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The hippocampus provided the gateway into much of what we have learned about stress and brain structural and
functional plasticity, and this initial focus has expanded to other interconnected brain regions, such as the amygdala
and prefrontal cortex. Starting with the discovery of adrenal steroid, and later, estrogen receptors in the hippocampal
formation, and subsequent discovery of dendritic and spine synapse remodeling and neurogenesis in the dentate gyrus,
mechanistic studies have revealed both genomic and rapid non-genomic actions of circulating steroid hormones in the brain.
Many of these actions occur epigenetically and result in ever-changing patterns of gene expression, in which there are
important sex differences that need further exploration. Moreover, glucocorticoid and estrogen actions occur synergistically
with an increasing number of cellular mediators that help determine the qualitative nature of the response. The hippocampus
has also been a gateway to understanding lasting epigenetic effects of early-life experiences. These findings in animal models
have resulted in translation to the human brain and have helped change thinking about the nature of brain malfunction in
psychiatric disorders and during aging, as well as the mechanisms of the effects of early-life adversity on the brain and
the body.
Neuropsychopharmacology Reviews (2016) 41, 3–23; doi:10.1038/npp.2015.171; published online 19 August 2015

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

INTRODUCTION

The field of neuroendocrinology began with the funda-
mental discovery of the communication between hypo-
thalamus and pituitary by Harris (1970) and this established
the basis for understanding brain–body communication
via the neuroendocrine system. The hypothalamus and
pituitary gland became the focus and led to the discovery
of releasing factors in the hypothalamus for pituitary
hormones (eg, see Guillemin, 1978; Schally et al, 1973;
Vale et al, 1981) as well as the feedback of hormones on the
hypothalamus and pituitary for the purpose of regulating
hormone secretion (Meites, 1992). During the same time
period, steroid hormones were shown to bind to intracellular
receptors that regulate gene expression in tissues such as
liver, and the prostate and uterus in the case of sex hormones
(Jensen and Jacobson, 1962) and tritium-labeled steroid
hormones were used as probes to detect these receptors using
cell fractionation (Toft and Gorski, 1966) as well as steroid
autoradiography (Pfaff and Keiner, 1973; Stumpf, 1971).

The McEwen laboratory entered this field using tritium-
labeled steroids by serendipitously discovering adrenal
steroid, and, later, estrogen receptors, in the hippocampal
formation of the rat using both steroid autoradiography, as
well as cell fractionation methods, and immunocytochemical
methods at the electron microscopic and light micro-
scopic levels (Gerlach and McEwen, 1972; Loy et al, 1988;
McEwen and Plapinger, 1970; McEwen et al, 1968; Milner
et al, 2001; Zigmond and McEwen, 1970). We and others
extended these findings to the infrahuman primate brain, as
well as to other regions of the brain involved in cognitive and
emotional regulation (Gerlach et al, 1976). These findings
have catalyzed studies that look at actions of hormonal
feedback on the brain, not only to regulate hypothalamic
functions, but also to influence neurological, cognitive, and
emotional functions throughout the entire brain, with
translation to the human brain in relation to aging, mood
disorders, and the impact of the social environment.
The hippocampus provided the gateway into much of

what we have learned about stress and brain plasticity and
the initial focus on hippocampus has expanded to other
interconnected brain regions, such as the amygdala and
prefrontal cortex (PFC). This article describes research in our
and other laboratories on these three brain structures that
have led to the discovery of structural remodeling of neurons
in response to acute and chronic stressors and then led
us and others to uncover both epigenetic and non-genomic
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mechanisms by which glucocorticoids and estrogens produce
their effects, as well as sex differences in these outcomes.

HIPPOCAMPUS AS THE GATEWAY

Glucocorticoid (GR) and Mineralocorticoid (MR)
Receptors and Functions

The discovery of stress hormone receptors acting in the
hippocampus has been the gateway to the investigation of
other brain regions as well as mechanisms of stress and
adrenal steroid action. Work by Reul and DeKloet (1985)
demonstrated that there are two types of adrenal steroid
receptors, MR (Type 1) and GR (Type 2), in the hippo-
campus and other brain regions. This was further elaborated
by immunocytochemical mapping of the receptors (Ahima
et al, 1991; Ahima and Harlan, 1990).
Studies in our laboratory and by Diamond et al (1992) and

Joels (2006) have shown biphasic effects mediated by MR
and GR on long-term potentiation and long-term depression
(Pavlides et al, 1995). The biphasic effects on excitability are
reflected in memory, such that a biphasic corticosterone dose
response is seen on object recognition memory (Okuda et al,
2004). These effects depend on the state of behavioral arousal
in a novel environment, which also implies a synergistic role
of adrenaline and the fact that the hippocampus and
amygdala work together (Roozendaal et al, 1996). The GR
is involved in hippocampal-dependent spatial memory via a
genomic mechanism as shown in the dimerization-deficient
GR mouse, where GR cannot dimerize to bind to
glucocorticoid response elements (Oitzl et al, 1997). GRs
are also involved in contextual fear memory, mediated by
hippocampus and amygdala, based upon the finding that
Ru486 is able to block it (Pugh et al, 1997).
Ultradian fluctuations of glucocorticoids drive GR activa-

tion and reactivation, whereas MR occupancy for nuclear
activation is more constant and promotes excitability
(Stavreva et al, 2009) and this has implications for genomic
and non-genomic activity of adrenal steroids, as will be
discussed below.

Neural Structural Remodeling

Our finding in hippocampus of chronic stress-induced
shrinkage of dendrites of hippocampal CA3 and dentate
gyrus neurons as well as loss of spines in CA1 neurons (see
(McEwen, 1999) revealed aspects of brain structural plasticity
(Figure 1). The rediscovery of neurogenesis in the adult
as well as developing dentate gyrus of the hippocampal
formation (Cameron and Gould, 1994; Gould et al, 1992),
which had been strongly suggested (Altman and Das, 1965),
but largely ignored (Kaplan, 2001) for a number of decades,
helped to establish the concept that the adult brain could
show remodeling of neuronal architecture not only after
stress but also in other conditions.
Moreover, for both chronic stress effects and the ability of

estrogens to induce spine synapse formation, it became

apparent that hormones did not work alone but involve other
mediators, particularly excitatory amino acids (EAAs) and
their receptors (Cameron et al, 1998; Daniel and Dohanich,
2001; Gazzaley et al, 1996; Magarinos and McEwen, 1995;
Woolley and McEwen, 1994). For example, for the chronic
stress-induced shrinkage of apical dendrites of hippocampal
CA3 neurons, the giant mossy fiber terminals (MFTs) have a
key role and are a bellwether of the effects of repeated stress
(Magarinos et al, 1997; Figure 2). Specifically, MFTs from
control rats are fully packed with vesicles containing gluta-
mate, whereas after chronic restraint stress, they become
depleted of vesicles, but the remaining vesicles are found at
the multiple active synaptic zones in these giant presynaptic
terminals, along with increased mitochondria in the stressed
MFTs. This suggests not an exhausted but a new steady state
of increased activity (Magarinos et al, 1997).
The CA3 region is not the only region of the hippocampus

to show dendritic reorganization with chronic stress. Apical
dendrites of rat CA1 neurons were reported to be shorter in
adulthood after chronic neonatal bedding stress (Brunson
et al, 2005), and a comparison of stressors revealed
differences within the hippocampus and its functional
connectivity to other brain regions (Maras et al, 2014).
Comparison of a multimodal stress paradigm (concurrent,
hours-long light, loud noise, jostling, and restraint) with
restraint or loud noise alone revealed severe deficits in
hippocampal-dependent object recognition memory after
multimodal stress, but fewer deficits after restraint or loud
noise alone. These differences in memory were not explained
by differences in plasma corticosterone levels or numbers
of Fos-labeled neurons in stress-sensitive hypothalamic
neurons. Measures of spine density under these different

Vulnerable to damage. 
Dendrites shrink with stress 
but reversible!!! 

Mossy fiber terminals:
Glutamate release
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Figure 1. The trisynaptic organization of the hippocampus showing input
from the entorhinal cortex to both CA3 and dentate gyrus (DG), with feed
forward and feedback connections between these two regions that
promotes memory formation in space and time, but at the same time,
makes the CA3 vulnerable to seizure-induced excitation (McEwen, 1999).
Chronic stress causes apical dendrites of CA3 neurons to debranch
and shorten in a reversible manner, and glutamate release by giant mossy
fiber terminals is a driving force. Chronic stress also inhibits neurogenesis
in DG and can eventually reduce DG neuron number and DG volume
(see text).
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conditions revealed that synapses in hippocampal CA3 were
reduced by both restraint and multimodal stress, whereas
multimodal stress alone reduced synapse numbers severely
in dorsal CA1. Ventral CA1 synapses were not significantly
affected by any of these stressors. Using c-Fos as a marker of
neuronal activity, multimodal stress reduced hippocampal
connectivity with septum and thalamus compared with
restraint and increased connectivity with amygdala and BST
more so than restraint stress (Maras et al, 2014).
In C57Bl6 mice, 10 days of chronic immobilization stress

(CIS) induced dendritic retraction of CA3 short-shaft
pyramidal neurons, but not CA3 long-shaft pyramidal
neurons, along with a robust retraction of dendrites in
dorsal CA1 pyramidal neurons (Christian et al, 2011). In
mice specifically lacking NMDA receptors in CA3 neurons,
chronic stress-induced dendritic retraction was not evident
in any of the neurons in either CA3 or CA1 and this
prevention of dendritic retraction in the mutant mice had a
minimal effect on HPA axis activation and behavioral
alterations that were induced by chronic stress (Christian
et al, 2011). In the hippocampus of hibernating animals,
rapid shrinkage of CA3 apical dendrites is seen with onset of
hibernation, whereas regrowth of those dendrites occurs
within hours of termination of hibernation, suggesting that
the cytoskeleton can rapidly depolymerize and repolymerize
when needed via a mechanism in which phosphorylation of a
soluble form of tau is involved as a factor involved in
cytoskeletal dissociation (Arendt et al, 2003; Magarinos et al,
2006; Figure 3).
Besides glucocorticoids and EAA receptors, there is a

growing list of mediators implicated in the stress-induced
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Figure 2. Giant mossy fiber terminals (MFTs) of DG neurons that synapse in stratum lucidum of CA3 have multiple active sites of glutamate release on the
thorny excrescences that penetrate the MFTs. Normally fully packed with synaptic vesicles, the MFTs show depletion of vesicles after 3 weeks of chronic
restraint stress (CRS), with the remaining vesicles being near active synaptic zones. As shown at the right, vesicle area is reduced by CRS but packing density
of the remaining vesicles is increased and the area occupied by mitochondria is also increased. This suggests that the chronically stressed MFT are not
exhausted but rather very active after chronic stress (Magarinos et al, 1997). Interestingly, by microdialysis, glutamate release in hippocampus caused by
restraint stress is abolished by adrenalectomy, indicating involvement of adrenal secretions (Lowy et al, 1993). *Po0.001, two-tailed unpaired Student’s t-test.
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Figure 3. Effect of deep hibernation and induced awakening on the
apical dendritic branching density of CA3 pyramidal neurons. (a) Camera
lucida drawings of representative CA3 pyramidal neurons from active and
hibernating European hamsters. An overlay of concentric rings centered at
the cell body was used for Sholl analysis. (b) One-way ANOVA followed by
Tukey post hoc test revealed statistical differences among experimental
groups between 100 and 180 μm from the soma (hibernation (HIB) vs
active and awaken groups, Po0.001) and also between 200 and 260 μm
from the soma (HIB vs active and awaken groups (Po0.005). Taken from
reference Magarinos et al (2006).

Stress effects on neuronal structure
BS McEwen et al
.....................................................................................................................................................................

5

REVIEW

...................................................................................................................................................

Neuropsychopharmacology REVIEWS



dendritic remodeling (Table 1). These include trophic factors
such as brain-derived neurotrophic factor (BDNF) and the
secreted signaling molecule and protease tissue plasminogen
activator (tPA), another signaling molecule, lipocalin 2,
corticotrophin-releasing factor (CRF), and endocannabi-
noids. Besides these signaling mediators, cell surface mole-
cules have an important role. Expression of the polysialylated
form of neural cell adhesion molecule in the hippocampal
formation is increased by stress, whereas PSA removal by
Endo-neuraminidase-N (Endo-N) is known to cause the
mossy fibers to defasciculate and synapse ectopically in their
CA3 target area. Enzymatic removal of PSA by Endo-N
produced a remarkable expansion of dendritic arbors of
CA3 pyramidal neurons, with a lesser effect in CA1.
This expansion eclipsed the CIS-induced shortening of
CA3 dendrites, with the expanded dendrites of both no-
stress-Endo-N and CIS-Endo-N rats being longer than those
in no-stress-control rats and much longer than those in CIS-
control rats. As predicted by the hypothesis that Endo-N-
induced dendritic expansion might increase vulnerability
to excitotoxic challenge, systemic injection with kainic
acid, showed markedly increased neuronal degeneration,
as assessed by fluorojade B histochemistry, in rats that had
been treated with Endo-N compared with vehicle-treated rats
throughout the entire hippocampal formation. PSA removal
also exacerbated the CIS-induced reduction in body weight
and abolished effects of CIS on neuropeptide Y and NR2B
mRNA levels (McCall et al, 2013; Figure 4).
Much of the structural remodeling described above is

mediated by gene expression changes that results from
changes in DNA transcription (genomic effects), principally

through binding of activated GRs to glucocorticoid response
elements in DNA. However, stress-induced plasticity can
also be mediated through non-genomic mechanisms, as
described below.

Non-Genomic Effects

Immunocytochemistry at the electron microscopic level
revealed specific immunolabeling for epitopes of glucocorti-
coid and estrogen receptors near the cell surface, in the
mitochondria, dendrites, and presynaptic terminals and
post-synaptic densities (Johnson et al, 2005; Liposits and
Bohn, 1993; McEwen and Milner, 2007; Milner et al, 2001).
Application of steroid autoradiography at the electron
microscopic level revealed the putative estrogen receptor
sites as having the ability to bind radioactive iodinated
estradiol (Milner et al, 2008). Along with evidence that
steroid receptors worked via non-genomic, rapid signaling
mechanisms along with their epigenetic actions to regulate
gene expression (Kelly and Levin, 2001). This led to a new
view of estrogen and glucocorticoid action via both direct
and indirect genomic stimulation as well as a variety of other
rapid signaling mechanisms (Popoli et al, 2012; see Figure 5).
A powerful example of non-genomic functions of steroid

receptors was the finding that the knockout of the MR
abolished the ability of corticosterone to rapidly stimulate
EAA release, implying a dual role for MR in both genomic
and rapid non-genomic signaling (Karst et al, 2005). Again,
this finding began with studies on hippocampus and it
helped explain the adrenal dependency of acute restraint
stress (ARS)-induced increases in extracellular glutamate in

TABLE 1 Molecules that are Necessary/Permissive for Remodeling

BDNF: brain-derived neurotrophic factor

Facilitator of plasticity or growth

BDNF overexpression—occludes effects of chronic stress

BDNF haploinsufficiency prevents stress-induced plasticity

tPA: tissue plasminogen activator

Secreted signaling molecule and protease

Required for stress-induced spine loss in hippocampus and medial amygdala

Required for acute stress-induced increase in anxiety; CRF activates tPA secretion

CRF in amygdala regulates tPA release

CRF: corticotrophin-releasing factor

Secreted in hippocampus by interneurons

Downregulates thin spines via RhoA signaling

Lipocalin-2: secreted protein; previously unknown function

Acute stress induces Lipocalin-2

Lipocalin-2 downregulates mushroom spines

Lipocalin-2 KO increases neuronal excitability and anxiety

Endocannabinoids

Induced via glucocorticoids

Regulate emotionality and HPA habituation and shut off

CB1 receptor KO increases anxiety and basolateral amygdala dendrite length and causes stress-like retraction of prefrontal cortical dendrites
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hippocampus (Lowy et al, 1993), which are likely to underlie
the ability of chronic restraint stress to cause dendritic
remodeling in hippocampus (McEwen, 1999).

Hippocampal involvement in mood disorders and
age-related memory loss

The hippocampus has long been implicated in learning and
memory; however, it also has an important role in the
regulation of mood. In addition to the structural remodeling
described earlier, the dentate gyrus is a region that exhibits
adult neurogenesis, which is regulated by adrenal steroid
levels (Cameron and Gould, 1994; Gould et al, 1992).
Subsequent findings have shown that antidepressants
increase neurogenesis, and this, in turn, provided a novel
mechanism for their action that brought in the hippocampus
as a brain structure involved in mood disorders (Duman
et al, 2001). Indeed, the dentate gyrus undergoes reduced cell
number under chronic stress (Pham et al, 2003) and in
response to corticosterone levels (Sousa et al, 1999), whereas
physical activity and an enriched environment increase
dentate gyrus volume and neuron number (Kempermann
et al, 1997; van Praag et al, 1999). Hippocampal neurogenesis

has also been linked to BDNF levels, which are highly
dynamic in response to chronic stress, where initial decreases
have been observed (Smith et al, 1995), but with recovery
after stress can return to baseline (Lakshminarasimhan and
Chattarji, 2012). And direct infusion of BDNF has been
shown to increase hippocampal neurogenesis (Scharfman
et al, 2005).
Subsequent work has identified the ventral hippocampus

as the major target of these effects (Jayatissa et al, 2006;
Sahay and Hen, 2007). Yet, the dentate gyrus and neurogen-
esis are not the sole explanation for depressive behavior and
its treatment by antidepressants because there are behavioral
endpoints of antidepressant action that occur when the
possibility of neurogenesis is suppressed, eg, by X-irradiation
(David et al, 2009); rather, antidepressant actions upon only
certain aspects of depressive-like behavior require neurogen-
esis, whereas other actions involve dendrite remodeling and
synapse turnover (Bessa et al, 2008). This fits with human
autopsy data on brains from depressed individuals that show
no neuronal loss in hippocampus but reduced cell nuclear
size of hippocampal pyramidal neurons and reduced glial cell
number; glial cell reduction fits with loss of dendritic length
and branching (Stockmeier et al, 2004).
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Figure 4. Polysialylate removal from NCAM neural cell adhesion molecule antagonized the effect of chronic immobilization stress (CIS) to shorten
dendritic branches of CA3 neurons. Top: (left) Representative camera lucida traces from vehicle and endo-N-treated rats that were exposed to 10 days of
CIS. The dendritic arbors were larger in endo-N-treated animals. (right) Excitotoxic challenge causes greater neuron loss in endo-N treated hippocampus
compared to saline control. Bottom: (a) CIS shortened the total length of CA3 dendritic arbor, whereas PSA removal produced an increase in these
measures. With combination of CIS and endo-N, the total arbor length was shorter than with endo-N alone but still larger than control values. (b)
Interestingly, the effects on numbers of branching points followed a similar pattern. (c) Sholl analysis revealed that PSA removal alone produced an
elongation of branches located at all distances from the soma (from 0 to 550 μm approximately), whereas CIS alone specifically shortened branches
located near the soma (approximately between 100 and 250 μm). Interestingly, PSA removal antagonized this CIS-induced dendrite atrophy. Data are
presented as means (±SEM) N=9–10/group. Taken from reference McCall et al (2013).
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The hippocampus is affected by aging. Memory impair-
ment is seen in rats as they age and there is a link between
rising glucocorticoid levels, EAAs, and memory impairment
(Landfield et al, 1978; Sapolsky et al, 1986). Pharmacological
treatment with drugs that affects EAA actions has been
shown in several cases to retard the memory loss, using
hippocampal-dependent spatial memory as a measure.
One study found beneficial effects of a positive allosteric
modulator of AMPA receptors (Ampakine) that selectively
enhance fast excitatory neurotransmission in the brain and
increase overall neuronal excitability and exert some
neuroprotective activity (Bloss et al, 2008). Treatment of
aging rats by oral administration of the Ampakine S18986
(Servier, France) from 14 to 18 months of age increased
locomotor activity and improved performance in a spatial
memory task involving the hippocampus. In addition,
chronic S18986 treatment retarded the decline of forebrain
cholinergic neurons and midbrain dopaminergic neurons
by ~ 40% and attenuated the age-related increase in the
expression of a microglial marker indicative of neural
inflammation in the hippocampus (Bloss et al, 2008).
In another study involving modulation of excitatory

amino-acid actions (Pereira et al, 2014), riluzole was used

because it increases glutamate uptake through glial trans-
porters and is thought to decrease glutamate spillover to
extrasynaptic NMDA receptors while increasing synaptic
glutamatergic activity. Aging rats treated between 10 and
14 months of age were protected against the age-related
cognitive decline displayed in non-treated aged animals.
Memory performance on tasks involving hippocampal
spatial and episodic memory correlated with density of thin
spines on apical dendrites in the CA1 region, although not
with mushroom spines. Furthermore, riluzole-treated rats
had an increase in clustering of thin spines that correlated
with memory performance and was specific to the apical, but
not the basilar, dendrites of CA1. Clustering of synaptic
inputs is thought to allow nonlinear summation of synaptic
strength (Pereira et al, 2014).

Hippocampal GRs and Effects of Early-Life
Experiences

Another ‘gateway’ function of research on the hippocampus
was to focus attention on the neural effects of early-life
experiences. Meaney and colleagues showed that the effects
of ‘neonatal handling’ on emotionality (Levine et al, 1967)
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Figure 5. Basal release of glucocorticoids varies in a diurnal pattern, and release increases several fold after exposure to a stressor. Glucocorticoids can
bind with different affinities to glucocorticoid and mineralocorticoid receptors, which are expressed throughout the brain and seem to exist in both
membrane-bound form and nuclear form. Adrenal steroids can have both rapid and delayed effects. The effects can result from non-genomic
mechanisms (mediated by membrane-associated receptors, see the figure; Karst et al, 2005; Kelly and Levin, 2001), indirect genomic mechanisms
(mediated by membrane receptors and second messengers) and genomic mechanisms (mediated by cytoplasmic receptors that move to the nucleus and
act as transcription factors; Yamamoto, 1985). Although classical mineralocorticoid and glucocorticoid receptors seem to mediate many of these effects,
other membrane-associated receptors, including G-protein-coupled receptors, may also be involved in some of these actions (Orchinik et al, 1992; Tasker
et al, 2006). In addition, activated glucocorticoid receptors can translocate to mitochondria and enhance their calcium buffering capacity (Du et al, 2009).
Glucocorticoids rapidly induce glutamate release in the hippocampus through a mechanism that is absent when the mineralocorticoid receptor is deleted
and that may involve a membrane-associated form of the mineralocorticoid receptor (Karst et al, 2005; Lowy et al, 1993). An indirect way by which
glucocorticoids can influence neurotransmission (glutamatergic, as well as GABAergic, cholinergic, noradrenergic, and serotonergic) is through crosstalk
with the endocannabinoid system (Katona and Freund, 2008). They rapidly stimulate endocannabinoid production in the brain, whereupon
endocannabinoids bind to cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1), and
inhibit neurotransmitter release (Chavez et al, 2010; Hill and McEwen, 2010). Although a G-protein-coupled receptor is implicated in endocannabinoid
production (Di et al, 2009), there is also evidence for a mechanism blocked by Ru486—a selective antagonist of the classical cytoplasmic gluco-
corticoid receptor—in the rapid actions of glucocorticoids in prefrontal cortex (Hill and McEwen, 2010). Reprinted from reference Popoli et al, 2012 with
permission.
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were due to maternal care after the pups were returned to the
nest after a brief separation from the dam (Francis, 1999;
Meaney et al, 1988). Rats that received poor maternal care
showed deficits in GRs in the hippocampus (Liu et al, 1997)
and impaired shut off of the HPA stress response that may
result, at least in part, from those deficits (Caldji et al, 2000).
Thyroid hormone and serotonin were shown to be involved
in maintaining adequate hippocampal GR levels (Meaney
et al, 2000), but the methylation of CpG DNA elements in
the promotor region of the GR was found to decrease GR
expression and, indeed, it was found to be increased in pups
receiving poor maternal care (Meaney and Szyf, 2005). Poor
HPA shut off in rats that received poor maternal care could
be reinstated in adult rats that had received good maternal
care as infants by inducing the methylation of adult GR CpG
elements in adult animals (Weaver et al, 2005). These
seminal findings have catalyzed a huge field of research in
the growing field called ‘epigenetics’ that now includes
translational studies such as the one showing increased GR
promotor CpG methylation in individuals who were abused
as children (McGowan et al, 2009).
Glucocorticoids and HPA reactivity are also indicators of

the quality of maternal care and the response of the offspring
to that care. Building upon the importance of maternal care,
Tang et al (2014) have developed the ‘maternal modulation’
concept in which consistency of maternal care and not
absolute quantity are important factors, along with exposure
to novelty, leading to better social and cognitive develop-
ment; one measure of the efficacy of good maternal care is
maternal stress self-regulation, referring to low basal CORT
and a robust increased CORT secretion in response to a
stressor.

Epigenetics, Stress, and Mood-Related
Behaviors: Search for Rapidly Acting Treatments

After its original definition, as the emergence of character-
istics of an organism during development that were not
evident at earlier stages (Waddington, 1942), ‘epigenetics’
now refers to events ‘above the genome’ that regulate
expression of genetic information without altering the DNA
sequence. Besides the CpG methylation described above,
other mechanisms include histone modifications that repress
or activate chromatin unfolding (Allfrey, 1970) and the
actions of non-coding RNAs (Mehler, 2008). Again the
hippocampus is providing important information. For
example, Reul and colleagues have shown that the forced
swimming-induced behavioral immobility response requires
histone H3 phospho-acetylation and c-Fos induction in
distinct dentate granule neurons through recruitment of the
NMDA/ERK/MSK 1/2 pathway (Chandramohan et al, 2008).
Another histone mark changed in hippocampus, most

prominently in the dentate gyrus, is the dramatic induction
by an ARS of trimethylation of lysine 9 on histone H3,
which is associated with repression of a number of retro-
transposon elements and reduction of the coding and non-
coding RNA normally produced by the repressed DNA

(Hunter et al, 2009). This repression is lost with repeated
stress, suggesting the possibility that those retrotransposon
elements may impair genomic stability under conditions of
chronic stress (Hunter et al, 2015).
A current practical application is the search for rapidly

acting antidepressants, because classical antidepressants
work very slowly and are not effective on every depressed
individual. Epigenetic processes are likely involved in the
chronic relapsing nature of major depression, the strikingly
higher incidence of depression in women after puberty, the
high discordance rates between monozygotic twins, and the
individual responsivity to stress that precipitates mood-
related behaviors in susceptible individuals. In the course of
these studies, we are learning more about epigenetic
mechanisms that connect EAA function with neural
remodeling and stress-related behavior. The identification
of the fast antidepressant effects of ketamine, an NMDA
receptor blocker, has resulted in a paradigm shift toward the
discovery of a new generation of rapidly acting antidepres-
sants (Li et al, 2010).
Recently, our laboratory and other groups have found that

the naturally occurring compound acetyl-L-carnitine (LAC)
shows fast antidepressant efficacy in genetic and environ-
mentally induced animal models of depression through the
epigenetic modulation of the metabotropic glutamate
receptor, mGlu2, in hippocampus (Cuccurazzu et al, 2013;
Nasca et al, 2013). mGlu2 is known to exert an inhibitory
tone on glutamate release from synapses and pharmacolo-
gical modulators for this receptor are under clinical
development to treat stress-related mood disorders, such as
anxiety and depression (Nicoletti et al., 2015). Using the
same animal models, 14 days of treatment with the tricyclic
antidepressant clomipramine were needed to promote
antidepressant responses, which disappeared when the
treatment was stopped. In contrast, LAC antidepressant
effects were still evident after 2 weeks of drug withdrawal
(Nasca et al, 2013). The persistent effects of LAC suggested
the involvement of stable molecular adaptations that may be
reflected at the level of histone modifications in controlling
mGlu2 transcription in the hippocampus. Indeed, LAC
increases levels of mGlu2 receptors by acetylation of the
histone H3K27 among other mechanisms (discussed below).
These findings support previous studies that have shown

that histone deacetylase inhibitors, given intraperitoneally,
normalize gene expression profiles in vulnerable brain
regions, such as hippocampus, amygdala, and nucleus
accumbens, to promote fast antidepressant responses follow-
ing stress (Covington et al, 2011; Tsankova et al, 2006). The
use of agents like LAC that act on histone remodeling to
regulate transcription of the mGlu2 gene offers alternative
and complementary strategies to ketamine and histone
deacetylase inhibitors with safer profiles and lower potential
for drug dependence (Nicoletti et al, 2015).
In the course of this work, we have become aware of

individual differences among inbred mice and rats (Cavigelli
and McClintock, 2003; Freund et al, 2013; Miller et al, 2012).
Using a simple light–dark test to rapidly screen naïve mice
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(Nasca et al, 2014), we found that a subset of mice shows
elevated hippocampal MR levels and that this baseline
difference makes those mice with higher MR show greater
stress-induced reduction in mGlu2 accompanied by more
anxiety and depressive-like behaviors. How MR activation
does this is not yet clear, but it activates a mechanism that is
opposite to that of LAC, which has been shown to use the
acetyltransferase P300 to acetylate lysine 27 on histone H3

(Nasca et al, 2013). Likewise, the nature of the experiences of
the animals that develop higher MR is also not yet known but
may involve maternal care and stressors in the neonatal
nesting environment (Francis et al, 1999). The epigenetic
allostasis model points to a developmental origin of indivi-
dual differences in the responses to stress and implies
that unknown early-life epigenetic influences program
each individual to different trajectories of behavioral and
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Figure 6. Lower mGlu2 in hippocampus is a biomarker of anxious and depressive-like behaviors and response to rapidly acting antidepressants. (a)
mGlu2 receptor expression is reduced in the hippocampus and prefrontal cortex of depressed Flinders Sensitive Line (FSL) rats compared with their
controls (Flinders Resistant Line, FRL). These changes are rapidly corrected by acetyl-L-carnitine (LAC), whose effects endure for 2 weeks after drug
withdrawal. *Po0.05, two-tailed unpaired Student’s t-test. (b) Chronic unpredictable stress (CUS) in susceptible individuals results in depressive-like
behaviors that are rapidly corrected by LAC (Nasca et al, 2013). Interestingly, only susceptible individuals show reduced mGlu2 protein levels within the
hippocampus. ***Po0.001, one-way analysis of variances followed by Tukey’s test for the post hoc analysis. (c) The recently introduced screening
method using a light–dark chamber allows identification of high (HS) and low (LS) susceptible individuals, which are characterized by baseline differences
in anxiety and in the levels of mineralocorticoid receptors (MRs), but not mGlu2 in the hippocampus. When stressed, HS mice show decreased mGlu2
levels in hippocampus and exacerbation of the baseline anxiety-like behavior compared with LS mice, which cope better with stress. These changes are
prevented by a single injection of spironolactone (a MR antagonist), but not RU486 (a GR antagonist). **Po0.01, one-way analysis of variances followed
by Tukey’s test for the post hoc analysis. (d) Acetylation of histone H3K27, which is regulated by P300, is a key mediator of mGlu2 regulation in response
to stress and antidepressant treatment. (e) The MR-driven downregulation of mGlu2 expression is summarized in the epigenetic allostasis model, which
suggests that individual differences in stress responsivity may originate from unknown epigenetic influences early in life (Nasca et al, 2014).
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physiological responses to later stressful life events. In line
with this model, previous studies have also associated
increased hippocampal MR levels in juvenile animals with
anxiety-like behavior in adulthood (Brydges et al, 2014;
Korte et al, 1995; Figure 6).

Lessons of an Ever-Changing Brain from Gene
Expression

The hippocampus has been an important gateway to
understanding the effects of glucocorticoids and stress on
gene expression. Recent advances in technology have allowed
for high-throughput analysis of gene expression changes
in response to stress (Rubin et al, 2014). For example,
microarray analysis of whole hippocampus after acute and
chronic stress, as well as recovery from stress in mice, has
revealed a number of insights surrounding stress-induced
neuroplasticity (Gray et al, 2014). Although acute and
chronic stress modulate a core set of genes, there are
numerous expression changes that are exclusive to each
condition, highlighting how the duration and intensity of
stress alters reactivity. Further, corticosterone injections did
not yield the same expression profile as acute stress,
suggesting that in vivo stressors are able to activate a diverse
set of pathways independent of GR activation. Finally,
characterization of expression profiles after an extended
recovery from chronic stress (21 days) revealed that, despite
a normalization of anxiety-related behaviors, recovery did
not represent a return to the stress-naïve baseline, but rather
represented a new state in which reactivity to a novel stressor
produced a unique expression profile (Gray et al, 2014).
Studies in rats have also confirmed that gene expression
profiles can vary significantly from the immediate end
of stress (1 h) to 24 h after the end of stress (Wang et al,
2010), and that chronic stress can alter the transcriptional
response to an acute corticosterone injection in dentate
gyrus (Datson et al, 2013). These studies demonstrate that a
history of stress exposure can have a lasting impact on
future stress reactivity and hippocampal function. Many
of the genes identified as changed after chronic stress by
Datson and DeKloet are known epigenetic regulators,
providing one possible mechanism underlying the persistent
alterations in the expression response beyond the end of
stress exposure.

Identification of New Gene Candidates

One of the benefits of gene expression studies is the
discovery of new gene markers and pathways that contribute
to important functions. A recent example is the unexpected
role of a cell nuclear pore complex protein, NUP-62, in the
stress-induced dendritic remodeling in the CA3 region of
hippocampus (Kinoshita et al, 2014). First identified as a
gene that was downregulated in the PFC of depressed
patients (Tochigi et al, 2008), it was also found to be reduced
in response to chronic stress in CA3 neurons of rodents
(Kinoshita et al, 2014). Importantly, the levels of other

nuclear pore complex genes were unchanged with chronic
stress, supporting the specificity of its role in stress
remodeling. Subsequent in vitro studies confirmed that the
downregulation of NUP-62 is associated with dendritic
retraction and this effect is regulated at the molecular level by
NUP-62 phosphorylation at a PYK2 site, which results in its
retention in the cytoplasm (Kinoshita et al, 2014).
Pathway analysis of high-throughput gene expression data

sets allows for a fresh look at known pathways implicated in
the stress response. For example, inflammation has been
associated with chronic stress and recent microarray data
from whole mouse hippocampus have helped to confirm that
NF-κB/TNF-α and IL-6 signaling are in fact some of the most
affected pathways (Gray et al, 2014). Acetylation of p65, a
transcription factor in NF-κΒ signaling, has also been
associated with the rapid antidepressant effects of LAC
(Nasca et al, 2013; Wang et al, 2014), which supports a
growing literature that underscores an important role for the
inflammatory response in the pathophysiology and treat-
ment of depression (Dantzer et al, 2008). Similarly, LAC is a
nonspecific acetylating agent and its rapid antidepressant
effects may be mediated by acetylation of other proteins
outside the nucleus (Russo and Charney, 2013). This raises
the possibility that regulation of cytoskeleton genes is
presumably necessary for promoting rapid antidepressant
effects and for the dendritic remodeling of neurons to occur
(Figure 7). High-throughput data sets that can measure the
expression levels of the entire transcriptome now allow for
the visualization of genes that are changed from the cell
surface receptors to the cytoskeleton itself (Figure 7). The
data reveal changes in both predictable regulators, such as
ROCK1/2, and other signaling intermediates that might not
have been anticipated.

Translation to the Human Hippocampus

The hippocampus has also been a gateway to translating
animal model findings in order to begin to elucidate the
effects of stress and stress-related disorders on the human
brain, starting with the hippocampus (McEwen, 2007;
McEwen and Gianaros, 2011; McEwen and Morrison,
2013). These include changes in brain structure and
functional activity in depression, PTSD, Cushing’s disease,
and Type 2 diabetes, as well as effects of jet lag and shift
work, chronic life stress, perceived stress, and the beneficial
effects of physical activity (McEwen and Gianaros, 2011;
Sheline, 2003). Circadian disruption, as in shift work, causes
dendritic atrophy and impairs cognitive flexibility while also
promoting obesity and insulin and leptin resistance
(Karatsoreos et al, 2011). Regarding physical activity,
previously sedentary older adults who walk 1h a day
for 6 months to 1 year show enlargement of the hippocampal
formation (Erickson et al, 2011) and this is likely due,
at least in part, to the increased dentate gyrus neurogenesis
that is stimulated by exercise and by an enriched environ-
ment (Kempermann et al, 1997; van Praag et al, 1999).
It is also noteworthy that hippocampal volume increases
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with intense learning (Draganski et al, 2006) but is
also decreased in Cushing’s disease (Starkman et al, 1992),
and chronic jet lag without adequate time for recovery is
associated with cognitive impairment, dysregulated cortisol
secretion, and a smaller temporal lobe (Cho, 2001). In
relation to aging, cortisol levels in aging humans predict
memory impairment over 5 years and aged humans
with significantly prolonged cortisol elevations showed
reduced hippocampal volume and deficits in hippocampus-
dependent memory tasks compared with normal cortisol
controls. Moreover, the degree of hippocampal atrophy
correlated strongly with both the degree of cortisol elevation
over time and current basal cortisol levels (Lupien et al,
1998).
Taken together, information gained from across all

subregions of the hippocampus has led to the inverted U
shape dose–time response concept summarized in Figure 8.
Acute stress, mediated by glucocorticoids and EAAs along
with other mediators, increases excitability at moderate
physiological levels but can have the opposite effect at higher
levels of activity. Chronic stress produces the largely
reversible, adaptive plasticity described above in which the

retraction of dendrites and reduced synapse density may
subserve a protective function against permanent damage,
whereas sudden traumatic events such as head trauma,
seizures, and ischemia do not give the hippocampus an
opportunity to adapt and lead to permanent damage and
neuron loss. However, when resilience is lacking after the
stressor is over, cognitive impairment and anxiety or
depression may persist and require external interventions.
In all of this, it should be kept in mind that at each stage of
experience, the brain is changing even if there is apparent
recovery of morphological and neurochemical changes
produced by stressors.

STRUCTURAL REMODELING IN THE
AMYGDALA

The hippocampus provided a gateway into the study of another
important brain region involved in stress and stress-related
disorders. In 2002, a landmark study showed that while CIS
(more severe than restraint and hence effective in 10 vs 21 days)
caused shortening of dendrites in the CA3 region of rats, the

NFkB
binding site

H3K27ac

P300
P65 P50

Ac Ac
Ac

Ac Ac
Ac

GRM2

LAC

Nucleus

LAC

Microtubule

Figure 7. Potential cellular mechanisms for rapid antidepressant action. (a) Acetyl-L-carnitine (LAC) may act inside and outside the nucleus to promote
rapid antidepressant responses. Inside the nucleus, LAC increases mGlu2 transcription by enhancing acetylation of the NF-κB and histone H3K27 bound
to mGlu2 promoter gene. Outside the nucleus, LAC may control stability of the neuronal cytoskeleton to regulate dendritic remodeling (Nasca et al, 2013).
(b) Graphical representation of known intracellular signaling pathways involved in the regulation of the actin cytoskeleton (adapted from WikiPathways)
in which genes altered by acute stress, chronic stress, or after recovery from stress are highlighted (yellow) based on microarray data derived from
Gray et al. (2014).
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basolateral amygdala (BLA) responded by an expansion of
dendrites (Vyas et al, 2002). At the same time, spine density
was downregulated by CIS in medial amygdala, where it was
dependent on one of the modulators in Table 1, namely, tPA, as
shown in tPA knockout mice; dendrite expansion in the BLA
was independent of tPA mediation (Bennur et al, 2007).
Increased anxiety after acute stress was also shown to be
dependent on tPA (Pawlak et al, 2003) where tPA release was
found to be stimulated by CRF via CRF1 receptors (Matys et al,

2004). Interestingly, the ability of chronic stress to reduce spine
density on hippocampal CA1 neurons was also dependent on
tPA and tPA-KO mice also were not impaired by chronic stress
in a spatial memory task in contrast to wild-type mice (Pawlak
et al, 2005). Because CRF is also known to regulate spine
density in the hippocampus, it is likely that it was activating the
tPA release there (Regev and Baram, 2014). A recent study
using targeted deletion of GR showed that tPA-BDNF-TrkB
signaling altered fear conditioning (Revest et al, 2014)
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orbitofrontal cortex
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Figure 8. Chronic stress causes remodeling of dendrites and synaptic connections in many brain regions, including not only hippocampus but also
amygdala and medial prefrontal and orbitofrontal cortex (top panel). Effects of acute and chronic stress operate in space and time in an inverted U-shaped
manner (bottom panel). Acute stress, mediated by glucocorticoids, and excitatory amino acids and other mediators (see Table 1), can enhance excitability
and promote memory over minutes to hours as long as the stressor is not overly intense; intense stress can have the opposite effect. Chronic stress
causes neuronal remodeling as depicted in top panel in a largely reversible manner, promoting adaptation (eg, increase vigilance and anxiety in a
dangerous environment). Yet, if there is no reversal of the stress-induced changes in neuronal architecture, an outside intervention with pharmaceutical
agents and behavioral therapies may be needed to correct the imbalance. Finally, seizures, ischemia, and head trauma can trigger uncontrolled activation
of excitatory amino acids leading to free radicals and inflammatory tone potentiated by glucocorticoids.
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A Paradoxical Role of BDNF in Acute and Chronic
Stress

BDNF also has an important role in dendritic remodeling in
both hippocampus and BLA. Overexpression of BDNF in
mice increases dendritic length in both CA3 and BLA and
occludes the effects of chronic stress to decrease dendritic
branching in CA3 and increase it in BLA (Govindarajan et al,
2006). Without such overexpression, chronic stress causes a
downregulation of BDNF in CA3 of hippocampus and an
upregulation of BDNF in the BLA, and the effect in BLA
persists after 21 days post stress, whereas that in CA3 has
normalized (Lakshminarasimhan and Chattarji, 2012).
Moreover, acute stress with a 10-day delay, which causes
increased density of spines in BLA neurons (Mitra et al,
2005), caused BDNF expression to rise and stay elevated for
10 days, whereas levels in CA3 fell after acute stress but did
so only transiently (Lakshminarasimhan and Chattarji,
2012). Corticosterone levels increased after both acute and
chronic stress and remained elevated after chronic, but not
after acute stress. Importantly, Lakshmirnarasimhan and
Chattarji (2012) point out how elevated glucocorticoids and
glutamate after stress lead to contrasting patterns of BDNF
expression and structural plasticity, suggesting there may be
a signaling intermediate that could regulate the differential
region-specific response. However, the mechanisms regulat-
ing this (possibly epigenetic or post-translational) remain to
be identified.
Interestingly, beyond the epigenetic action on the acety-

lated H3K27 to correct glutamate activity in hippocampus,
LAC also increases BDNF brain and serum levels to promote
antidepressant responses, supporting the existence of an
intermediate key mediator between the glutamate system and
BDNF signaling in the etiology and treatment of stress-
related mood disorders (Nasca et al, 2013).

Traumatic Stress Effects and Paradoxical Actions
of Glucocorticoids

Another paradoxical effect of a mediator of stress and
adaptation to stressors involves glucocorticoid actions in
relation to acute vs chronic stress effects upon the amygdala.
Consistent with the elevation of corticosterone after acute
and chronic stress accompanying the increase of dendritic
length in BLA, as noted above (Lakshminarasimhan and
Chattarji, 2012), a single large bolus of corticosterone mimics
the ability of 10 consecutive days of CIS to increase anxiety
and dendritic length in BLA (Mitra and Sapolsky, 2008).
Furthermore, a single traumatic stressor causes a naïve rat to
develop anxiety and increased spine density on BLA
neurons, but with no increase in BLA dendritic length, with
a delay of 10 days as noted above (Mitra et al, 2005).
But a timed elevation of a low to moderate dose of

corticosterone at the time of the traumatic stressor prevents
the increased anxiety and increased BLA spine density
10 days later (Rao et al, 2012). A similar protective effect of
corticosterone has been reported for a different acute
traumatic stress paradigm (Zohar et al, 2011). One

possibility currently under investigation is that corticoster-
one stimulation of endocannabinoid production may be
involved (Hill et al, 2010a), as endocannabinoids have an
important role in the amygdala regulating basal and chronic
stress levels of HPA activity (Hill and McEwen, 2009; Hill
et al, 2010b) and endocannabinoids are known to modulate
amygdala dendritic structure (Hill et al, 2013).

Translation to Human Amygdala: Mood Disorders
and PTSD

The protective effects of a timed elevation of glucocorticoids
in several animal models of traumatic stress have a human
counterpart, as both epidemiologic studies and clinical
research on patients undergoing cardiovascular surgery
indicate that low glucocorticoid levels at the time of trauma
increase probability of PTSD symptoms (Schelling et al,
2004; Yehuda et al, 1998). Moreover, administration of a
glucocorticoid within an hour after a traffic accident was
reported to reduce subsequent PTSD symptoms (Zohar et al,
2011).
Amygdala overactivity is also associated with mood

disorders (Drevets and Raichle, 1992) and amygdala
enlargement is reported in children of chronically depressed
mothers (Lupien et al, 2011). Therapeutically, individuals
with a chronic anxiety disorder have been shown to benefit
from mindfulness-based stress reduction and when anxiety is
reduced there is a reported decrease in amygdala volume
(Holzel et al, 2010).

STRESS INDUCES STRUCTURAL
REMODELING IN THE PFC

Findings in the hippocampus have also provided a gateway
into another important brain region involved in stress and
stress-related behaviors, namely, the PFC, which is impor-
tant for working memory, executive function, and self-
regulatory behaviors and shows sex differences in response
to stressors (McEwen and Morrison, 2013).

Stress and Glucocorticoids have Biphasic Effects
on PFC Functions

As is the case for the hippocampus, glucocorticoids also have
biphasic effects on the PFC, namely, in relation to working
memory and recognition memory. Acute stress caused a
long-lasting potentiation of NMDAR- and AMPAR-
mediated synaptic currents via glucocorticoid receptors in
PFC pyramidal neurons, accompanied by increased surface
expression of NMDAR and AMPAR subunits. Acute stress
enhanced working memory via a GR-dependent mechanism
(Yuen et al, 2009). Moreover, acute stress or short-term
corticosterone treatment in vitro induced a delayed and
sustained potentiation of the synaptic response and surface
expression of NMDA and AMPA receptors in PFC
pyramidal neurons through a mechanism depending on
the induction of serum- and glucocorticoid-inducible kinase
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and the activation of Rab4, which mediates receptor
recycling between early endosomes and the plasma mem-
brane. In vivo, a serum- and glucocorticoid-inducible kinase
mechanism is involved in facilitating working memory
(Yuen et al, 2011a). Yet, chronic stress significantly reduced
AMPA and NMDA receptor-dependent synaptic trans-
mission and cell surface expression. This reduction was
related to ubiquitin/proteasome-dependent degradation of
GluR1 and NR1 subunits controlled by E3 ubiquitin ligase
Nedd4-1 and Fbx2 and inhibition of proteasomes or
knockdown of Nedd4-1 or Fbx2 prevented the chronic stress
effects on recognition memory and glutamatergic function
(Yuen et al, 2012).

Chronic Stress Induced Remodeling of PFC
Neural Architecture

As in hippocampus, chronic stress also causes reversible
structural remodeling of medial prefrontal cortical neurons
that is reversible after the termination of chronic stress in
young animals (Cook and Wellman, 2004; Liston et al, 2006;
Radley et al, 2004, 2005), but not as readily reversible in
middle aged and less so in aged animals (Bloss et al, 2010).
However, one aspect of reversibility is that dendrites that
shrink are distal to the cell body, whereas those that grow back
after termination of stress are more proximal (Goldwater et al,
2009), suggesting that those neurons are different after stress,
perhaps in their connectivity and most probably in terms of
gene expression as described for hippocampus (Gray et al,
2014). EAAs are mediators of the stress-induced remodeling in
PFC as they are in hippocampus (Martin and Wellman, 2011).
Likewise, corticosterone administration alone also causes
dendritic remodeling in medial PFC (mPFC), just as it does
in the CA3 region (Cerqueira et al, 2005; Watanabe et al, 1992;
Wellman, 2001). Endocannabinoids can also mediate stress-
induced remodeling, as shown by the finding that mice lacking
the endocannabinoid CB1 receptor have shorter dendrites in
mPFC and respond with more dendritic shrinkage to chronic
stress compared with wild-type mice (Hill et al, 2011a).
Endocannabinoids in the medial PFC also have a role in the
terminaton of the HPA stress response (Hill et al, 2011b).
In contrast to stress effects on the mPFC, the orbitofrontal

cortex (OFC) shows expansion of dendrites after the same
chronic stress that causes dendrite shrinkage in mPFC and
hippocampus and dendrite expansion in the BLA (Liston
et al, 2006). Unlike the mPFC under stress where impaired
cognitive flexibility after chronic stress resembles lesions to
mPFC, but in a manner that is reversible in young animals
after termination of the chronic stress (Birrell and Brown,
2000; Liston et al, 2006), the functional significance of
neuronal remodeling in OFC is less clear. However, one can
speculate that it is a reflection of the role of the OFC
in determining the salience of reward or punishment and
thus part of an adaptive mechanism to chronic stress to
increase vigilance to possible new stressors (McEwen and
Morrison, 2013).

Epigenetics for PFC that Complement and
Contrast with Hippocampus

In contrast to stress effects on hippocampus in susceptible
individuals, in the PFC, ARS fails to decrease mGlu2
receptors, nor are any changes in the histone H3K27ac
observed in the PFC as well as no change in the epigenetic
regulator, P300, in the layers I–II and III of the orbitomedial
PFC and prelimbic cortex, as determined by immunocyto-
chemistry (Figure 9). Nevertheless, in the PFC, ARS results
in strong upregulation of the postsynaptic mGlu5 receptors
and decrease of the subunit NR1 of NMDA receptors along
with no significant changes in the transcription of the
metabotropic mGlu3 receptors and glial transporters xCT
and Glt-1 (Figure 9). The ARS-induced decrease in
expression of the NR1 subunit that would decrease
ionotrophic actions of glutamate and the concomitant
increase in postsynaptic mGlu5 receptor expression, which
would potentiate overall glutamate signaling, may represent
an adaptive, homeostatic response to alterations in neuro-
transmitter overflow. In contrast, after ARS, the hippocam-
pus shows evidence of an excessive EAA tone along with a
decrease of mGlu2 (Nasca et al, 2014). The different
responses of the hippocampus and PFC may reflect their
respective roles in higher cognitive function, as the
hippocampus encodes memories related to spatial orienta-
tion and daily events (McEwen, 1999), whereas the PFC has
an important role in working memory and executive
function as well as in self-regulatory behaviors (McEwen
and Morrison, 2013), all of which are affected to some degree
by acute and more prolonged stressors.

Translation to the Human PFC

The PFC in humans is affected by stressors and the psycho-
social environment. Severe acute stressors impair cognitive
function largely via adrenergic mechanisms (Arnsten, 2009).
Yet, glucocorticoids facilitate working memory in young
people (Lupien et al, 2002), but impair it in older subjects
where basal cortisol levels and reactivity are higher (Lupien
et al, 1997), which implies a biphasic dose response as well as
a possible aging effect. For perceived stress, medical students
who had high scores on the 10-item perceived stress scale of
Sheldon Cohen, of Carnegie Mellon University, showed
impaired functional connectivity by fMRI in a brain circuit
involving the PFC as well as impaired performance on a test
of mental flexibility; these effects were reversed by a month
vacation (Liston et al, 2009). Thus, the young adult human
PFC reflects the effects of chronic stress by showing impaired
cognitive flexibility and reduced functional connectivity that
parallels the effects of stress in the young adult rat brain,
including the reversibility after the end of the stressful period
as described above.
The long-term psychosocial environment also affects the

PFC and its ability to exert control over amygdala activity.
Low perceived social standing is associated with reduced
PFC gray matter volume as well as with an increased systemic
inflammatory tone and altered white matter structure
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throughout the brain (Gianaros et al, 2007, 2013) and
preclinical atherosclerosis is associated with increased amyg-
dala reactivity to stimuli such as sad and angry faces and
reduced inhibitory input from the PFC (Gianaros et al, 2009).
The functional connectivity between PFC and amygdala

develops first as a positive influence and then as an
inhibitory one (Gee et al, 2013b). Under typical conditions,
mPFC connections with the amygdala are immature during
childhood and become adult-like during adolescence, and
rodent models have shown that maternal deprivation
accelerates this development. Previously institutionalized
youths, who experienced early maternal deprivation, exhi-
bited atypical amygdala–mPFC connectivity, in that they
failed to show the positive amygdala–mPFC coupling of
children with good maternal attachment. Rather, these
children with a history of early adversity showed mature,
negative amygdala–mPFC coupling and thus, resembled the
adolescent phenotype. Cortisol is implicated as a mediator
suggesting a developmental role of the deprivation stress.
Despite being age-atypical, negative amygdala–mPFC cou-
pling conferred some degree of reduced anxiety, although
anxiety was still significantly higher in the previously
institutionalized group indicating only partial compensation
for lack of strong maternal attachment, and this suggests that

accelerated amygdala–mPFC development is an ontogenetic
adaptation in response to early adversity (Gee et al, 2013a).
Plasticity and resilience in the PFC are enhanced by

regular moderate aerobic exercise, which increases blood
flow to this brain region and improves executive function
(Colcombe et al, 2004; Kramer et al, 1999). Cognitive
behavioral therapy has been shown to increase gray matter
volume in the PFC when it is able to reduce symptoms of
chronic fatigue (de Lange et al, 2008).

SEX DIFFERENCES

The hippocampus has also been a gateway for the under-
standing of the actions of ovarian hormones on neural and
cognitive functions over and above the actions that subserve
reproduction. The discovery of genomic and non-genomic
forms of the estrogen receptor in spines, dendrites,
mitochondria, presynaptic terminals, and astrocytes paved
the way for discovery of such non-nuclear estrogen receptor
localization in other brain regions (McEwen and Milner,
2007). This revelation occurred along with the discovery of
ovarian hormone turnover of spine synapses in the CA1
region of the female rat hippocampus. The identification of
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signaling processes involving estradiol stimulation via PI3
kinase of phosphorylation of LIMK1 and 4E-BP1 leads to
actin polymerization and translation of PSD95 mRNA,
respectively (Akama and McEwen, 2003; Dumitriu et al,
2010; Yuen et al, 2011b). This is a sexually differentiated
response and male rats do not show synapse induction in
response to estradiol, but do so in response to testosterone
(Leranth et al, 2003).

Females Respond Differently to Chronic Stress

All of the animal model studies of stress effects summarized
above were carried out on male rodents, and female rodents
do not show the same pattern of neural remodeling after
chronic stress as do males. The first recognition of this sex
difference was in the hippocampus, in which the remodeling
of CA3 dendrites did not occur in females after CRS,
even though all the measures of stress hormones indicated
that the females were experiencing the stress as much as
males (Galea et al, 1997). Females and males also differ in
the cognitive consequences of repeated stress, with males
showing impairment of hippocampal-dependent memory,
whereas females do not (Bowman et al, 2001; Luine et al,
1994, 2007).
In contrast, acute tail shock stress during classical eyeblink

conditioning improves performance in males, but suppresses
it in females (Wood and Shors, 1998) by mechanisms
influenced by gonadal hormones in development and in
adult life (Shors and Miesegaes, 2002; Wood et al, 2001).
However, giving male and female rats control over the shock
abolishes both the stress effects and the sex differences
(Leuner et al, 2004). These findings suggest that sex
differences involve brain systems that mediate how males
and females interpret stressful stimuli and that a sense of
control is paramount to coping with those stimuli.
There are sex differences in response to chronic stress in

mPFC neurons, in which female rats with intact ovaries or
estrogen treatment after ovariectomy showed an expansion
of dendrites, whereas males show a chronic stress-induced
retraction (Garrett and Wellman, 2009). Refining this in
terms of where mPFC neurons project, Shansky showed that
female rats fail to show the mPFC dendritic remodeling seen
in males after CRS in those neurons that do not project to
amygdala. Those neurons that project to amygdala do not
change in males with chronic stress but, in females with
estrogens, there is a chronic stress-induced expansion of the
dendritic tree in the subset of neurons that project to the
BLA (Shansky et al, 2010). Moreover, ovariectomy prevented
these chronic stress effects on dendritic length and branch-
ing. Furthermore, estradiol treatment of ovariectomized
females increased spine density in mPFC neurons, irrespec-
tive of where they were projecting (Shansky et al, 2010).
Recent behavioral work on male and female rats under-

going fear conditioning and extinction involving, respec-
tively, the prelimbic and infralimbic PFC (Santini et al, 2008)
has revealed sex differences based upon individual differ-
ences in efficacy of extinction (poor extinction, HF; good

extinction, LF) that were evident in both males and females
(Gruene et al, 2014). Despite no overall sex differences in
freezing behavior, the HF/LF phenotypes emerged in males
during extinction, but in females it emerged during fear
conditioning, which does not involve infralimbic-BLA
neurons. HF vs LF males exhibited neuroanatomical distinc-
tions in dendrites that were not observed in HF vs LF
females, namely differences in prefrontal cortical dendritic
length that may have either preceded or resulted from the
extinction. The authors speculate that, in females, the sex
differences in PFC to amygdala circuitry (Shansky et al,
2010) underlie the female HF vs LF difference at the time of
conditioning. The fact that estrogen’s and androgen’s effects
are widespread in the central nervous system via both
genomic and non-genomic receptors (McEwen and Milner,
2007), there are likely to be many more examples of
sex × stress interactions related to many brain regions and
multiple functions, as well as developmentally programmed
sex differences that affect how the brain responds to stress,
eg, in the locus coeruleus (Bangasser et al, 2010, 2011).

Emergence of Sex Differences in Response to
Stressors After Puberty

Although the sensitive period for testosterone effects on
sexual differentiation is perinatal in rodents, sex differences
in response to chronic stressors manifest themselves
gradually over the pubertal transition. Demonstration of
this was accomplished using a rodent model of chronic
restraint stress in juvenile rats daily from postnatal days 20 to
41 (Eiland et al, 2012). Chronic stress produced depressive-
like behavior and significant neuronal remodeling of brain
regions likely involved in these behavioral alterations: the
hippocampus, PFC, and amygdala. Both chronically stressed
males and females exhibited anhedonia, increased locomo-
tion when exposed to novelty, and altered coping strategies
when exposed to acute stress. Chronic stress produced
shrinkage of dendrites in the hippocampus and PFC and
concurrent hypertrophy of dendrites in the amygdala, with a
trend for males to show more robust responses than females
(Eiland et al, 2012).
Even then, in prepubertal female rats there are already sex

differences in that young female rats exposed to 1 week of
repeated restraint stress show no negative effects on temporal
order recognition memory, a cognitive process controlled by
the PFC, in contrast to impairment in temporal order
recognition memory observed in stressed males (Wei et al,
2014). Chronically stressed females also showed normal
glutamatergic transmission and glutamate receptor surface
expression in PFC pyramidal neurons, in contrast to
impairment seen in stressed males. However, inhibition or
knockdown of PFC estrogen receptors revealed chronic
stress-induced impairment in females, and estradiol admin-
istration to stressed males prevented the inhibitory effects of
estradiol. Furthermore, blocking aromatase in females also
causes chronic stress to have deleterious effects in these
young females. Thus, already at 4–5 weeks of age, before the

Stress effects on neuronal structure
BS McEwen et al
.....................................................................................................................................................................

17

REVIEW

...................................................................................................................................................

Neuropsychopharmacology REVIEWS



onset of puberty, estrogens already have protective effects in
both chronically stressed females and males (Wei et al, 2014).

Translation to the Human Brain

The impact of sex and sex differences has undergone a
revolution and much more is to come (Cahill 2006;
McCarthy et al, 2012; McCullough et al, 2014; McEwen
and Lasley, 2005), including insights into X and Y chromo-
some contributions to brain sex differences (Carruth et al,
2002). In men and women, neural activation patterns to the
same tasks are quite different between the sexes even when
performance is similar (Derntl et al, 2010). This leads to the
concept that men and women often use different strategies to
approach and deal with issues in their daily lives, in part
because of the subtle differences in brain architecture.
Nevertheless, from the standpoint of gene expression and
epigenetic effects, the principles of what we have learned in
animal models regarding plasticity, damage, and resilience
are likely to apply to both males and females.

SUMMARY AND CONCLUSIONS

The hippocampus has provided the gateway into much of
what we have learned about stress and brain structural and
functional plasticity not only in adult life, but also as a result
of stressors early in life. The initial focus on hippocampus
has expanded to interconnected brain regions such as the
amygdala, PFC, and nucleus accumbens. Moreover, the
initial focus on gene regulatory effects has broadened with
the recognition that steroid hormone receptors also mediate
rapid signaling pathways and that both direct and indirect
genomic and non-genomic actions of steroids involve
non-linear interactions with other intra- and extracelluar
mediators (Table 1). The resulting epigenetic effects result in
ever-changing patterns of gene expression, in which there are
important sex differences that need further exploration.
Translation of these findings from animal models to human
brain function is changing thinking about the nature of brain
malfunction in psychiatric disorders and during aging, as
well as the mechanisms of the effects of early-life adversity
on the brain and the body.
One outcome of the epigenetic perspective is the new

possibility for interventions that help the brain, as the master
organ of stress and adaptation to stressors, to change itself.

As suggested in the life course developmental perspective
(Halfon et al, 2014), the brain changes that occur as a result
of adverse experiences may be amenable to intervention
that epigenetically changes brain structure and function
to remediate those early events, even though true ‘reversal’ is
not possible. Some of these interventions that have been
shown to change brain structure and function are summar-
ized in Table 2. The key may be agents—pharmaceutical or
behavioral like physical activity—that facilitate plasticity so
that behavioral intervention may be effective, such as the
recently reported ability of fluoxetine to enhance recovery
from stroke (Chollet et al, 2011). The main goal of this new
approach (Castren and Rantamaki, 2010) is to open a
‘window of increased plasticity’ that may be capitalized by a
positive behavioral intervention, eg, behavioral therapy in the
case of depression or the intensive physiotherapy to promote
neuroplasticity to counteract the effects of a stroke. This is
consistent with animal model work that shows that ocular
dominance imbalance from early monocular deprivation can
be reversed by patterned light exposure in adulthood that can
be facilitated by fluoxetine (Vetencourt et al, 2008), but also
by caloric restriction as well as by every-other-day gluco-
corticoids in the drinking water (Spolidoro et al, 2011).
These glucocorticoid actions bring into focus work showing
that ultradian pulsatility of glucocorticoids promotes turn-
over of a subset of synapses throughout the cortex that is
involved in motor learning, among other functions (Liston
et al, 2013; Liston and Gan, 2011). Investigations of under-
lying mechanisms for the re-establishment of a new window
of plasticity are focusing on the balance between excitatory
and inhibitory transmission and removing molecules that
put the ‘brakes’ on such plasticity (Bavelier et al, 2010).
It is important to reiterate that successful behavioral

therapy, which is tailored to individual needs, can produce
volumetric changes in both PFC in the case of chronic
fatigue (de Lange et al, 2008), and in amygdala, in the case of
chronic anxiety (Table 2; Holzel et al, 2010). This reinforces
two important messages: (i) that plasticity-facilitating treat-
ments should be given within the framework of a positive
behavioral or physical therapy intervention; and (ii) that
negative experiences during the window may even make
matters worse (Castren and Rantamaki, 2010). In that vain, it
should be noted that excess BDNF also has the ability to
promote pathophysiology, such as seizures in some instances
(Heinrich et al, 2011; Kokaia et al, 1995; Scharfman, 1997).

TABLE 2 Interventions that help the brain change itself

Regular physical activity

Increased hippocampal volume and PFC blood flow and improved executive function and memory (Erickson et al, 2011).

Mindfulness-based stress reduction

Reducing anxiety decreases amygdala volume in those individuals who responded to a mindfulness-based stress reduction therapy (Holzel et al, 2010).

Social support and integration

Experience Corps for elderly volunteers, who showed improved executive function, increased blood flow in PFC, and better overall health with slower decline.

Meaning and purpose (eudaimonia) are a likely component along with social support and increased physical activity (Carlson et al, 2009).
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FUTURE DIRECTIONS

For real progress in diagnosing and treating mental and
physical health disorders, it is essential that the life-course
developmental perspective on the epigenetic embedding of
early-life experience (Halfon et al, 2014) help redefine
thinking about the origins of health and disease throughout
the life course. The discovery of antibiotics for infectious
disease promoted the notion that a pill could cure a disease
(‘magic bullets’). Although this may be true for infectious
diseases, the recognition of the non-communicable diseases
such as diabetes and heart disease has introduced preventa-
tive health behaviors such as diet and exercise (Engel
1977) where drugs are not ‘magic bullets’ but rather can
help correct some physiological imbalances such as high
cholesterol and low HDL. The life-course developmental
perspective adds the important notion of the biological
embedding of early-life experiences that carry over through-
out the life course as well as the concept that via epigenetics
the physical and social environment is continually changing
the brain and the body. This dynamic interaction opens the
possibility of redirecting toward a more positive trajectory
via behavioral interventions like physical activity and certain
pharmaceutical agents that open windows of plasticity for a
behavioral intervention to be effective. Nowhere is this more
important than for anxiety and depressive disorders as the
brain is the central organ of adapting to stressors and is a
vulnerable organ that is, however, subject to changes from
external behavioral intervention, aided in some cases by
pharmaceutical agents that open windows of plasticity.
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