHCHD2 at protein level, we
performed immunohistochemistry for CHCHD2
in patients with LBD with exonic variants (p.P2L,
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Table 2 Frequency of CHCHD2 variants in patients with PD, patients with LBD, and controls

rs No. Exon cDNA
Amino
acid

Minor
allele

No. (%) of carriers of the minor allele

US series Irish series Polish series Combined series

Patients with PD
(n 5 878)a

Patients with LBD
(n 5 610)a

Controls
(n 5 717)a

Patients with PD
(n 5 355)

Controls
(n 5 365)

Patients with PD
(n 5 394)

Controls
(n 5 350)

All patients
(n 5 2,237)a

All controls
(n 5 1,432)a

rs816406 59UTR c.-65T.G NA G 24 (2.7) 15 (2.5) 20 (2.8) 11 (3.1) 9 (2.5) 13 (3.3) 9 (2.6) 63 (2.82) 38 (2.65)

rs816407 59UTR c.-34C.A NA C 314 (35.8) 239 (39.2) 280 (39.1) 140 (39.4) 129 (35.3) 144 (36.5) 137 (39.2) 837 (37.4) 546 (38.1)

rs557143801 59UTR c.-21C.T NA T 0 1 (0.2) 0 0 0 0 0 1 (0.04) 0

rs112876794 59UTR c.-12C.T NA T 0 3 (0.5) 0 1 (0.3) 0 0 0 4 (0.18) 0

rs10043b 59UTR c.-9T.G NA T 318 (36.2) 248 (40.7) 284 (39.6) 144 (40.6) 136 (37.3) 146 (37.1) 141 (40.3) 856 (38.3) 561 (39.2)

rs142444896b Exon1 c.5C.T p.P2L T 1 (0.1) 2 (0.3) 1 (0.1) 0 0 0 0 3 (0.13) 1 (0.07)

None Exon1 c.10G.A p.G4R A 0 1 (0.2) 0 0 0 0 0 1 (0.04) 0

rs137965562 Exon1 c.40C.T p.P14S T 1 (0.1) 0 0 0 0 0 0 1 (0.04) 0

None Exon1 c.48C.T p.A16A T 1 (0.1) 0 0 0 0 0 0 1 (0.04) 0

rs2331183 Exon2 c.93C.T p.V31V T 1 (0.1) 0 0 0 0 0 0 1 (0.04) 0

rs371198317 Exon2 c.101C.T p.P34L T 1 (0.1) 1 (0.2) 0 0 0 1 (0.3) 0 3 (0.13) 0

None Exon2 c.110C.T pA37V T 0 1 (0.2) 0 0 0 0 0 1 (0.04) 0

rs151213700 Exon2 c.146C.T p.A49V T 1 (0.1) 0 0 0 0 0 0 1 (0.04) 0

None Exon2 c.278C.T p.A93V T 0 1 (0.2) 0 0 0 0 0 1 (0.04) 0

None Intron2 c.301-2A.G NA G 0 0 1 (0.1) NA NA NA NA NA NA

rs201421064 Intron3 c.445114C.T NA T 1 (0.1) 1 (0.2) 3 (0.4) NA NA NA NA NA NA

None Intron3 c.445116A.G NA G 0 0 1 (0.1) NA NA NA NA NA NA

rs202169344 39UTR c.144C.G NA G 1 (0.1) 0 0 NA NA NA NA NA NA

rs35957514 39UTR c.145_146insT NA T 0 1 (0.2) 0 NA NA NA NA NA NA

rs569456060 39UTR c.166T.C NA C 1 (0.1) 0 0 NA NA NA NA NA NA

rs549615616 39UTR c.175T.C NA C 1 (0.1) 3 (0.5) 0 NA NA NA NA NA NA

rs8406b 39UTR c.1125G.A NA G 317 (36.1) 248 (40.7) 283 (39.5) NA NA NA NA NA NA

rs11546420 39UTR c.1159G.C NA C 2 (0.2) 0 1 (0.1) NA NA NA NA NA NA

Any rare variant occurring in less than 1% of participants 12 (1.4) 15 (2.5) 7 (1.0) 1 (0.3) 0 1 (0.3) 0 29 (1.30) 7 (0.49)

Any rare exonic variant 6 (0.7) 6 (1.0) 1 (0.1) 0 0 1 (0.3) 0 13 (0.58) 1 (0.07)

Abbreviations: LBD 5 Lewy body disease; NA 5 not applicable; PD 5 Parkinson disease.
Genotypes for variants in introns 2 and 3 and 39UTR were not measured for the Irish series or Polish series.
a The results for the US series and combined series.
bVariants associated with Parkinson disease in the previous study.3
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p.G4R, p.A37V, and p.A93V; table 3). The granular
staining pattern of CHCHD2 was observed in neu-
ronal and glial cells in the substantia nigra and tem-
poral cortex (figure 2C). Almost all Lewy bodies and
pale bodies were negative for CHCHD2 (figure 2D).
However, only a few pale bodies (p.G4R) and the
surroundings of Lewy bodies (p.A93V) were slightly
stained in a granular pattern (figure 2, E and F).
Immunofluorescence staining suggested the expres-
sion level of CHCHD2 was decreased in patients
with LBD with variants compared to age-matched
controls (n 5 2) and patients with LBD without
variants (n 5 3; figure 2, G–R). Interestingly, the
case with the CHCHD2 p.A93V substitution, which
lies outside the MTS region, showed normal protein
expression in a subset of neurons (figure 2O).

DISCUSSION In our Caucasian multicenter analysis,
we did not find any definite pathogenic CHCHD2
mutations that cosegregated with disease in multi-
incident pedigrees such as p.T61I, which was found

in 2 large Japanese pedigrees with PD.3 The
association observed in the Japanese population
with the common variants, rs10043 and rs8406
(both single nucleotide polymorphisms are in high
linkage disequilibrium), was not replicated in the
Caucasian series; this could in part be due to
ethnic-specific allele frequencies. Interestingly, the
MAF of rs10043 and rs8406 was much lower in
the Japanese population (;4%) compared to that
observed in our Caucasian series (;23%). This
may suggest a different haplotype structure and the
potential for Japanese (Asian)-specific variant causing
the reported association. One rare variant reported to
influence susceptibility in PD in the Japanese study,
p.P2L (rs142444896), was also rare in the Caucasian
series but was not significant when compared to
controls (1 PD, 2 LBD vs 1 control).3

We found a total of 9 rare exonic variants of
unknown significance. Given the lack of multi-
incident families or additional carriers, functional
studies are needed to elucidate the nature of each

Figure 1 CHCHD2 variants found in Parkinson disease and Lewy body disease

(A) The upper panel in blue represents the protein coding transcripts of theCHCHD2 gene and the exons are numbered (CHCHD2; RefSeq accession number
NM_016139.2). The lower panel represents the protein domains and motifs that are referred to MitoProt II (http://ihg.gsf.de/ihg/mitoprot.html)31 and Pfam
database (http://pfam.xfam.org/).32 Exonic variants shown in black were identified in patients with Parkinson disease or pathologically confirmed Lewy body
disease in our study. Mutations in red were identified in Japanese patients with autosomal dominant Parkinson disease.3 CHCH5 coiled coil 1-helix 1-coiled
coil 2-helix 2; MTS 5 mitochondrial targeting sequence. (B) Nonsynonymous CHCHD2 variants found in this study and sequence alignment with various
species. Amino acid position of mutation is highlighted in black. RefSeq accession numbers are as follows; Homo sapiens, NP_057223.1; Pan troglodytes,
XP_001161277.1;Macaca mulatta, XP_001089512.1; Canis lupus, XP_536830.2; Bos Taurus, NP_001029918.1;Mus musculus, NP_077128.2; Rattus
norvegicus, NP_001015019.1; Gallus gallus, NP_001006218.1; Danio rerio, NP_957061.1.
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Table 3 Characteristics of patients with CHCHD2 exonic variants in PD and LBD

cDNA change

PD series LBD series

c.5C>T c.40C>T c.48C>T c.93C>T c.101C>T c.101C>T c.146C>T c.5C>T c.5C>T c.10G>A c.101C>T c.110C>T c.278C>T

Amino acid change p.P2L p.P14S p.A16A p.V31V p.P34L p.P34L p.A49V p.P2L p.P2L p.G4R p.P34L p.A37V p.A93V

Sex F M F M M F M M M M M M F

Age at onset, y 74 71 60 65 70 72 76 77 82 69 90 ND 85

Age at examination, y 77 75 70 74 83 74 90 79 91 73 91 85 91

Age at death, y ND ND 76 ND ND ND 92 79 91 73 94 85 91

Disease duration, y ND 4 16 9 13 2 16 2 9 4 4 ND 6

Family history 2 Mother
dementia1

2 2 2 2 Uncle PD1 2 2 2 2 2 2

Initial symptoms Resting
tremor

Resting tremor Bradykinesia Resting
tremor

Resting
tremor

Bradykinesia Bradykinesia Bradykinesia CI Gait, CI CI CI Incontinence

Hoehn & Yahr stage (on/off) II/2 III/2 III/III II/2 II/IV II/III IV/IV II/2 III/2 III/2 ND NA V/2

Resting tremor 1 1 1 1 1 1 1 2 1 2 2 ND 2

Bradykinesia 1 1 1 1 1 1 1 1 1 1 1 ND 1

Rigidity 1 1 1 1 1 1 1 1 1 1 1 ND 1

Gait disturbance 1 1 1 1 1 1 1 1 1 1 1 2 1

Postural instability 1 1 1 1 1 1 1 ND 1 1 1 ND 1

Asymmetry at onset 1 1 1 1 1 1 1 ND 1 ND ND ND ND

Clinical response to
levodopa

1 1 1 2 1 ND 1 2 1 2 ND ND ND

Wearing off 2 2 1 2 1 1 1 ND ND ND ND ND ND

On/off 2 2 2 2 2 1 2 ND 2 ND ND ND ND

Levodopa-induced
dyskinesia

2 2 1 2 1 1 1 ND 2 ND ND ND ND

Hyperreflexia 2 2 1 2 1 ND 2 1 2 2 ND 2 2

Orthostatic hypotension 1 2 2 2 1 1 2 2 1 ND 1 1 1

Urinary urgency 2 2 2 2 2 2 2 2 1 ND ND 1 1

Constipation 1 2 2 2 2 2 1 1 ND ND ND ND ND

Hallucination 1 1 1 2 2 2 2 ND 1 1 ND 1 1

Dementia 2 1 1 2 2 ND 2 1 1 1 1 1 1

Depression 1 1 1 2 2 2 1 1 2 ND 1 1 1

REM sleep behavior 2 2 2 2 2 ND 2 2 1 1 ND 1 1

Restless legs syndrome 2 2 1 2 2 ND 2 1 ND ND ND ND ND
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variant. In the combined series, our gene burden test
found an association between PD-LBD series and the
number of rare exonic CHCHD2 variants within
exons 1 and 2 (p5 0.013). In addition, we identified
an association between LBD and any rare variant
(p 5 0.050). The exonic variants (p.P2L, p.G4R,
p.P14S, p.A16A p.V31V, p.P34L. p.A37V, and
p.A49V) are located in the MTS domain (figure 1).
The MTS is critical for the CHCHD2 protein to be
localized in mitochondrial intermembrane space.3

Those variants in the MTS might have an alternate
pathomechanism compared to other exonic variants
(e.g., p.A93V); notably, the reported pathogenic mu-
tations found in the original Japanese study are
located outside of the MTS domain (p.T61I,
c.30015G.A and p.R145Q; figure 1).3 The clinical
data available for carriers suggests the age at onset is
variable and most present with sporadic PD (table 3).
In the original autosomal dominant pedigrees with
pathogenic mutations, the mean age at onset was rel-
atively late (56.2 6 8.1 years).3 Given the sporadic
nature of the disease, the rare variants we observed
(p.P2L, p.G4R, p.P14S, p.A16A, p.V31V, p.P34L,
p.A37V, p.A49V, and p.A93V) in this study might have
lower penetrance than the pathogenic mutations found
in Japan (p.T61I, c.30015G.A and p.R145Q).3

Proteins similar to CHCHD2 with a twin Cx9C
motif are involved in the production of energy
by oxidative phosphorylation (OxPhos).23 In fact,
CHCHD2 was first recognized as one of the regula-
tors of OxPhos in a computational screen.24 Knock-
down of CHCHD2 decreases the mitochondrial
membrane potential and increases the generation of
reactive oxygen species.25 These data suggest that
CHCHD2 is an important mitochondrial regulator
that can influence the energy levels of cells. Consid-
ering that impaired mitochondrial biogenesis and
quality control may contribute to PD,26 further stud-
ies will be necessary to assess the role of CHCHD2
for mitochondrial homeostasis. It will be interesting
to see if CHCHD2 plays a role in the PINK1/Parkin-
dependent mitochondrial quality control pathway.
Recently, a mutation in the CHCHD10 gene that
encodes the mitochondrial CHCHD10 protein
(OMIM 615903) was identified as the cause of
late-onset familial amyotrophic lateral sclerosis with
frontotemporal dementia in a large French pedigree27;
one of the affected patients also shows signs of
parkinsonism. CHCHD10 is a close paralog of
CHCHD2 and the genetic and protein structures
of both are similar. Further studies examining the role
of genetic variation in both genes across neurodegen-
erative disorders are warranted.4,28,29

Although the results of this study suggest that rare
CHCHD2 variants may be associated with risk of PD
and LBD, it should also be noted that different
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Figure 2 Neuropathologic assessment in Lewy body disease

(A, B) Hematoxylin & eosin (H&E) and a-synuclein (non-Ab component precursor [NACP]) staining reveal Lewy bodies in
substantia nigra. Immunohistochemistry for CHCHD2 shows the granular staining pattern in neuron and glial cells in tem-
poral cortex (C) and substantia nigra. Almost all Lewy bodies and pale bodies were negative for CHCHD2 (D), but the rim of
Lewy bodies are partially stained in some neurons (E). (F) Some pale bodies are also stained in granular pattern. (G–R)
Immunofluorescence double-staining for CHCHD2 (red) and Tom20 (green) in hippocampal CA3 regions. CHCHD2 and
Tom20 are expressed in mitochondria in control (G–I) and Lewy body disease (LBD) without CHCHD2 variants (J–L).
(M–O) The expression level of CHCHD2 is decreased in patients with LBD with p.A93V variant but intact in some neurons.
(P–R) In patients with p.P2L variant, which is located inmitochondrial targeting sequence, CHCHD2 expression is decreased.
Bars 5 50 mm.
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genetic associations may be observed for alternate
Lewy body disorders, e.g., PD and dementia with
Lewy bodies both associate with the SNCA locus
although the association signals appear indepen-
dent.30 Indeed, there are a number of caveats to the
present study, e.g., the low power to detect the asso-
ciation of rare CHCHD2 variants with risk of PD or
LBD. Even when collapsing across rare variants and
utilizing gene burden tests, the frequencies of the
resulting collapsed rare variant variables were low,
and therefore the possibility of type II error (i.e., a
false-negative association) is important to consider.
We also only have a limited number of pathologic
cases with CHCHD2 variants so our staining studies
can only be considered exploratory and larger samples
sizes are required to replicate both our genetic and
pathologic findings. With that in mind, the field of
genetics and particularly late-onset neurodegenerative
disease is moving toward the discovery of rare variants
with incomplete penetrance. Large consortia or meta-
analytical approaches will be needed to better under-
stand the role of rare CHCHD2 variants in these
diseases. Functional studies elucidating the cellular
pathways altered by mutant CHCHD2 will be war-
ranted to clarify the role of this protein in disease.
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