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Abstract

Recent advances in the biological production of fuels have relied on the optimization of pathways 

involving genes from diverse organisms. Several recent articles have highlighted the potential to 

expand the pool of useful genes by looking to filamentous fungi. This review highlights the 

enzymes and organisms used for the production of a variety of fuel types and commodity 

chemicals with a focus on the usefulness and promise of those from filamentous fungi.
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Introduction

The production of biofuels at scales necessary to meet demand and compete with fossil fuel 

prices remains a tremendous hurdle (Chu and Majumdar 2012). The rational manipulation of 

metabolic pathways and the selection of the most active enzymes from an ever-increasing 

pool of candidates have dramatically increased yields (reviewed in Peralta-Yahya et al 

2012). The sources of the enzymes that are being used in these pathways derive from 

organisms that span the tree of life, however, the kingdoms of Bacteria and Plantae are most 

highly represented. Much work in recent years has demonstrated the ability of filamentous 

fungi to produce hydrocarbons and commodity chemicals and this group represents a largely 

untapped source of enzymatic potential.

Filamentous fungi have been observed to produce volatile alcohols, alkanes and terpenoids 

for many years (Murahashi 1938; Freeman, G. G. 1949; Or et al. 1966). These molecules are 

often described as Volatile Organic Compounds (VOCs) and have been explored for diverse 

applications. Notably, VOCs have been suggested as a means to identify the presence of 

fungi in indoor environments (Samson 1985). VOC production from a variety of common 

indoor fungi in the genera Aspergillus, Fusarium and Penicillium has been characterized for 

this purpose (Larsen and Frisvad 1995; Fiedler et al. 2001; Wihlborg 2008; Lancker et al. 
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2008; Schuchardt and Kruse 2009; Polizzi et al. 2012). The suggested application of fungal 

VOCs as biofuels was made relatively recently (Strobel et al. 2008). A sampling of isolates 

in the genus Ascocoryne revealed a series of C8 compounds as well as C6 to C9 alkanes and 

branched alcohols that could be a gasoline surrogate (Griffin et al. 2010). Similarly, many 

fungi have been shown to produce many volatile terpene molecules, which are being used as 

jet or diesel fuels (Fig. 1)(Peralta-Yahya et al. 2011; Tess Mends and Yu 2012; Riyaz-Ul-

Hassan et al. 2013).

Described herein are applications where the application of fungal enzymes shows great 

potential. For three major fuel types (gasoline, jet fuel and diesel) biosynthetic strategies and 

enzymes that have been successfully applied are discussed and the potential role for 

filamentous fungi is highlighted.

Gasoline surrogates

The current biological surrogates for gasoline are mostly short-chain alcohols, notably 

ethanol. However, longer chain alcohols that more closely mimic the properties of 

petroleum-derived fuel have also been biosynthetically explored (Fig. 1)(International 

Energy Agency 2011). Significant effort has gone into the production of these molecules via 

the α-ketoacid elongation pathway, whereby amino acid biosynthesis pathways are re-routed 

to decarboxylate, rather than aminate, amino acid precursors. In the first demonstration of 

this production, Atsumi and colleagues made C3-C4 linear and C4-C5 branched primary 

alcohols as well as C8 phenylethanol. They then optimized the production of 1-butanol by 

surveying decarboxylases from three bacteria (Megasphaera elsdenii, Streptomyces 

coelicolor and Clostridium acetobutylicum) to find the enzyme that produced the highest 

titers (Atsumi et al. 2008b; Atsumi et al. 2008a). Further extensions of these methods have 

led to a C8 linear alcohol that closely mimics the energy density and hydrophobicity of 

gasoline (Marcheschi et al. 2012).

Filamentous fungi have been observed to produce alcohols of these chain lengths, from 

ethanol to decan-4-ol, including several different isomers for each of the C5-C7 alcohols 

(Table 1)(reviewed in Korpi et al. 2009). Where known, these alcohols derive from amino 

acid degradation via the Ehrlich pathway (Schoondermark-Stolk et al. 2006), though it 

remains unclear how several of the alcohols with longer chains are produced. In the case of 

the C8 1-octen-3-ol, often referred to as the characteristic mushroom odor, the mechanism of 

synthesis has been shown to occur via the peroxidation and cleavage of linoleic acid (Tressl 

et al. 1982; Wurzenberger and Grosch 1984b; Wurzenberger and Grosch 1984a). Other C8 

alcohols and ketones were produced by the Aspergillus lipoperoxidase PpoC in a lysate of E. 

coli (Brodhun et al. 2010). Homologs of PpoC were associated with the production of 

alkenes and alkanes by transcriptomic studies, though it remains unclear if what other 

enzymes may also have been involved (Gianoulis et al. 2012). This suggests that fungi may 

have enzymes capable of reducing the alcohols and ketones to hydrocarbons. Though the 

breakdown of linoleic acid is unlikely to be as energy efficient as α-ketoacid elongation for 

the production of long-chain alcohols, these downstream fungal enzymes may be of 

significant use for the conversion of alcohols to alkenes and alkanes.
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Other mechanisms for the production of alkenes and alkanes thus far have been successful 

only for longer products, more suitable for use as jet or diesel fuel surrogates. However, 

some fungal enzymes may be useful in generating shorter alkenes. Specifically, recent work 

has discovered a nine-carbon alkene from an endophytic fungus isolate of Nigrograna 

mackinnonii that is likely to be polyketide-derived which approaches a chain length useful 

for gasoline applications (Shaw et al. 2015b).

Jet Fuel surrogates

Significant advances have been made in the biological production of hydrocarbons with 

chain lengths suitable for use as surrogates of jet fuel, most notably those derived from 

terpene biosynthesis. Terpenes are produced by the condensation of phosphorylated isoprene 

monomers that can then be cyclized and modified to form diverse natural products with 

myriad uses (Gershenzon and Dudareva 2007). Mono-and sequiterpenes, from the 

condensation of two and three isoprene units, respectively, are the most common isoprene 

polymers used in the context of biofuels. Monoterpenes alone have been suggested as a jet 

fuel surrogate after chemical dimerization (Harvey et al. 2010); however, other 

modifications such as hydrogenation give properties more suitable as a diesel additive 

(Tracy et al. 2009). A fuel from a mixture of mono and sesquiterpenes were recently used in 

a test flight (Amyris 2012), however sequiterpenes are more often used as a diesel fuel. 

Monoterpenes are also desirable for a variety of other uses including as pharmaceuticals 

(Lambert et al. 2001), flavorings and fragrances (Werf et al. 1997; Carrau et al. 2005; Kirby 

and Keasling 2009).

Eukaryotes and bacteria typically form the precursors to terpenes via different pathways, 

however the mevalonate pathway, which is mostly found in eukaryotes, has been entirely 

reconstituted in E. coli for engineering purposes (Martin et al. 2003). Since then, the 

pathway has been extensively optimized, including by adding more active versions of 

several enzymes (Staphylococcus aureus 3-hydroxy-3-methylglutaryl (HMG)-CoA Synthase 

and Enterococcus faecalis HMG-CoA Reductase) (Renninger et al. 2010), the identification 

and expression of only the catalytic domain of HMG-CoA Reductase to remove its feedback 

inhibition (Ohto et al. 2009; Asadollahi et al. 2010), the substitution of a modified Acetyl-

CoA synthetase from Salmonella enterica to relieve glucose repression (Shiba et al. 2007) 

and the transfer of the entire pathway to the mitochondrion (Farhi et al. 2011). Further 

improvement in product titers are now limited by the terpene cyclase, the last step of the 

process that generates a specific molecule or set of molecules. What are needed now are 

novel and more efficient terpene cyclases.

Many of the terpene cyclases currently used for synthetic biology applications come from 

plants. For example, for the production of the monoterpene dimer jet fuel described above, 

three enzymes were tested from among the 11 that were known to produce β-pinene, all of 

which came from plants (Degenhardt et al. 2009; Sarria et al. 2014). Several other 

dimerization strategies have been reported that have utilized both α and β pinene (Chen and 

Forbus Jr 1990; Booth and Phillips Jr 1998; Chapaton et al. 2004; Zou et al. 2012). 

Filamentous fungi have been observed to produce both α and β pinene, though α is 

considerably more common (Table 1).
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Indeed, terpenes are among the most numerous volatile products observed from fungal 

cultures, including both Ascomycetes and Basidiomycetes, and with especially high 

structural diversity from marine-derived fungi (Ebel 2010). However, the difficulty to 

identify terpenes by methods such as GC/MS often makes further study challenging. For 

example, in Griffin et al 2010 strains of Ascocoryne produced as many as 39 unique 

sesquiterpenes, nearly as many as all other classes of VOCs combined (Griffin et al. 2010). 

However, comparing these unknown products to other observations is challenging without 

column and temperature-independent values, such as retention indices, which are not 

universally reported.

A major barrier to the use of these fungal terpene cyclases for biosynthetic applications is 

the correlation of products with a particular gene. The first gene-product association for a 

monoterpene was recently reported for the oxygenated terpenoid 1,8-cineole. Several 

sesquiterpene synthases have been correlated with products from the basidiomycete 

Coprinus cinereus, including germacrene A, α-muurolene, δ-cadinene and α-cuprenene 

(Agger et al. 2009). Though no gene has yet to be associated with the jet fuel precursor 

pinene the genomes of several fungi that produce α and β pinene have been sequenced 

(Nierman et al. 2005; Cuomo et al. 2007; Shaw et al. 2015a; Shaw et al. 2015b).

Terpene cyclases are readily predictable from genome sequences by their highly conserved 

catalytic core motifs, however the overall sequence similarity is strikingly small, making 

product prediction difficult (Lesburg et al. 1997; Starks et al. 1997). In known structures 

bacterial and fungal cyclases tend to be more compact than their plant counterparts, lacking 

several domains that appear to have evolved only in the plant lineage (Kampranis et al. 

2007; Nakano et al. 2011; Köksal et al. 2011; Liu et al. 2014). This suggests that the use of 

fungal or bacterial enzymes in overexpression strains might be more efficient than their 

plant counterparts; in the very few cases where enzymatic efficiencies can be compared this 

appears to hold true (Felicetti and Cane 2004; Shaw et al. 2015a). For example, the kcat of 

the Hypoxylon sp. 1,8-cineole synthase is roughly 5-fold faster than from the bacterium 

Streptomyces lividans or the plant Salvia fruticosa (Kampranis et al. 2007; Nakano et al. 

2011; Shaw et al. 2015a).

Diesel surrogates

There are a variety of molecule types that have been suggested for use as diesel surrogates, 

including hydrogenated mono and sesquiterpenes and alkanes/alkenes. Where tested, each 

has been shown to mimic diesel in several respects including cetane number and energy 

density (Peralta-Yahya et al. 2011). Terpene-based diesel surrogates include chemically 

hydrogenated forms of monoterpenes such as limonene, and sesquiterpenes such as 

farnesene and bisabolene. Similar to the example of β-pinene production described above, 

optimal bisabolene titers were obtained by testing six different plant cyclases to identify the 

most active from the Giant Fir tree Abies grandis (Peralta-Yahya et al. 2011). Many 

different filamentous fungi have been observed to produce bisabolene, in both the 

Ascomycetes and Basidiomycetes phyla (Müller et al. 2013; Zhang et al. 2014) though no 

genes have been associated with the synthesis of the molecule.
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Even more structurally similar to existing diesel fuel blends are long-chain alkanes and 

alkenes, which have been demonstrated to be produced by bacteria through the modification 

of fatty acid precursors. Alkanes have been produced by reducing fatty acids of varying 

lengths to an aldehyde and then decarbonylating to leave an n-1 alkane of sizes 13-17 

(Winters et al. 1969; Schirmer et al. 2010; Wang et al. 2013). Alkenes have been produced 

by two mechanisms: a P450-type enzyme was shown to decarboxylate a free fatty acid 

leaving an n-1 terminal alkene (Rude et al. 2011) and two fatty-acid precursors are merged 

and then reduced in a process known as head-to-head condensation (Beller et al. 2010; 

Sukovich et al. 2010). None of these mechanisms have been observed in eukaryotes though 

they have been hypothesized to be widely present (Cheesbrough and Kolattukudy 1988; 

Dennis 1992; Kunst and Samuels 2003).

Fungi have been observed to produce alkanes and alkenes for decades, though no 

mechanism for their production has been elucidated (Or et al. 1966; Walker and Cooney 

1973). Spores from several species have been shown to contain n-alkanes, with 27, 29 and 

35 carbons dominating (Or et al. 1966). Their odd-chain lengths are consistent with the n-1 

decarboxylation or decarbonylation mechanisms described above. Even-chain n-alkanes, 

such as the n-16 observed from Hormoconis resinae (Cladosporium resinae) do not clearly 

fit into a mechanism that has been described in bacteria (Walker and Cooney 1973). More 

recent work has observed a variety of even-chain alkanes/alkenes from members of the 

genus Ascocoryne (Griffin et al. 2010), however these were later correlated with the 

breakdown of linoleic acid (Gianoulis et al. 2012) which could not explain the n-16 alkanes 

of H. resinae. Further work will be necessary to discover how fungi are able to produce this 

important class of molecules.

Conclusions

There is a pressing need for “drop-in” surrogates for the three primary transportation fuels: 

gasoline, jet fuel and diesel. In the case of gasoline, short chain alcohols predominate, 

though longer chains that more closely mimic the properties of gasoline continue to be 

explored. In the case of jet fuel, dimerized monoterpenes and mixtures of hydrogenated 

mono and sesquiterpenes have been used in a jet engine (Amyris 2012). In the case of diesel, 

hydrogenated sesquiterpenes and long-chain alkanes and alkenes show promise (Peralta-

Yahya et al. 2011). In each of these cases filamentous fungi are known to produce similar if 

not the same molecules and may lend useful properties to these biosynthetic pathways.

Notably lacking are polyketide-derived biofuels. In theory, the ability to rationally design 

PKSs could produce biofuels with whatever degree of saturation and branching are required 

for the application (Menzella et al. 2005), however the heterologous expression of PKSs is 

only beginning to be implemented (Pfeifer and Khosla 2001; Ma et al. 2009; Yuzawa et al. 

2012). The substrate molecule for polyketide biosynthesis is the same as for terpenes, acetyl-

CoA, so engineering efforts that have increased the amount and availability of acetyl-CoA 

would benefit PKS enzymes as well. The commonly-used heterologous host, S. cerevisiae, 

would be particularly useful for PKS-based fuels as it does not contain endogenous PKSs, 

thereby reducing the effort to eliminate off-target pathways (Tsunematsu et al. 2013). A 
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potential source for finding such enzymes is within the many diverse and unstudied 

filamentous fungi.

The major hurdle in the utilization of fungal enzymes in these synthetic biology applications 

is the identification of the genes responsible for the production of the many interesting 

molecules that are reported from fungi. Decreasing costs of DNA sequencing have made the 

larger genome sizes of fungi less of an impediment, though developing genetic tools 

necessary for discovering these genes remains a bottleneck and methods that are broadly and 

expediently applied to the many unstudied organisms are needed (Li and Vederas 2009). 

Decreasing costs of DNA synthesis have alleviated some of this concern, as many genes of 

interest can be synthesized into vectors for testing in heterologous hosts. Particularly useful 

in this regard is the terpene production pathway in E. coli developed by the Keasling Lab, 

which allows for many unknown terpene cyclases of fungi to be expressed and their 

products quickly characterized (Martin et al. 2003; Shaw et al. 2015a). A similarly universal 

system for PKS genes would be immensely useful, though promoting the correct folding and 

phosphopantetheinylation of these large enzymes will likely be a challenge.

The efficiencies of the production enzymes are not the only hurdle to the widespread 

adoption of biofuels. The biofuel titer is often tempered by the toxicity of the products 

(Brennan et al. 2012), and the ease of purification has a significant effect on the overall 

efficiency (Stephanopoulos 2007). The carbon efficiency of the system must also be 

considered; acetate-derived biosyntheses including terpenes and polyketides, have a 

maximum theoretical carbon efficiency of only 66% (Rontein et al. 2002). Moreover, the 

carbon inputs are important beyond the scope of the fuel production; the use of food-crop 

feedstocks have a significant impact on the environment and economy, leading to recent 

policy suggestions to end biofuel subsidies (Searchinger and Heimlich 2015).

The recent gains in the biological production of fuel molecules and commodity chemicals 

are owed to the significant modification of chasis organisms and the assemblage of genes 

from several different species. The successes of these systems makes it increasingly unlikely 

that we will discover a single organism that represents a “consolidated bioprocess,” i.e. that 

uses the desired feedstocks and produces the desired molecules at a scale competitive with 

these hybrid organisms. Moreover, the success of synthetic biology applications will likely 

grow as the pool of enzymes increases with more organisms being sequenced and effectively 

annotated. Filamentous fungi represent a relatively untapped pool of such enzymes, with 

potential for many different applications.
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Figure 1. Biofuel molecule classes
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