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Abstract

We present an updated and integrated version of our widely used protein-protein docking and
binding affinity benchmarks. The benchmarks consist of non-redundant, high quality structures of
protein-protein complexes along with the unbound structures of their components. Fifty-five new
complexes were added to the docking benchmark, 35 of which have experimentally-measured
binding affinities. These updated docking and affinity benchmarks now contain 230 and 179
entries, respectively. In particular, the number of antibody-antigen complexes has increased
significantly, by 67% and 74% in the docking and affinity benchmarks, respectively.

We tested previously developed docking and affinity prediction algorithms on the new cases.
Considering only the top ten docking predictions per benchmark case, a prediction accuracy of
38% is achieved on all 55 cases, and up to 50% for the 32 rigid-body cases only. Predicted affinity
scores are found to correlate with experimental binding energies up to r=0.52 overall, and r=0.72
for the rigid complexes.
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Introduction

Protein-protein interactions are among the most important processes in biology, playing
fundamental roles in the immune system, signaling pathways, and enzyme inhibition.
Proteome-wide studies have revealed that most proteins interact with other proteins [1]. The
experimental characterization of the structure of a protein-protein complex is, however,
difficult and not always successful. To complement experimental approaches, computational
techniques for the prediction of protein complexes have been developed over the years,
stimulated by the CAPRI experiment (Critical Assessment of PRedicted Interactions) [2].
Computational approaches for modeling protein-protein complex structures include ab-initio
docking methods [3,4], homology-based methods based on the experimental structures of
similar complexes [5-11], and integrative, information-driven methods [12], These
approaches typically attempt to predict the most likely structure of a complex, but are not
designed to predict how strongly the proteins bind or whether they bind at all. Thus a more
complete computational description of protein-protein interaction also requires algorithms
that can predict binding affinities. Although energy functions for affinity prediction and the
ranking of docking poses are related, they are often developed specifically for their
respective purposes and so far have shown varying and rather limited performance [13].
Example areas where scoring functions can be improved are entropic contributions [14],
solvent effects [15], and the optimal combination of terms [16].

Essential for the development of computational algorithms are training and test sets that are
reliable and sufficiently large. It is computationally daunting to sift the Protein Data Bank
for structures of protein-protein complexes; the experimental conditions and accuracies of
these structures vary widely and are not always straightforward to assess, and neither is the
definition of the biological unit. Recognizing this, various benchmarks were developed that
attempt to collect a reliable and well-understood set of data. Our docking benchmark, which
after its initial development [17] has seen three updates [18-20], is widely used for
developing and assessing docking methods. Key features are the availability of both the
complex structure and the unbound structures of the component proteins, non-redundancy,
and reliability of the data. Other benchmarks include DOCKGROUND [21], which also
focuses on protein-protein interactions, and benchmarks that contain complexes of proteins
with nucleic acids [22,23].

More recently we used our protein-protein docking benchmark as a starting point for
developing a structure-based affinity benchmark [24,25], which includes the entries from
our docking benchmark for which experimental binding affinities were available. The
affinity benchmark has been used for the development of algorithms for predicting protein-
protein binding free energies, with a typical correlation coefficient of r=0.6 with
experimentally measured binding free energies [26-28].
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In this paper we present updates to our docking and affinity benchmarks, of which the
development is tightly integrated. We added 55 new protein-protein complexes to the
docking benchmark, for 35 of which experimental affinities could be found that were added
to the affinity benchmark. These new additions to both benchmarks were then used, as an
independent test set, to assess the performance of four docking algorithms and a large panel
of affinity prediction algorithms that had been previously developed without seeing any of
the new cases. This allowed us to assess the performance of docking and affinity
predictions, both of which remained limited due to conformational changes, with an
indication that low affinity complexes were also more challenging to dock.

Results and Discussion

Composition

We added 55 cases to the docking benchmark (Table 1). PDB entries 3AAD and 3P57 show
two and three distinct binding modes, respectively. As in the previous versions of the
benchmark, the complexes that display multiple binding modes were split into different
cases. This represents an increase of 31% over the previous 175 cases. We could find
binding affinity data for 35 of the cases, which brought the total number of cases in the
affinity benchmark to 179, a 24% increase. In Table 2 we show the composition of the
updated benchmarks compared with the previous versions. The most noticeable increase is
for antibody-antigen complexes: from 24 cases to 40 cases in the docking benchmark and
from 19 cases to 33 cases in the affinity benchmark, which reflects a surging interest in
antibody-based therapeutics.

In the previous versions of the benchmarks, some categories are underrepresented, most
notably the antibody-antigen cases (14%) and difficult cases (15%), while rigid-body cases
are overrepresented (68%). Although there still is overrepresentation and
underrepresentation in the updated benchmark, the newly added cases do not worsen the
representation of any category, and achieve a more balanced composition for most
categories. We examined the new cases on various properties related to size and flexibility
of the component proteins, but only found the total solvent accessible surface area of the
component proteins to be significantly smaller in docking benchmark 4 than the 55 new
cases (p-value=0.05; Kolmogorov-Smirnov test), with average total surface areas of ~24,000
A2 and ~29,000 A2, respectively. It is not clear, however, to what extent this difference
reflects changes in the content of the PDB. Finally, the cases in the docking benchmark that
involve NMR structures increased from 16 cases (9%) in version 4 to 32 cases (14%) in
version 5.

Performance of docking algorithms

Four docking algorithms (see Material and Methods) we applied to the new cases and their
results are shown in Figure 1A. SwarmDock [29,30], PyDock [31], and ZDOCK [32,33] are
ab-initio methods, whereas HADDOCK uses bioinformatics predictions to drive the docking
[34], in this particular case it uses CPORT to predict interface residues [35] and
PARATOME [36] to identify CDR loops of antibodies (see Methods). Overall the success
rates (at least one acceptable prediction for a benchmark case) ranged between 5-16% for
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the top prediction, 20-38% for the top 10 predictions, and 40-67% for the top 100
predictions, comparable to the success rates on version 4 of the docking benchmark using
SwarmDock and ZDOCK [37,38]. As expected, the success rate was much higher for the
rigid-body category, with the success rates for the top 10 predictions at 31-50%, compared
to 4-22% for the medium and difficult cases. The success rates also varied according to
biological category, highest for enzyme containing complexes (29-41%) followed by the
antibody/antigen complexes (13—-38%) and finally the other complexes (5-36%).

We observed that the performances of the different docking algorithms were correlated; for
25% of the rigid-body cases, not a single acceptable solution was found in the top 10
predictions by any of the algorithms, and for 22% cases all four methods succeeded. These
figures are much higher than would be expected if the complexes with correct predictions
were randomly distributed amongst the rigid-body cases (16% and 2%, respectively). Some
insight into why some interactions were inherently easier to dock than others, even within
the rigid-body category, can be gleaned by focusing on the cases for which affinities are
available. When all the docking algorithms failed to find an acceptable solution in the top 10
predictions, the affinity predictors also predicted weak binding energies (3EOA, 3BIW,
4M76, 3RVW, 4GXU, 3H2V). This is either because the complexes are indeed of low
affinity, or due to deficiencies in the energy functions used in both docking and affinity
prediction. The success rates were higher for enzyme containing and antibody-antigen
complexes than for other complexes, as the latter tend to form weaker interactions.

We searched for features indicative of a successful docking outcome. We define a successful
run as a benchmark case for which at least three out of four docking algorithms yielded an
acceptable or better prediction in the top 100 predictions, while an unsuccessful docking run
had at most one algorithm with an acceptable prediction in the top 100 predictions. We
asked which features could separate the cases with successful docking runs from the cases
with unsuccessful docking runs. Because a major driving force in many protein-protein
docking algorithms is the desolvation of the protein components [28], we computed the
buried interface area (AASA) upon complex formation, which is a good measure for
desolvation. We further hypothesized that strong binders were easier to dock than weak
binders. Indeed AASA and experimentally measured binding free energy achieved a good
separation of the two sets of cases with successful and unsuccessful docking runs (Figure 2).
Note that the correlation between AASA and the experimental binding energy is low, as
reported in Figure 1B and discussed below. These two features were individually mildly
predictive of docking success (for example, the seven strongest binders all resulted in
successful docking runs), the combination of them could almost cleanly separate the
successful and unsuccessful docking runs. Below the separating line, 79% docking runs
were successful, and above the line the docking performance drops to 31%. The outlier
2GAF [39] has the largest interface area of all the cases and a binding energy stronger than
any of the other cases with unsuccessful docking runs. Below we discuss this complex in
more detail.
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Performance of affinity prediction algorithms

The change in buried surface area, AASA, does not correlate well with binding energy (r=
-0.16), even for the rigid complexes (I-RMSD < 1.0A, r=-0.28), due to complexes with
large AASA but low affinity, such as the snpA protease/inhibitor complex (4HX3), as well
as high affinity complexes with low surface area such as the C836 (3L5W) and carlumab
(4DN4) antibodies, which are highly optimized for cytokine binding. Similarly, the binding
energy does not correlate highly with 1-R-SD (r=-0.24), and only a small improvement is
found using a minimal linear model combining AASA and I-RMSD (r=0.31) [40]. We
further evaluated a number of prediction methods that include the specific geometry and
composition of the interaction (Figure 1B). This yielded overall correlations of up to r=0.53,
with a predictive power much higher for rigid complexes, up to r=0.75, than for the flexible
cases, up to r=0.53. The best performing methods were trained using either the first version
of the affinity benchmark [25] or using changes in affinity upon mutation [41], yet these
functions yielded lower correlations on the new benchmark cases than the best correlation of
r=0.63 previously reported for the original affinity benchmark [26,27,42]. The correlations
were lower for the statistical potentials and docking scores.

For some of the complexes, the predictions were consistently poor across all methods. All
methods underestimated the affinities for the antibody/hemagglutinin complex (4GXU),
which features a glycosylated asparagine at the periphery of the interface, the C3D/integrin
a-M complex (4M76), for which the interaction is mediated via a Ca2* ion at the core of the
interface, and the efalizumab/integrin a-L complex (3EOA), which is the most rigid
interaction in the benchmark (I-RMSD = 0.39 A). On the other hand, all methods
overestimated the affinities for the actin/twinfilin (3DAW), ALM57/integrin a-L (3HI6),
TolA/G3P (2X9A) and HIF2/ARNT (3F1P) complexes, all of which have high flexibility,
for which the energy penalty of conformational rearrangement may not be well estimated.

Highlighted case: Poly(A) polymerase VP55/Vaccinia protein VP39 (2GAF)

Figure 2 shows that the combination of experimentally measured binding energy and buried
surface area forms a good indicator for a successful docking run. The complex of Poly (A)
polymerase VP55 and Vaccinia protein VP39 (2GAF) [39], however, is a striking outlier.
Only a single docking protocol was successful, despite 2GAF having the largest buried
surface area of all complexes and stronger binding than any of the other complexes that had
at most one successful docking run. Furthermore, this complex belongs to the rigid-body
category, with an I-RMSD of 0.69 A, and we did not find co-factors or other aspects that
might complicate the docking. We studied 2GAF in more detail to understand the poor
docking performance. Inspection of the structure (Figure 3) suggests that the difficulty may
be related to the deep cavity of the receptor being completely filled by the ligand. To
quantify this, we calculated the degree of encapsulation of a protein by its binding partner
using C,, atoms, and performed the same calculation for all the benchmark cases in Figure 2.
We found that 39 residues of the vaccinia protein VP39 are within the cavity of the Poly(A)
polymerase VP55 (indicated in blue in Figure 3). This is the highest number observed in the
set of proteins considered for Figure 2; 4FQI and 3BX7 have 25 and 12 residues
encapsulated, respectively, while all other proteins have fewer than ten residues within the
cavities (39 proteins show zero resides). Presumably the tight fit seen in 2GAF renders the
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mouth of the energy funnel narrow, which may impact the ability of docking algorithms to
find and enter the energy funnel. In addition, the tight fit may cause difficulty for grid-based
methods (ZDOCK, PyDock), because even small deviations from the ideal position,
resulting from the discreet rigid-body conformational parameters, may cause clashes that
prevent favorable scores. Indeed, for a run with a finer rotational sampling (6° vs. the default
of 15°), ZDOCK found a high-accuracy prediction at rank 23. SwarmDock was able to find
a solution in the top 5. Small conformational changes allowed by SwarmDock, which may
have alleviated steric clashes at the funnel entrance, could have facilitated a smoother entry
to the binding funnel. Indeed, the lowest frequency normal mode corresponds to the opening
of the binding cavity, allowing ligand insertion. In the case of HADDOCK, it was the low
quality of the bioinformatics predictions for the ligand binding site (recall of 7%) that
prevented the sampling of near-native solutions. Docking with center-of-mass or random
ambiguous interaction restraints (two ab-initio docking modes of HADDOCK) does
generate acceptable solutions in the top 50 (data not shown). In general, it appears that the
poor performance of the docking algorithms for 2GAF is caused by the inability to correctly
sample or find the native orientation of the ligand within the receptor cavity. This makes
2GAF an exception to the general consensus in the field that failures of docking protocols
are caused either by inaccuracies of the scoring functions (including explicit solvation and
entropy effects) or the difficulty of modeling protein conformational changes [43,44].

Conclusions

Methods

We have presented updated versions to our widely used protein-protein docking and affinity
benchmarks with respectively 55 and 35 new entries. This represents relative increases of
31% and 24% cases, respectively compared with the previous versions. The updated
benchmarks have slightly improved the balance with respect to both complex types and the
range of conformational changes between bound and unbound forms. They are available
from the following sites: http://zlab.umassmed.edu/benchmark (docking benchmark) and
http://omm.cancerresearchuk.org/~bmmadmin/Affinity (affinity benchmark).

We analyzed the performance of four different docking methods and a comprehensive set of
state-of-the-art protein-protein complex affinity prediction methods. We found that the
newly added complexes provide a challenging test set for both docking and affinity
prediction algorithms: Structure predictions success rates and correlations with
experimentally obtained affinities are lower than reported using previous versions of the
benchmark. These updated benchmarks will aid the community in improving these
algorithms and increasing our understanding of biomolecular interactions.

Benchmark construction

We collected new structures for our benchmarks from the Protein Data Bank (PDB) [45]
using a semiautomatic pipeline. We first used the BLAST sequence homology search tool
[46] to find protein-protein complexes for which the experimental structures of both the
complex and the unbound component proteins were available. We also used the SACS
resource [47] to collect a candidate list of antibody-antigen complexes. These complexes
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were then filtered using various quality criteria: (1) the complex structure needed to be
determined by X-ray crystallography, the unbound structures by either X-ray
crystallography or nuclear magnetic resonance (NMR); (2) the sequence identity between
bound and unbound chains needed to be at least 96% with an alignment coverage larger than
80%; (3) the X-ray resolution needed to be 3.25 A or better; (4) chains needed to consist of
at least 30 residues.

While constructing the previous versions of our docking benchmark [17-20], we deemed
two complexes redundant when the pairs of interacting domains were the same at the SCOP
[48] family level. Antibody-antigen complexes were considered redundant only when the
SCOP families of the antigens were identical, and at least 80% of the antigen interface
residues were shared between the two complexes. We used SCOPe 2.03 [49] (previously
named SCOP 1.75C), which represented a limited update with respect to the 1.75 release
used for the first four versions of the docking benchmark. To further compensate for the lack
of SCOP coverage for the most recently solved PDB structures, we inferred their SCOP
family level assignments using the older PDB entries with identical sequences and known
SCOP IDs.

We manually investigated the candidate complexes extensively, consulting the literature
associated with the PDB entries. We checked whether any residues were missing or mutated
in the interface (allowing such residues only if binding would not be affected), and whether
co-factors that affect binding were present or compatible in both bound and unbound forms.
The starting point for the manual step was the first biological assembly listed in the PDB,
although in a number of cases these were not accurate and an alternative assembly had to be
used. When multiple entries were available for a complex or a component protein, we chose
the entry that had the best overall structure quality. This was to some extent a subjective
criterion, as we had to balance all the aforementioned features in the decision. For
component proteins with NMR structures we chose the model that had the lowest interface
root mean square deviation (I-RMSD) from the bound structure. Finally, we prepared
structure files that included the fewest protein chains that correctly reflected the binding
process, aligned the bound and unbound structures, and retained only those HETATM fields
that we deemed biologically relevant.

We evaluated several properties from the structure files. The change in solvent accessible
surface area (AASA) upon complex formation was calculated using the NACCESS
algorithm [50]. The I-RMSD was calculated by superposing the unbound component
proteins onto their bound forms, using the C, atoms for residues that had any atom within
10 A of any atom of the binding partner. We also assessed the expected difficulty of a
benchmark entry for protein-protein docking algorithms [17-20]. Complexes with I-RMSD
> 2.2 A were considered difficult, and complexes with I-RMSD < 1.5 A were considered
rigid-body if their fon-nat [51] Were < 0.40. All other complexes were considered to be of
medium docking difficulty.

We then used the set of complexes as a starting point for extending the structural affinity
benchmark. For many entries, affinities were reported multiple times either by different
groups or using different techniques. These measurements were mostly in mutual
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accordance with one another, typically within one order of magnitude in terms of
equilibrium constant. When selecting the value to include in the benchmark, priority was
given to affinities reported for samples matching the sequences of the reported structures of
the complexes. When this criterion could not be met or still resulted in multiple values
preference was based on sequence similarity and the measurement method. As in the first
version of the affinity benchmark, most affinities were measured using surface plasmon
resonance, isothermal titration calorimetry, or spectroscopic methods. The affinities of four
new cases were measured using the more recent thermophoresis and bio-layer interferometry
technologies. We also collected experimental conditions and additional thermodynamic and
kinetic data whenever available. Affinities were measured at a pH in the 7-8 range, typically
within the 20-25°C temperature range, and with an ionic strength of around 150 mM. In the
context of affinity prediction we consider complexes with I-RMSD < 1.0 A as rigid-body
and the remaining complexes flexible.

Docking algorithms

ZDOCK is an FFT-based rigid-body docking algorithm that performs a grid-based
exhaustive search with a 15° or 6° rotational sampling in three-dimensional (3D) rotational
space and a 1.2 A sampling in the 3D translational space [32,33,38,52]. For each
combination of the three rotational angles, the best scoring prediction in the translational
space is retained, yielding 3600 or 54000 predictions for the 15° and the 6° sampling
respectively. Here we report results obtained using the 15° sampling. We used ZDOCK
version 3.0.2 that uses the IFACE [53] scoring function and the advanced 3D convolution
library [54].

SwarmbDock is a flexible docking method employing a population-based memetic algorithm
that combines a modified particle swarm optimization global search with an adaptive
random local search [29,30]. Elastic network normal mode analysis is used to model
flexibility, and the algorithm simultaneously optimizes translational, quaternion and normal
coordinates, using the DComplex statistical potential as objective function [55]. The
algorithm was run at the SwarmDock server [37]; swarms are initialized around ca. 120
points surrounding the receptor and the algorithm was run four times from each starting
point for 600 iterations. The lowest energy solutions found in each run were ranked using
the centroid potential of Tobi [56] and clustered, retaining only the lowest energy member of
each cluster.

PyDock [31] is a protein-protein docking protocol built upon FTDock [57], an FFT based
method that searches for geometrically complementary rigid-body poses in the translational
and rotational space. FTDock predicts 10,000 poses which are then scored using an
empirical potential composed of electrostatic interaction (Coulombic energy with a distance-
dependent dielectric constant £ = 4.0r and charges specified by the AMBER94 force field
[58], truncated to be in between 1.0 and —1.0 kcal/mol), desolvation (based on atomic
solvation parameters optimized for rigid-body docking), and a limited (10%) contribution
from the van der Waals energy (612 Lennard-Jones potential with atomic parameters from
the AMBER94 force field, truncated to be below 1.0 kcal/mol).
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HADDOCK (High Ambiguity Driven DOCKIing) [34] is a semi-flexible docking protocol
that uses bioinformatics predictions and biochemical/biophysical interaction data to drive
the docking process. It uses CNS (Crystallography and NMR system) [59] as its structure
calculation engine. The protocol consists of three steps: i) randomization of orientation and
rigid-body docking via energy minimization driven by interaction restraints (it0), ii) semi-
flexible refinement in the torsional angle space in which side-chain and backbone atoms of
the interface residues are allowed to move (it1) and iii) Cartesian dynamics refinement in
explicit solvent, typically water. The final structures are clustered using the pairwise
backbone ligand interface RMSD and the resulting clusters ranked according to the
HADDOCK score (weighted sum of the restraint energy, the van der Waals and electrostatic
energies based on OPLS parameters [60] and a desolvation energy term [61]). Note that in
the docking performance analysis presented here, no clustering was performed and
individual models were selected based on their HADDOCK score.

We used the HADDOCK web server [62], outputting 10000/400/400 models for the three
stages of the protocol. Restraints to drive the docking were derived from bioinformatics
predictions by CPORT [35], except for the antibody-antigen complexes for which
complementarity-determining regions (CDRs) identified with PARATOME [36] were
defined as active, and all solvent-accessible residues of the antigen were used as passive
residues to define ambiguous interaction restraints to drive the docking. The predicted
interfaces (and their recall and precision) used for docking are available at the SBGRid Data
Bank, along with all docking decoys and HADDOCK input files from the deposited
HADDOCK docking set [63].

Affinity prediction algorithms

ZAPP predicts protein-protein binding free energies using a linear combination of nine
energy terms and a constant [26]. Only one term uses the unbound structures in addition to
the complex structures, while the other eight terms only require the complex structure.

ConsBind is an affinity prediction method based on machine learning in which the predicted
affinity is a consensus of four learners [42]: multivariate adaptive regression splines
(MARS), random forest regression (RF), radial basis function (RBF) interpolation, and an
M5’ regression tree (M5). The learners were trained using 143 of the 144 affinities in the
previous affinity benchmark [25] with all 108 features extracted from the bound structures
using the CCharPPI web server [64]. Information from the unbound structures was not used.
The final consensus score is the arithmetic mean of the four learners.

Solvebind is a binding affinity prediction method based on the global surface model of
Kastritis et al. [27], combining the number of atoms in the interface (NatomsinT) @nd the
percentages of charged and polar residues in the non-interacting surface (%AAchaN'S and
%AAGN'S):

—ZOQKd:a : %AA;IJOZNIS'f'ﬁ : %AAcharNIS+7 : NAzamsIN1'+5
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with a =0.0857, f = —-0.0685, y = 0.0262, and & = 3.0125 (obtained after four-fold cross-
validation based on the rigid-body complexes of the previous affinity benchmark [25]).
Properties of the non-interacting surface were found to correlate with affinity [13,27] and
may regulate solvation and electrostatic contributions to binding affinity [27,65].

Besides the aforementioned binding affinity prediction methods developed in our groups, we
also assessed the minimal affinity model of Janin (AASA/RMSD) [40], buried surface area
(AASA), the DOPE [66] and DComplex [55] statistical potentials, the PyDock [31], SIPPER
[67], ZDOCK [68] and FireDock [69] docking scores, as well as contact potentials
(AAG_AW, AAG_AU, AAG_CW, AAG_CU) [41] and a surface energy model (AAG_V)

[70] derived from mutation data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

(A?) Performance of four docking algorithms on the new cases in the benchmarks, showing
whether acceptable/medium/high quality structures evaluated using the CAPRI criteria were
present in the top 1/5/10/50/100 predictions for each case (denoted by T1, T5, T10, T50, and
T100, respectively). Also shown are the overall success rates (bottom), complex type (left)
and binding energy where available (far left). The complexes are ordered first by the
difficulty category, then by I-RMSD. (B) Evaluation of affinity prediction methods.
Complexes are ordered by increasing experimental affinities, to which the predicted
affinities were fitted using linear regression in order to compare the performance of various
prediction methods. The performances are grouped using a weighted average linkage
agglomerative clustering algorithm (bottom). Correlations against the experimental data are
shown at the top, for all the new benchmark cases as well as for the flexible complexes (I-
RMSD = 1.0 A) only or for the rigid complexes (I-RMSD < 1.0A) only. Also shown are the
I-RMSD values (right), complex type (left), and the docking success rate at top 10
predictions (far left).
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Figure 2.
Interface area vs. experimental binding energy of the benchmark cases with successful

docking runs (green; at least three docking protocols yielding acceptable predictions in the
top 100) or unsuccessful docking runs (red; at most one docking protocol yielding
acceptable predictions in the top 100).

J Mol Biol. Author manuscript; available in PMC 2015 December 13.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Vreven et al.

Page 16

Figure 3.
Crystal structure (2GAF) of the complex of Poly(A) polymerase (orange) VP55 and

Vaccinia protein VP39 (blue and cyan). Vaccinia protein VP39 residues that are within the
Poly(A) polymerase cavity are colored blue, while the residues outside the cavity are
colored cyan.
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Composition of the updated docking and affinity benchmarks (in parentheses are values for the previous

Table 2

versions of the benchmarks, docking v4 and affinity v1).

Docking Affinity
N % N %

All 230 (175) 179 (144)

Enzyme containing 88 (71) 38% (41%) 69 (61) 39% (42%)
Antibody-antigen 40 (24)  17% (14%)  33(19)  18% (13%)
Others 102 (80)  45% (45%) 77 (64)  43% (45%)
Rigid-body?@ 151(119)  65% (68%)

Medium@ 45(29)  20% (17%)

Difficultd 34(27)  15% (15%)

Rigid (I-RMSD<1.04)2 93(75)  52% (52%)
Flexible (I-RMSD>1.0A)2 86 (69)  48% (48%)

aSee Methods for definition
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