
(Vaish et al, 2010), and nucleic acid
aptamers. At present, we are using
neurochips to identify rare nucleotides
isolated from combinatorial libraries
consisting of hundreds of billions of
candidate sequences based on relative
affinities for small-molecule neuro-
transmitter targets. We have also
developed micro- to nanoscale surface
patterning techniques (Liao et al, 2012)
and used high-throughput microflui-
dics (Liao et al, 2013) to create multi-
plexed neurotransmitter substrates. A
significant advantage of multiplexed
patterning is the capacity to capture
and to sort different neurotransmitter-
specific aptamers side-by-side while
providing opportunities to determine
and to compare in situ binding
affinities.
The discovery of neurotransmitter

aptamers will enable their functional
integration into nanometer-diameter
field-effect transistor (FET) nanowires,
which will function as neurotransmit-
ter recording elements (Figure 1). De-
vices patterned with aptamer-modified
FETs will be used to carry out dynamic
in vivo monitoring of neurotransmis-
sion with response times on the
order of milliseconds (or faster) (Kim
et al, 2015). When combined with
appropriate passivation to suppress
biofouling, microsensors that detect
dopamine with sub-second temporal
resolution have been shown to func-
tion over months in vivo in rats and
mice (Clark et al, 2010). Thus, neuro-
chips will enable the development of
devices that will advance the under-
standing of the roles of small-molecule
neurotransmitters in the complex
landscape of brain interneuronal
communication and dysfunction.
Unraveling the emergent properties of
integrated chemical neurotransmission
associated with neural circuits using
this approach will be advantageous for
uncovering processes associated with
cognition, emotion, and learning and
memory.
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Closing the Loop in
Deep Brain Stimulation
for Psychiatric
Disorders: Lessons from
Motor Neural Prosthetics

Deep brain stimulation (DBS) is a
promising technique for modulating
circuits underlying mental illnesses,
but has not done well in clinical trials
(Dougherty et al, 2015). Advocates
have argued that the trial failures arise
from a need to better define the
anatomic target for stimulation
(Riva-Posse et al, 2014). This ignores
a larger issue: DBS is an open-loop,
static therapy. Patients’ disorders, on
the other hand, are not static. Symp-
toms change over hours to days, but
DBS programming visits occur every
4–12 weeks. To resolve that mismatch,
investigators are now pursuing ‘closed-
loop’ DBS, where the device itself
monitors patients’ brain activity and
self-titrates therapy to a desired
endpoint (Figure 1). The challenge,
however, is determining what to
monitor. Verified neural biomarkers
for psychiatric disorders remain elusive.
Preliminary data suggest candidate
markers (Widge et al, 2015), but they
are far from the real-time algorithms
needed for effective feedback-
controlled DBS.
A different neuroscience community

has had greater success in ‘reading out’
the brain: brain–computer interface
(BCI) researchers. Their technologies
‘decode’ movement signals from the
cortex, then convey movement goals
to assistive devices. Closed-loop DBS
researchers seek to do something
similar, decoding a patient’s emotional
state. BCI investigators have uncovered
two insights that could assist psychia-
try’s quest. First, encoding matters—
decoding is better with a robust model
of how cortical regions encode mental
states. This matters for psychiatry,
because disorders like depression and
post-traumatic stress disorder are
heterogeneous. Effective decoding
may require identification of discrete
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circuit-based endophenotypes, analo-
gous to research domain criteria con-
structs. For instance, preliminary data
suggest that DBS response at the
ventral striatum target may depend
on changes in fronto-cingulate activity
evoked by Stroop-like tasks (Widge
et al, 2015). This cross-diagnostic
approach may be broadly useful in
dissecting DBS’ mechanisms of action.
Second, neural plasticity can help.

A recent surprise from BCI studies is
that models are helpful, but not always
necessary. A motivated subject can learn
to skillfully control a prosthetic limb or
an internal neurostimulator, even if the
mapping between neural firing and
device behavior does not match ‘natural’
input–output relationships. As the user
trains with the BCI, the brain re-maps
its firing patterns to match the device’s
control scheme (Moritz and Fetz, 2011).
In effect, the decoded patterns become a
readout of the user’s intention—what
he/she wants the device to do at that
moment. For a prosthetic limb, this is
an instantaneous motion command. For
psychiatry, it would be a stimulator
command. For instance, one could place
a recording electrode in an area that
contains emotion-related signals, then
link the amplitude of a DBS intervention
to the intention-modulated signals in
that area. The patient’s signals in the
recorded area would then ‘tune’ the DBS

intervention as needed. We recently
showed that rodents can learn to use
prefrontal cortex signals in precisely this
fashion to activate DBS-like stimulation
(Widge and Moritz, 2014). Similar
strategies may be useful for modulating
fear behaviors in anxiety disorders,
using fronto-limbic networks as targets
(Besnard and Sahay, 2015).
DBS remains an interesting techni-

que, and closed-loop approaches may
make it more useful for a broader group
of patients. Despite recent clinical trial
failures, the prospects for psychiatric
DBS may be brighter than ever.
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Heteroreceptor
Complexes and their
Allosteric Receptor–
Receptor Interactions
as a Novel Biological
Principle for Integration
of Communication in the
CNS: Targets for Drug
Development

The receptor–receptor interaction
field began with the studies on the

Figure 1. Schematic of closed-loop DBS control. A change in psychiatric symptoms (likely a
dimensional construct such as negative mood, over-generalized fear or hyper-arousal) leads to a
stereotyped change in neural activity. This is detected by a neural decoding algorithm, which
automatically adjusts brain stimulation parameters according to a pre-defined transfer function. The
resulting change decreases the symptom level, which stabilizes the system in a homeostatic loop.
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