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To the Editor

Decreased reproductive capacity in transfusion dependent thalassemia (TDT) men is 

common but addressed infrequently. Previous reports estimate that more than one half of 

men with TDT are affected by oligospermia and asthenospermia and have abnormal sperm 

quality due to transfusion-induced iron overload [1,2]. Hypogonadotrphic hypogonadism 

and subfertility due to increased iron in the pituitary gland has been reported [3]. However, 

additional mechanisms affecting reproduction in TDT men and progression to infertility as it 

relates to systemic and pituitary iron load are not fully understood, delaying efforts for 

effective intervention. Oxidative stress, through increased production of reactive oxygen 

species (ROS), is considered a major contributory factor to male infertility causing damage 

to the sperm membrane, nucleus, and proteins, thereby impairing sperm quality [4]. Normal 
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seminal plasma contains defense mechanisms against ROS consisting primarily of 

glutathione (GSH) as well as carnitine, folate, vitamins E, C, and A, zinc, and selenium [5]. 

In iron-overload thalassemia patients, excess non-transferrin bound iron (NTBI) and labile 

plasma iron (LPI) can act as pro-oxidants, resulting in increased generation of ROS. This 

coupled with low antioxidant defense molecules was suggested as a basis of tissue damage 

and impaired organ function in thalassemia [6,7]. Whether abnormalities involving these 

biochemical pathways are the basis for abnormal spermatogenesis and subfertility in 

thalassemia men with a high iron burden is not well studied. Additionally, the extent of iron-

induced pituitary damage resulting in low gonadotropins and affecting reproduction capacity 

is not known. Thus, we investigated the pituitary-gonadal axis in a subset of TDT patients in 

the context of their total iron burden.

All TDT men, 18 years and older, at our thalassemia center were approached about the 

study, there was no preselection. Seven TDT men and two normal controls were studied. 

Anterior pituitary volume and iron accumulation (R2) were measured by pituitary MRI and 

corresponding Z scores calculated. Sperm count and motility were determined and sperm 

DNA integrity (DNA fragmentation Index; DFI) was assessed using Sperm Chromatin 

Structure Assay. Semen plasma elemental content was analyzed by inductively coupled 

plasma optimal emission spectrometry and GSH was quantified using a liquid 

chromatography linked tandem mass-spectrometry (LC/MS/MS) assay. NTBI/LPI were 

analyzed (London, England) and liver iron concentration (LIC), cardiac T2* MRI, ferritin, 

vitamins C and E, and plasma zinc levels reviewed.

All patients (median 26, range 21–30 years) went through spontaneous puberty at age 13–

16. Retrospective analysis showed consistent low iron burden in two patients (1 and 4) and 

variable iron overload in the others (Table I). Mean pituitary iron (R2) was increased and 

mean anterior pituitary volume was decreased compare to normal age-matched male 

controls: R2 16.2 ±2 vs. 11.2 Hz (Z =6.0); 329.6 ±83.3 vs. 596.1 ± 94.4 mm3 (Z =−3.0), 

respectively. Anterior pituitary volume and LH level correlated with sperm count. Five of 

the seven patients (70%) had either low sperm count or complete azoospermia and variable 

sperm motility (Table II), an important measure of fertilization capacity. DFI was normal 

indicating no increase in sperm DNA fragmentation. Seminal plasma analysis revealed 

elevated iron concentration in 5/ 6 patients, highest in the three patients with azoospermia 

while iron was undetected in the normal controls. Seminal iron was inversely associated 

with sperm count and motility (Table II). The three patients with azoospermia, also 

exhibited low seminal plasma zinc levels despite a normal plasma range, as well as the 

lowest GSH concentration, inversely correlating with systemic iron overload. Plasma 

vitamins C and E were within the low-normal range (not shown) and zinc levels were in low 

or low-normal range (62–97; nl 70–120 mcg/dL).

Our results elucidate causes of infertility in TDT men; we found high seminal iron in most 

patients, associated with azoospermia or oligospermia that to the best of our knowledge was 

not demonstrated before. High seminal plasma iron can lessen sperm motility to 10% of 

normal, thus significantly affecting reproductive potential [8]. Further, the elevated systemic 

NTBI and LPI and low seminal GSH in our patients, correlating with sperm motility, imply 

that iron-induced oxidative stress may have a major role in the subfertility often detected in 
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TDT men, beyond the hypogonadism caused by iron in the pituitary gland. Indirect evidence 

for seminal oxidative stress in TDT men was suggested [9]. In nonthalassemia subfertile 

men low seminal GSH levels were present, while normal GSH levels were associated with 

better sperm qualities [10]. Our results of normal sperm DNA fragmentation, an important 

measure for fertilization rate, contradict previous findings of increased sperm DNA 

fragmentation in TDT men [1,11]. It is possible that the relative low iron burden and normal 

seminal GSH levels found in our three patients were protective against increase DNA 

fragmentation. If confirmed in a larger study, it could suggest better preserved sperm quality 

in patients with consistent good iron chelation habits. Alternatively, diminished sperm DNA 

integrity was attributed to the use of the iron chelator desferroxamine [11,12], while our 

three patients were not using this chelation agent. Additionally, low seminal plasma zinc 

levels detected in most our patients also affects fertility, as zinc is an important 

micronutrient for DNA repair during spermatogenesis. In males, low zinc levels adversely 

affected fertilization ability that improved with increase in dietary zinc intake [5,13]. Since 

zinc deficiency is common in TDT [14] examining the effect of increase zinc intake in TDT 

men, even with apparent normal plasma levels may be warranted.

This study suggests that individuals with high iron burden have decreased pituitary volume 

and low gonadotropin levels; additionally their seminal environment has a detrimental effect 

on sperm vitality and quality. In patients with consistent adherence to iron chelation the 

pituitary size and fertility measures are better preserved. The value of serial measures of 

pituitary volume and iron concentration needs further study but may prove to have a better 

predictive value for fertility potential than gonadotropin levels. Aggressive iron reduction 

along with antioxidant and zinc supplementation could assist with fertility preservation. The 

use of antioxidants supplementation was shown to improve sperm qualities, though the 

overall effectiveness remains controversial [4,15]. Clarifying the risk thresholds of these 

causative factors in larger studies can assist in treatment interventions and fertility 

preservation.
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