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Fear conditioning has been commonly used as a model of emotional learning in animals and, with the introduction of functional
neuroimaging techniques, has proven useful in establishing the neurocircuitry of emotional learning in humans. Studies of fear
acquisition suggest that regions such as amygdala, insula, anterior cingulate cortex, and hippocampus play an important role
in acquisition of fear, whereas studies of fear extinction suggest that the amygdala is also crucial for safety learning. Extinction
retention testing points to the ventromedial prefrontal cortex as an essential region in the recall of the safety trace, and explicit
learning of fear and safety associations recruits additional cortical and subcortical regions. Importantly, many of these findings
have implications in our understanding of the pathophysiology of psychiatric disease. Recent studies using clinical populations
have lent insight into the changes in regional activity in specific disorders, and treatment studies have shown how
pharmaceutical and other therapeutic interventions modulate brain activation during emotional learning. Finally, research
investigating individual differences in neurotransmitter receptor genotypes has highlighted the contribution of these systems in
fear-associated learning.
Neuropsychopharmacology Reviews (2016) 41, 320–334; doi:10.1038/npp.2015.255; published online 16 September 2015
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INTRODUCTION

Fear-associated learning (fear conditioning and extinction)
has been used for decades to study the neurocircuitry that
underlies emotional learning. Animal studies of fear
conditioning have established the regions and systems
responsible for emotional processing, and these findings
have provided a basis for our understanding of the
corresponding neurocircuitry in humans. However, it was
with the development of functional neuroimaging techniques
in the 1990s that researchers have been able to examine
whether the regions found to be involved in emotional
learning in rodents are also responsible for similar processes
in humans. Fear-associated learning has been used exten-
sively in both animals and humans because it is a convenient,
although simplistic, model of the acquisition and main-
tenance of fear responses, and altered fear learning has been
hypothesized to play an important role in the development
of anxiety disorders such as posttraumatic stress disorder
(PTSD) and specific phobia. The goal of this review is to
systematically present the key findings of recent human
neuroimaging studies of fear learning and extinction, high-
light the emerging neural circuitry involved, and describe the
contributions of important modulators of fear-associated

learning such as genetic variability and hormones. In
addition, the more significant results are highlighted and
discussed in light of findings available from animal fear-
associated learning studies, as well as other experiments from
the human literature.
At its most basic level, fear conditioning involves the

association of a neutral conditioned stimulus (CS, often a
tone or image) with an aversive unconditioned stimulus
(US, often electrical shock or a loud noise). After repetitive
presentations of the CS with the US, the CS begins to elicit a
conditioned response (CR) that occurs independently of the
US. Fear conditioning protocols are similar in animal
models and human subjects, and the two paradigms are
compared visually in Figure 1. In rats, the CR is typically
assessed by measuring freezing or fear-enhanced startle
response, and in humans the CR is often assessed via
psychophysiological measures such as skin conductance
response (SCR), electromyography (EMG), or changes in
heart rate. During fear extinction, the previously fear
conditioned CS is presented repeatedly without the US,
usually in a different environment (context). Over time, the
CS is no longer associated with the conditioned response
when presented in the extinction context. Fear extinction is
thus an effective model of learning, establishing that
previously ‘dangerous’ stimuli are no longer threatening
and are rather ‘safe’. Furthermore, exposure therapy
commonly used in anxiety disorders involves components
of fear extinction. Finally, during extinction retention (or
recall) and fear renewal, the appropriate, context-specific
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retrieval of previously acquired fear and safety memory
traces is tested. Studying extinction retention and fear
renewal in humans elucidates how people use contextual
processing to disambiguate how conditioned stimuli
indicate threat in the 'danger' context but not in the 'safe'
context.
Animal studies of fear-associated learning have provided

an understanding of the brain circuits that govern
fear conditioning and extinction and, in general, these
findings have been corroborated by human neuroimaging
studies. Other articles in this issue review findings from
animal studies in detail, and describe how these results have
shaped our understanding of emotional learning. Briefly,
the neurocircuitry conserved across species involves the
amygdala as the key region involved in the acquisition of
the fear response, receiving inputs from somatosensory
cortex, thalamus, and hippocampus that encodes contextual
information and compares current contextual cues to
previously encoded memories (Maren and Quirk, 2004).
Basolateral amygdala (BLA) receives these various sensory
and contextual inputs, and the CS–US trace is formed.
The centromedial amygdala receives information from
BLA, as well as other direct inputs, and projects to the
hypothalamus, periaqueductal gray, and other brain stem
nuclei, causing the behavioral and physiological changes
associated with the CR. Interestingly, it appears that
acquisition of the extinction memory also occurs in BLA,
whereas hippocampus plays an important role in con-
solidation of extinction (Quirk and Mueller, 2008), and
mPFC seems to be important in the retrieval of
the extinction memory (Davis, 1992). In addition, numer-
ous studies suggest that the central amygdala also plays a
critical role in fear learning (Li et al, 2013; Penzo et al, 2014,
2015), and optogenetic studies suggest that different
projections to the central amygdala enhance
or inhibit fear learning (Tye et al, 2011). These comple-
mentary pathways could explain how the central amygdala
appears to be involved in both fear acquisition and

extinction, as separate inputs to this region both increase
and decrease the fear response.

NEUROCIRCUITRY OF FEAR CONDITIONING
AND EXTINCTION IN HUMANS

To date, the majority of human neuroimaging studies of fear
conditioning and extinction have been performed using
functional magnetic resonance imaging (fMRI). The fMRI
allows researchers to identify the neuronal circuitry involved
in performing various tasks by measuring blood oxygen-level
dependent (BOLD) effects. More recent work has used
functional connectivity measures that analyze the time
courses from the BOLD fMRI signal to glean information
about how various regions in the brain communicate with
one another. A number of studies have used positron
emission tomography (PET)-based methodology to assess
local changes in metabolism in association with fear
conditioning and extinction, and electroencephalography
(EEG) and magnetoencephalography (MEG) have occasion-
ally been used to examine changes in cortical electrical
activity, both directly and indirectly. These various imaging
modalities are usually combined with psychophysiological
measures such as skin conductance response (SCR), fear-
potentiated startle response, or changes in heart rate in order
to assess the CR in humans.

NEUROIMAGING OF FEAR ACQUISITION IN
HUMANS

A variety of stimuli have been used in human studies of fear
conditioning, with the CS+ typically a distinct visual cue or
sound, and the US a mild electrical shock, an aversive loud
noise or, less frequently, an unpleasant smell or an
uncomfortable visceral stimulus (Gramsch et al, 2014;
Kattoor et al, 2013, 2014). Human fear conditioning studies
typically include a second cue (CS−) that is not associated
with the US, allowing for a comparison of the CS+ and CS−
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Figure 1. A comparison of typical fear-associated learning paradigms in human neuroimaging (a) and rodents (b).

Neuroimaging of fear-associated learning
JA Greco and I Liberzon
.....................................................................................................................................................................

321

REVIEW

...................................................................................................................................................

Neuropsychopharmacology REVIEWS



responses to isolate the CR using psychophysiological
measures and the neural correlates of fear conditioning
using neuroimaging techniques.
Early studies using fMRI found differential responses

(to CS+ versus CS−) in ACC, anterior insula, hippocampus,
and amygdala using both trace and delay conditioning
paradigms (Buchel et al, 1998, 1999; LaBar et al, 1998). These
findings have been consistently replicated by other research
using fMRI (Andreatta et al, 2012; Armony and Dolan, 2002;
Bach et al, 2011; Critchley et al, 2002; Knight et al, 2005,
2009; Marschner et al, 2008; Pohlack et al, 2012; Reinhardt
et al, 2010; van Well et al, 2012), PET (Furmark et al, 1997),
and MEG (Balderston et al, 2014; Moses et al, 2007).
Activation in amygdala, anterior insula, ACC, and left PFC
have also been observed while subjects viewed a movie of
someone else undergoing fear conditioning (Ma et al, 2013;
Olsson et al, 2007), suggesting similar processes of fear
learning can be elicited without directly experiencing the US.
Over the course of fear conditioning, amygdala activation
typically decreases, as does hippocampal activation during
trace conditioning (Buchel et al, 1998, 1999; LaBar et al,
1998; Reinhardt et al, 2010). Meanwhile, ACC and insula
activation remain more consistent (Buchel et al, 1999),
suggesting that amygdala and hippocampus may play a key
role during acquisition of the CR, whereas ACC and insula
are more involved in CR expression. Furthermore, these
results closely resemble findings observed in animal models
of fear conditioning (Maren et al, 2013) with additional
cortical regions implicated mainly in human neuroimaging
experiments. One recent large meta-analysis of fear
conditioning experiments (Fullana et al, 2015) involving
677 subjects further confirmed large-scale activations in
ACC/mPFC and the anterior insula, as well as additional
cortical regions (supplementary motor area, dorsolateral
PFC, and precuneus), ventral striatum, and midbrain. These
were interpreted as representing a ‘central autonomic-
interoceptive’ network. Interestingly, amygdala signal was
not found in this analysis, and the authors interpret these
negative findings (and the strong ACC and anterior insula
signals) in light of the fact that human studies primarily
involve conscious fear processing. However, the authors also
acknowledge that the meta-analytical approach is subject to
false negative errors, as well as specific technical difficulties
in imaging small structures.
Among the regions implicated by neuroimaging studies of

fear-associated learning, the roles of mPFC and, to some
degree, the dACC in fear conditioning have been debated,
with some studies suggesting that these regions are involved
specifically in instructed fear learning. However, a
meta-analysis of previous work (Mechias et al, 2010), as
well as a study that used both instructed fear and Pavlovian
conditioning (Maier et al, 2012), demonstrated that these
regions are activated across a variety of different fear
conditioning paradigms. DACC thickness also directly
correlates with SCR during conditioning (Milad et al,
2007). Thus, dACC and dmPFC appear to play a role in
general threat appraisal across a variety of fear conditioning

paradigms. The mPFC also appears to be involved in fear
acquisition in rodents, but it is not required for fear learning
(Burgos-Robles et al, 2009; Herry et al, 1999; Morgan and
LeDoux, 1995). Ventral infralimbic (IL) and dorsal prelimbic
(PL) regions that are analogous to the mPFC in humans
project to neurons in both central (Quirk et al, 2003) and
basolateral (Rosenkranz et al, 2003) amygdala, with IL
seemingly more important in inhibitory innervation to
central amygdala (Vertes, 2004). These findings, and in
particular the direct connections between mPFC and
amygdala, support the notion that mPFC might play a
modulatory or supportive role during fear acquisition. In
addition, human studies that varied the contingency rate
between the CS and US have implicated additional cortical
regions in fear conditioning. Studies using high contingency
rates show that dlPFC is commonly activated when the threat
is highly predictable (Eippert et al, 2012; Wheelock et al,
2014). This raises the possibility that working memory
processes in dlPFC become involved once the CS–US pairing
has been explicitly learned. The use of partial reinforcement
schedule eliminates this cognitive expectancy effect and
limits the role of explicit, declarative memory in the process.
Amygdala activation has been observed independent of
contingency awareness (Tabbert et al, 2011), whereas
interestingly, increased CS–US contingency and US expec-
tancy have been associated with lower activation in regions
implicated in fear learning, including amygdala, insula, ACC,
and vmPFC (Dunsmoor et al, 2008; Knight et al, 2010; Wood
et al, 2012, 2013). The aforementioned meta-analysis
(Fullana et al, 2015) also found that higher reinforcement
rates were associated with lower activation in rostral dACC/
dmPFC, ventral anterior insula, and right secondary
somatosensory cortex. This potentially suggests that when
implicit learning has taken place, there is less robust
activation of the basic fear-associated learning circuitry
described above.
Striatum has also been consistently implicated in fear

conditioning studies in humans (Fullana et al, 2015).
Specifically, one meta-analysis reported that ventral striatum
was activated more in subjects who consciously learned the
CS–US contingency during conditioning (Klucken et al,
2009). These results, as well as results from other neuroima-
ging studies of decision making (Balleine et al, 2007; Hsu
et al, 2005; Tom et al, 2007), are consistent with the
hypothesis that the striatum plays a role in assessing the
probability of various outcomes. In addition, striatal–
amygdala interactions have been observed in avoidance
learning during fear conditioning (Delgado et al, 2009),
suggesting that the striatum accesses information from the
amygdala when conscious decision making is occurring in a
fearful environment. Furthermore, increased differential
ventral striatum activation has also been observed in late
acquisition, after explicit representation of the CS–US link
had likely been formed (Pohlack et al, 2012). Finally, striatal
activation has been observed in a study using monetary loss
as a US (Delgado et al, 2011). All of these results are in line
with previous findings and suggest that the striatum’s role in
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emotional learning might be to assess the probabilities of
experiencing the US once the CS–US contingency has been
established.
In addition to the ACC, amygdala, insula, hippocampus,

mPFC, and striatum that consistently appear in human fear
conditioning studies, another region occasionally implicated
by neuroimaging studies of conditioning in healthy humans
is lateral orbitofrontal cortex (lOFC). Differential lOFC
activation has been observed during both instructed and
uninstructed fear conditioning tasks (Armony and Dolan,
2002; Gottfried et al, 2002; Tabbert et al, 2011). The
increased activation in lOFC following the CS+ matches
findings in various other neuroimaging studies using
aversive stimuli that suggest that lOFC responds specifically
to negatively valenced stimuli (Milad and Rauch, 2007).
Thus, lOFC may play a role in identifying stimuli as negative,
but the region’s role has not been replicated reliably in fear
learning specifically, and in fact deactivations in lOFC have
been found in the meta-analysis performed by Fullana et al
(2015).
Structural studies have also linked increased SCR during

fear acquisition to some of the same key regions implicated
by functional neuroimaging studies, particularly amygdala
(Cacciaglia et al, 2014; Winkelmann et al, 2015). One study
also found that greater posterior insula thickness was
associated with a greater CR during conditioning (Hartley
et al, 2011). However, positive correlations between CR to
CS+ during conditioning and regional thickness found in the
amygdala and insula have not been universally observed
when the association between hippocampal volume and fear
acquisition has been examined. Larger hippocampal volumes
have been associated with greater ability to discriminate
between contexts (Pohlack et al, 2012), and smaller
hippocampal volumes have been associated with lower
conscious cue discrimination but not differences in SCR
(Cacciaglia et al, 2014).
In agreement with animal studies, contextual fear con-

ditioning studies in humans have also implicated the
amygdala, hippocampus, and mPFC as key regions in this
process, although the number of studies that have used
contextual conditioning in humans is quite limited. One
study analyzing differential responses during contextual
conditioning found that activation in medial amygdala was
coupled with activation in several important fear learning
regions, including hippocampus, anterior insula, parahippo-
campal gyrus, subgenual ACC, and OFC (Alvarez et al,
2008). This analysis fits with findings from cued condition-
ing that identified these regions as areas involved in either
fear learning or the recognition of fearful stimuli. Impor-
tantly, the hippocampus plays a central role during
contextual conditioning, as several studies have established
(Alvarez et al, 2008; Andreatta et al, 2015). One recent study
also reported that initial activity in contextual conditioning
was found in dorsomedial PFC, dorsolateral PFC, and OFC
(Andreatta et al, 2015). These results corroborate the current
understanding of prefrontal–hippocampal circuitry and
connectivity as the key network responsible for contextual

processing (Maren et al, 2013; Preston and Eichenbaum,
2013).
Functional connectivity analyses have been used more

recently to examine the connectivity between brain regions
during fear conditioning tasks. Analyzing the time courses of
data collected with BOLD fMRI allows for the identification
of regions that are activated and deactivated simultaneously,
suggesting that these areas are functionally connected. In
addition, resting-state fMRI has been used before and after
fear conditioning in an attempt to measure the connections
between brain regions at rest and how differences in this
connectivity might correlate with changes in fear condition-
ing (Feng et al, 2014; Schultz et al, 2012; Tzschoppe et al,
2014). Studies during or immediately following fear acquisi-
tion have found that several regions implicated by neuroi-
maging studies of cued fear conditioning also
show functional connectivity with each other. During
conditioning, greater connectivity between amygdala and
regions, including hippocampus, vmPFC, dlPFC, and ACC,
was associated with higher conditionability (Tzschoppe et al,
2014). Immediately following fear acquisition, subjects have
shown enhanced amygdala–dACC and hippocampus–insula
functional connectivity, as well as less amygdala–mPFC
functional coupling (Feng et al, 2014), although a different
study reported greater amygdala–dmPFC functional con-
nectivity (Schultz et al, 2012). In another study, resting
dACC metabolism positively predicted differential SCR
response and SCR performance was positively correlated
with the amygdala–ACC connectivity (Linnman et al, 2012).
These results support the hypothesis that fear conditioning
involves communication and modification of the connec-
tions between the same regions implicated in previous
neuroimaging studies and studies using rodent models, but
the specific mechanism and the exact changes have to be
further elucidated.

NEUROIMAGING OF FEAR EXTINCTION IN
HUMANS

Neuroimaging studies of fear extinction have provided
insight into how humans associate previously aversive
stimuli with safety. In concert with the animal literature,
amygdala activation has also been observed during extinction
learning in humans, and similarly to the observation in the
amygdala during fear acquisition, this effect is often graded
through the course of extinction (Gottfried and Dolan, 2004;
LaBar et al, 1998; Phelps et al, 2004). BLA is activated when
CS–US associations become more predictable (Boll et al,
2013), suggesting that BLA encodes information about the
relationship between the CS and the US. This is in concert
with our understanding of the role of BLA in extinction
learning from animal studies (Quirk and Mueller, 2008).
Interestingly, a meta-analysis that combined fear extinction
with additional emotional regulation experiments confirmed
amygdala activation across these types of studies (Diekhof
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et al, 2011) with the vmPFC activated specifically in fear
extinction studies.
The role of vmPFC in extinction learning has been

discussed extensively in recent years. Although these
findings have been reported by fewer studies than findings
in the amygdala, several studies have replicated findings in
rodents suggesting that vmPFC plays a role in extinction
learning (Gottfried and Dolan, 2004; Phelps et al, 2004).
vmPFC activation is also observed in fear reversal tasks (a
modified acquisition task that flips the CS+ and
CS− halfway through the run) when a CS that used to be
associated with fear is now safe (Schiller et al, 2008).
However, as more neuroimaging studies have included the
fear extinction retention phase, evidence is accumulating
that vmPFC is particularly important to consolidation of
the extinction memory, and the region is especially involved
in the recall of extinction in subsequent testing. Evidence
from the animal literature (Quirk and Mueller, 2008) also
points toward a similar role of vmPFC in extinction.
Nonetheless, it is also possible that vmPFC might have an
important role in inhibiting the conditioned fear response
at the beginning of the extinction phase (Gottfried and
Dolan, 2004; Phelps et al, 2004).
One commonly studied aspect of fear extinction is

prediction error (PE) that occurs when a subject expects a
CS–US pairing that does not occur, or expects a CS without
US, when they are actually paired. As confirmed by meta-
analysis (Garrison et al, 2013), PEs are commonly
associated with striatal activation (Robinson et al, 2013;
Schiller et al, 2008), and greater striatal activation is seen
following PEs that occur in a threatening context versus a
safe context (Robinson et al, 2013). These results are in line
with our understanding of the role of striatum in assessing
probabilities of aversive outcomes during fear conditioning.
SCR response to an omitted US is also associated with
striatal activation, as well as activation in ACC, parietal
cortex, and insula (Dunsmoor and LaBar, 2012). As
extinction consists of repeated CS trials without the US,
and the initial omissions of the US are clearly unexpected, it
is not surprising that PE-associated regions are activated at
least transiently at the beginning of extinction. One study
has also reported greater differential activation in amygdala
and midbrain while subjects committed PEs (Boll et al,
2013) that may represent activation of the expected fear
response.
Extinction of trace conditioning appears to also

involve dorsolateral PFC (dlPFC), possibly due to the extra
time that the trace interval must be held in short-term
memory (Ewald et al, 2014). Safety learning in humans, a
task that associates cue with sense of safety (no US is
delivered) rather than with the sense of danger, also seems
to involve the dlPFC, and DTI suggests that there may be a
connection between dlPFC and amygdala (Pollak et al,
2010). These limited studies further support our interpreta-
tion of the role of dlPFC as the site of explicit working
memory processes in humans that maintain the trace

interval, in concert with results from studies of fear
acquisition.

NEUROIMAGING OF EXTINCTION
RETENTION, FEAR REINSTATEMENT, AND
RENEWAL IN HUMANS

More recently, studies have started to examine the extinction
retention (or recall) and the fear renewal phases that are
usually tested 24 h following the extinction phase. Both
examine responses to the extinguished cue (CS+E); however,
in extinction retention this cue is presented in the extinction
(safe) context, and in fear renewal it is presented in the
original fear acquisition (danger) context or a novel context.
It has been reported that vmPFC plays an important role in
extinction retention (Kalisch et al, 2006), corroborating
animal work implicating the region in the retrieval of the
extinction memory. Studies have also found that the degree
of fear extinction retention is positively correlated with
vmPFC thickness (Hartley et al, 2011; Milad et al, 2005;
Winkelmann et al, 2015). The role of vmPFC in modulating
response during extinction retention has also been observed
using EEG (Mueller et al, 2014), although the limited spatial
resolution of EEG makes it difficult to pinpoint activity
specifically to the vmPFC. The hypothesis that vmPFC
modulates amygdala activation during this process has been
recently supported by fMRI findings in patients with vmPFC
damage (Motzkin et al, 2015), although studies of Vietnam
veterans with penetrating brain injuries found that mPFC
lesions were associated with decreased prevalence of PTSD
(Koenigs et al, 2008). Yet, baseline amygdala metabolism has
been negatively correlated with activation in vmPFC during
extinction retention (Linnman et al, 2012). Sleep seems to
play an important role in extinction retention, both in terms
of SCR and activation of specific brain regions. Subjects who
had REM sleep between extinction and extinction retention
showed reduced SCR during extinction retention, as well as
greater activation of left vmPFC and bilateral lingual gyrus
(Spoormaker et al, 2010). Deprivation of REM sleep leads to
increased SCR during early extinction retention, as well as
changes in activation in left middle temporal gyrus
(Spoormaker et al, 2012).

During fear renewal, a previously extinguished CS is
presented either in the fear context (the context that was
used for fear acquisition) or a novel context, and no US is
presented. Similar to extinction retention testing, the context
triggers recall of CS memory; however, here it triggers the
fear trace rather than the safety trace. Fear renewal has not
been studied using neuroimaging until very recently;
however, our lab recently reported greater differential
activation of bilateral insula, as well as the cingulate gyrus
and precuneus, during fear renewal, suggesting that renewal
may recruit this key region of fear acquisition (Garfinkel
et al, 2014). In an associative learning task, renewal of
extinguished associations was correlated with activation in
hippocampus and parahippocampal gyrus (Lissek et al,
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2013), affirming the role of these regions in contextual
processing. As expected from the difference in context, these
results suggest that in comparison with extinction retention,
fear renewal activates more regions in the fear acquisition
circuitry.
Fear reinstatement is a process where a previously

extinguished CS is reassociated with a US in the same
context as conditioning (danger context). Like renewal,
reinstatement is not studied as often as acquisition and
extinction, but a number of experiments have been reported
in the literature. During reinstatement using visceral stimuli,
greater differential activation was observed in parahippo-
campal cortex and posterior cingulate cortex (Gramsch et al,
2014; Kattoor et al, 2013). In addition, greater activation in
response to the CS+ has been observed in hippocampus
and thalamus for females versus males (Benson et al, 2014).
Research in patients with hippocampal atrophy (LaBar and
Phelps, 2005) corroborates these limited results from
neuroimaging studies suggesting that hippocampus might
be involved in human fear reinstatement, most likely when
subjects are accessing the previously consolidated fear
memory trace.

NEUROIMAGING STUDIES OF FEAR
CONDITIONING AND EXTINCTION IN PTSD
AND ANXIETY DISORDERS

Posttraumatic Stress Disorder

Among various psychiatric disorders, fear conditioning and
extinction research has been particularly salient to our
understanding of PTSD, phobias, and other anxiety dis-
orders. The major findings from neuroimaging studies of
fear-associated learning in patients with psychiatric disorders
are outlined in Table 1. With respect to PTSD, fear-
associated learning has been utilized both in studies of
PTSD patients and in studies using animal models of PTSD
with remarkably converging findings. Although alterations
during fear acquisition (Linnman et al, 2011) or extinction
(Fani et al, 2012, 2015; Sripada et al, 2013) in PTSD patients
have been occasionally reported, in general the preponder-
ance of the findings suggest that fear acquisition and
extinction are overall preserved in PTSD patients
(Garfinkel et al, 2014; Milad et al, 2009; Shvil et al, 2014)
as well as in animal models of PTSD (Knox et al, 2012).
In contrast, abnormalities in extinction retention and fear

renewal have been consistently demonstrated, both in an
animal model of PTSD (Knox et al, 2012) and in PTSD
patients, with associated changes in regional brain activation
and volume. PTSD patients have demonstrated lower
activation in hippocampus and vmPFC, and greater activa-
tion in dACC during extinction recall (Milad et al, 2009;
Rougemont-Bucking et al, 2011), changes that have also been
associated with higher SCR to CS+E, signifying impaired
recall (Milad et al, 2009). Our laboratory demonstrated
higher SCR and greater amygdala activity to the CS+E during
extinction recall in PTSD patients (Garfinkel et al, 2014). We

also observed altered fear renewal in PTSD patients, with
lower SCR to the CS+E, and lower activity in amygdala and
vmPFC as compared with combat controls (Garfinkel et al,
2014). As both extinction recall and fear renewal are
dependent on contextual disambiguation of the CS, the
deficits in both processes strongly implicate abnormalities in
contextual processing during fear-associated learning in
PTSD. This is also very consistent with the abnormalities
observed in hippocampal–mPFC circuitry, as these struc-
tures play a key role in the contextualization of memory
(Maren et al, 2013; Preston and Eichenbaum, 2013). In
concert, in an animal model of PTSD, single prolonged stress
(Liberzon et al, 1997), both abnormal fear renewal (Knox
et al, 2012), and changes in hippocampus and mPFC (Knox
et al, 2012) have been consistently demonstrated. Volumetric
findings of reduced hippocampal volume, reduced vmPFC
volume, and reduced gray matter density in dACC are also
associated with PTSD symptomology (Bonne et al, 2008;
Gilbertson et al, 2007; Kuhn and Gallinat, 2013; Rogers et al,
2009), further implicating hippocampal–prefrontal involve-
ment. It should be noted that one study of men and women
with PTSD found that only men showed deficient extinction
recall, and men also showed greater activation in rACC
compared with women during recall (Shvil et al, 2014).
These results reflect findings in studies performed in healthy
subjects that demonstrate gender differences in fear-
associated learning. In sum, patients with PTSD consistently
show impairments in the contextual modulation of both fear
extinction and enhancement, and vmPFC seems to be
particularly deficient.
Studies investigating the effect of treatment on fear

learning and extinction in PTSD patients have been limited
thus far, but represent a field with a great opportunity to
advance our understanding of the disorder and how to
effectively treat patients. Repeated exposure to traumatic
memory (RETM) is a commonly used therapy for PTSD
based upon fear extinction. One study using functional
connectivity measures showed that RETM is associated with
strengthened connectivity of the amygdala with regions such
as hippocampus and insula, as well as mPFC with insula, and
hippocampus with striatum, dorsal cingulate cortex, and
OFC (Cisler et al, 2014). These results suggest that exposure
therapy may change the way that several key regions
involved in fear learning communicate with one another,
helping to establish the proper associations between cues,
context, and the fear response.

Specific Phobia

Generally, functional imaging studies of patients with
specific phobia suggest that phobic patients have greater
activation in response to phobia-related stimuli in regions
such as amygdala, insula, and thalamus (Ipser et al, 2013).
Specifically, fear conditioning using aversive pictures as
unconditioned stimuli has been used to assess differences in
emotional learning in patients with specific phobia. One such
study found that patients with spider phobia showed
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enhanced activation in amygdala to phobia-related condi-
tioned stimuli versus nonphobia-related conditioned stimuli
(Schweckendiek et al, 2011). This greater activation in the
amygdala most likely suggests that these patients show an
exaggerated fear response to the more individually salient
phobia-related stimuli. However, spider phobics also over-
estimate the correlation between CS and US when the CS is a
picture of a spider, and this is associated with greater

activation in dorsolateral PFC (Wiemer et al, 2014). The
larger dlPFC signal here might be reflective of
various processes like increased access of working memory
(Curtis and D'Esposito, 2003) as subjects process the
association between the CS and the US, and volitional control
of emotional responses to phobic stimuli (MacDonald et al,
2000). Although these changes in amygdala and dlPFC are
probably not alterations in the fear learning process per se,

TABLE 1 Summary of Results from Studies of Fear-Associative Learning in Patients with Psychiatric Disorders

Disorder Phase of fear
learning

Reference Subjects Key brain regions implicated

Posttraumatic stress disorder
(PTSD)

Acquisition Linnman et al (2011) 19 PTSD patients, 24 trauma-exposed controls Amygdala, dACC, HC, insula

Acquisition and
extinction

Sripada et al (2013) 15 PTSD patients Amygdala, HC, insula, OFG, superior MFG

Acquisition and
extinctiona

Fani et al (2015) 48 African-American females ACC, cingulum, HC

Acquisition, extinction,
recall

Milad et al (2009) 16 PTSD patients, 15 trauma-exposed controls Amygdala, cerebellum, dACC, HC, vmPFC

Acquisition, extinction,
recall

Rougemont-Bucking
et al (2011)

18 PTSD patients, 16 trauma-exposed controls dACC, MFG, PCC, vmPFC

Acquisition, extinction,
recallb

Shvil et al (2014) 31 PTSD patients, 25 trauma-exposed controls dACC, insula, vmPFC

Acquisition, extinction,
recall, renewal

Garfinkel et al (2014) 14 PTSD patients, 14 combat-exposed controls Amygdala, insula, thalamus, vmPFC

Specific phobia Acquisitionc Schweckendiek et al
(2011)

15 Spider phobics, 14 healthy controls ACC, amygdala, insula, mPFC, thalamus

Acquisitionc Wiemer et al (2014) 18 Female spider phobics, 18 healthy controls Amygdala, dlPFC, insula

Panic disorder (PD) Acquisition Tuescher et al (2011) 8 PD patients, 8 PTSD patients, 8 healthy
controls

ACC, amygdala, dlPFC, HC, insula, PAG,
thalamus, ventral striatum

Panic disorder with
agoraphobia (PD/A)

Acquisitiond Kircher et al (2013) 42 PD/A patients, 42 healthy controls ACC, amygdala, IFG, insula, MFG

Acquisition Lueken et al (2014) 60 PD/A patients, 60 healthy controls IFG, insula, midbrain

Acquisitiond Straube et al (2014a) 42 PD/A patients, 42 healthy controls Hippocampus, IFG

Acquisitiond, e Straube et al (2014b) 42 PD/A patients ACC, amygdala, hippocampus, insula, MFG

Acquisition and
extinctiond

Lueken et al (2013) 49 PD/A patients ACC, amygdala, HC

Acquisition and
extinctiond, e

Lueken et al (2015) 41 PD/A patients ACC, amygdala

Generalized anxiety disorder
(GAD)

Acquisition Britton et al (2013) 14 Anxious youth, 15 anxious adults, 25 healthy
youth, 28 healthy adults

sgACC, vmPFC

Acquisition Greenberg et al
(2013b)

32 Female GAD patients, 25 healthy controls ACC, amygdala, insula, SMA, vmPFC

Acquisitiona Cha et al (2014) 32 Female GAD patients, 25 healthy controls Amygdala, dlPFC, PHG, MFG, thalamus,
vmPFC

Schizophrenia Acquisition, extinction,
recall, renewal

Holt et al (2012) 20 Schizophrenia patients, 17 healthy controls HC, insula, PCC, thalamus, vmPFC

Obsessive–compulsive disorder
(OCD)

Acquisition, extinction,
recall

Milad et al (2013) 21 OCD patients, 21 healthy controls Cerebellum, dACC, HC, insula, PAG, PCC,
vmPFC

Attention deficit hyperactivity
disorder (ADHD)

Acquisition Maier et al (2014) 17 ADHD patients, 17 healthy controls Amygdala, dACC, dmPFC

Abbreviations: ACC, anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; HC, hippocampus; MFG, medial frontal
gyrus; OFG, orbital frontal gyrus; PAG, periaqueductal gray; PCC, posterior cingulate cortex; PHG, parahippocampal gyrus; sgACC, subgenual anterior cingulate cortex;
SMA, supplementary motor area; vmPFC, ventromedial prefrontal cortex.
aExamined structural connectivity.
bExamined sex differences.
cUsed phobia-related stimuli.
dExamined the effect of cognitive behavioral therapy.
eExamined genotypes.
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they may enhance fear acquisition by increasing the reactivity
of the fear neurocircuitry. Additional studies of fear
conditioning in specific phobia are necessary to replicate
these results and further investigate emotional learning
differences in this patient population.
Exposure therapy, which uses elements of fear extinction,

is the most widely used treatment for specific phobia and has
been studied often with neuroimaging. Exposure therapy has
been shown to increase activation in prefrontal cortex during
the presentation of phobia-related images, whereas it
decreases activation in amygdala, insula, and cingulate cortex
(Hauner et al, 2012). At 6 months after completion of
exposure therapy, prefrontal cortex activation was lower as
well. A small meta-analysis of three neuroimaging studies in
patients with specific phobia (Goossens et al, 2007; Paquette
et al, 2003; Straube et al, 2006) found that exposure therapy
leads to lower activation in right frontal cortex, limbic cortex,
and basal ganglia (Ipser et al, 2013). This was interpreted to
suggest that, over time, exposure therapy reduces the
reactivity in several key regions of fear neurocircuitry. These
changes are probably not indicative of an alteration in the
process of fear learning, but rather a reduction of the salience
of fearful stimuli over the course of treatment.

Panic Disorder

A relatively small number of studies have investigated fear
conditioning in patients with panic disorder (PD), as well as
patients with panic disorder with agoraphobia (PD/A).
Interestingly, inferior frontal gyrus (IFG) has been implicated
in fear conditioning in PD/A patients. During acquisition,
greater differential activation of IFG has been seen in PD/A
patients versus controls (Lueken et al, 2014), and cognitive
behavioral therapy (CBT) reduced this activation in PD/A
patients (Kircher et al, 2013). Further studies found that PD/A
patients receiving CBT treatment also showed greater
activation of the hippocampus during fear acquisition, and
this was positively correlated with treatment outcome (Lueken
et al, 2013; Straube et al, 2014a). These studies also found that
CBT treatment is associated with lowered connectivity
between the left IFG and the left hippocampus across time.
These results are interesting, as previous work in healthy
subjects typically does not implicate IFG in fear-associated
learning and may suggest that patients with panic disorder
recruit additional regions of frontal cortex to modulate fear
acquisition. IFG is a crucial region in the ventral attention
network and appears to be activated during cue detection
(Hampshire et al, 2010). Another study in patients with PD
demonstrated greater activity to CS− during conditioning
in ventral striatum, amygdala, subgenual cingulate, and
periaqueductal gray (Tuescher et al, 2011). Taken together,
these results might indicate that panic disorder may be
associated with altered attention to cues, as well as
inappropriate fear responses to safe cues, but more research
is clearly required, and these interpretations have to be
tested directly.

Generalized Anxiety Disorder and Social Anxiety
Disorder

Generalization of fear conditioning has been postulated to
play a key role in the development of generalized anxiety
disorder (GAD), and fear-associated learning has been
examined in GAD using neuroimaging. The studies often
used a modified conditioning task (generalization of condi-
tioned threat) where subjects were presented with a variety of
cues that were similar in various degrees to the CS
(ie, rectangles of varying widths), but only the CS was
associated with the US. Several studies investigating the
generalization of conditioned fear have shown that insula
reactivity increases as stimuli become more similar to the
US (Dunsmoor et al, 2011; Greenberg et al, 2013a; Lissek
et al, 2014). Greater SCR associated with generalized fear
has also been correlated with amygdala activity (Dunsmoor
et al, 2011). In another generalization task, greater
differential activation was observed in insula, ACC, and
striatum when subjects expected a US that was not
delivered (Dunsmoor and LaBar, 2012). These results
consistently implicate insula and other key areas of the
fear learning circuitry in the generalization process,
reinforcing the role of these regions in cue discrimination.
On the other hand, it was reported that hippocampus
and vmPFC reactivity increases as stimuli become less
similar (Lissek et al, 2014). Furthermore, connectivity
analyses suggest that these changes are modulated by the
hippocampus.
Several experiments using the generalization of

conditioned threat task have examined potential neural
deficits in patients with GAD. Patients with GAD showed
less discrimination between the fear and safety cues,
especially in vmPFC (Greenberg et al, 2013b). This
decrement has also been correlated with lower vmPFC
thickness as well as with lower connectivity between
vmPFC and thalamus and IFG (Cha et al, 2014). If vmPFC
is indeed involved in discrimination between safe and
danger signals, this is consistent with the reports of
increased trait anxiety association with lower ventral PFC
activation during fear acquisition, as well as lower
connectivity between vPFC and hippocampus (Indovina
et al, 2011). Consistent with this, patients with GAD (and
social phobia) showed lower vmPFC and subgenual ACC
activation during cognitive appraisal of previously condi-
tioned CS+ as compared with healthy subjects (Britton et al,
2013). These results are interesting, as the role of vmPFC in
fear responses is generally seen as inhibitory; therefore,
these deficits might be indicative of broad deficits in the
inhibition of the fear response.
Only one study of fear-associated learning has focused on

the effect of social anxiety on fear learning and extinction. In
a population of healthy subjects, there was a slight negative
correlation between social anxiety and vmPFC activation
during extinction recall, similar to deficits observed in other
anxiety or fear disorders (Pejic et al, 2013). More work needs
to be done to understand whether patients with
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social anxiety disorder actually show impairments in
fear-associated learning, and whether these impairments
differ from those observed in other anxiety disorders
and PTSD.

Neuroimaging Studies of Fear Learning and
Extinction in Other Psychiatric Disorders

Fear conditioning and extinction experiments have also been
used to study emotional learning in other psychiatric
disorders. Although some findings point toward changes in
fear-associated learning and in regions implicated in fear and
anxiety regulation like vmPFC, dACC, and amygdala, overall
the very small number of studies in these disorders clearly
render these findings as preliminary and require replication.
Two studies have reported deficiencies in extinction recall,
similar to changes observed in PTSD, in patients with
schizophrenia, with lower differential vmPFC activation
versus controls (Holt et al, 2009, 2012). Schizophrenic
patients also showed less activation in hippocampus,
thalamus, and posterior cingulate gyrus during acquisition,
but it is unclear whether these differences are indicative of a
fear learning deficit or differences in fear reactivity that are
associated with schizophrenia symptomatology. Other stu-
dies in animal models and human patients suggest that
hippocampal deficits play a major role in schizophrenia
pathophysiology (Harrison, 2004). These changes in hippo-
campal functions can clearly affect contextual processing and
fear-associated learning downstream. Impaired extinction
recall has also been reported recently in a single study of
patients with obsessive–compulsive disorder (OCD) (Milad
et al, 2013). Patients with OCD showed reduced vmPFC
activation during recall, but they also exhibited reduced
activation in caudate and hippocampus during fear
conditioning. However, symptom severity was positively
correlated with vmPFC response, and inversely correlated
with dACC response. These results are opposite of observa-
tions in PTSD, and the experimenters speculate that these
findings may be indicative of a coping mechanism that
severe OCD patients are using to avoid aversive stimuli.
Further studies are needed to ascertain the significance of
these differences in regional activations.
Fear learning has also been studied in attention deficit

hyperactivity disorder (ADHD). No difference in response
was exhibited in an uninstructed fear learning paradigm, but
ADHD patients showed lower SCR and lower dACC
activation in response to the CS+ (Maier et al, 2014). In
addition, ADHD patients showed higher amygdala activation
to the CS− versus controls. These differences could indicate
reduced attention to aversive stimuli that healthy subjects
find more salient, making the response to CS+ and CS−
more similar. Finally, recent work has investigated changes
in fear conditioning and extinction in irritable bowel
syndrome (IBS), a gastrointestinal disorder with psycholo-
gical factors. Greater activation of prefrontal cortex and
amygdala in response to the CS+ (Icenhour et al, 2015) was
reported in IBS, as well as differential hippocampal

activation during reinstatement. These differences may be
indicative of the increased salience of specific aversive cues to
IBS patients, as this study used rectal distension as the US.
Using visceral pain as the US in subjects who typically have
increased gastrointestinal discomfort should enhance the
response in the fear learning neurocircuitry, but may not
signify an actual change in fear learning. As only a single
neuroimaging study of fear learning in patients with each of
these disorders (OCD, ADHD, and IBS) has been reported,
further research is needed to replicate these results.

NEUROBIOLOGICAL FACTORS AND
INDIVIDUAL DIFFERENCES IN
FEAR-ASSOCIATED LEARNING

The studies described above have examined the contribution
of various brain regions and networks to different phases of
fear-associated learning in both healthy controls and patients
with psychiatric disorders. However, it is also clear from
animal studies, work in other emotional tasks, and the
neuropathology seen in psychiatric patients that substantial
individual differences are present in fear-associated learning.
One of the potential contributors to these differences is the
individual level of various hormones and neurotransmitters
that have an important role in regulating fear-associated
learning. Although the formation and consolidation of fear
and extinction traces are believed to involve cellular and
system plasticity, ie, synaptic reorganization, the relevant
hormonal and neurotransmitter level can have a critical role
in expression or modulation of this synaptic plasticity. In this
context, key molecules involved in the stress response and its
regulation have been studied extensively. For example, one
study focused on NR3C1 and CRHR1 genotypes containing
greater numbers of minor alleles that have been previously
associated with hypersensitivity to glucocorticoids, decreased
cortisol levels, and increased PTSD symptomology
(Bachmann et al, 2005; Hauer et al, 2011). Researchers
found that these genotypes controlling expression of the
glucocorticoid and corticotropin-releasing hormone recep-
tors, respectively, were associated with greater activation in
amygdala during conditioning, reduced activation in pre-
frontal cortex during extinction, and changes in coupling
between the two regions (Ridder et al, 2012). Thus, increased
sensitivity to glucocorticoids may lead to impairments in fear
learning and extinction that manifest in psychiatric
disorders.
Cortisol and other LHPA hormones appear to modulate

fear learning, but their effect (at least in some regions) may
vary based upon gender and differences in levels of sex
hormones. Numerous studies suggest that there might be an
interaction between stress and sex hormones in fear-
associated learning, with hydrocortisone administration
enhancing fear acquisition in women and inhibiting fear
acquisition in men (Merz et al, 2010; Tabbert et al, 2010). In
men, cortisol has been shown to reduce CS+/CS− differ-
entiation in hippocampus, thalamus, and insula but appears
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to enhance this differentiation in women (Tabbert et al,
2010). A similar pattern was observed when stress was
induced by the Trier Social Stress Test. Across gender, stress
enhanced CS+/CS− differentiation in the hippocampus and
inhibited activation in the medial frontal cortex (Merz et al,
2013). However, stress reduced CS+/CS− differentiation in
the amygdala and nucleus accumbens in men but enhanced
differentiation in women taking oral contraceptives (low
estrogen and progesterone levels) (Merz et al, 2013). In men,
hydrocortisone administered 45 min before fear extinction
also led to greater SCR and diminished differential CS+/CS−
activation in amygdala, MFC, and nucleus accumbens (Merz
et al, 2014), suggesting that cortisol might impair both
extinction and conditioning, specifically in men.
Several experiments have examined the direct effects of

gender and/or sex hormones on fear learning and extinction.
One neuroimaging study of fear learning in women found
that women with high levels of estrogen showed greater
activation of vmPFC during fear extinction than women with
low levels of estrogen, as well as greater activation of vmPFC
and amygdala during extinction recall (Zeidan et al, 2011).
These results are in concert with rodent studies (Chang et al,
2009; Zeidan, et al, 2011) demonstrating that high levels of
estrogen enhance extinction learning and retention. Simi-
larly, human studies have associated low levels of estradiol in
women with impaired fear inhibition (Glover et al, 2013) and
impaired extinction learning (Glover et al, 2012; Milad et al,
2010; Wegerer et al, 2014). However, neuroimaging studies
of the differences between genders have not yielded
consistent results. One study reported similar SCR responses
in men and women during fear acquisition but greater BOLD
response in right amygdala, rACC, and dACC in women
(Lebron-Milad et al, 2012). During extinction recall, on the
other hand, men showed greater differential activation in
bilateral rACC as compared with women (Lebron-Milad
et al, 2012). This complexity is further highlighted by
findings from a different study that showed that women with
low estrogen and progesterone levels have shown greater
CS+/CS− differentiation during fear extinction in amygdala,
ACC, vmPFC, and thalamus, compared with both women
with high estrogen and progesterone levels, and as compared
with men (Merz et al, 2012). The emerging picture is thus
quite complex, with gender differences that cannot simply be
understood in terms of circulating levels of gonadal steroids.
The preponderance of animal and human findings suggest
that, in females, higher levels of estrogen enhance extinction
learning and retention and affect activation in brain regions
commonly involved in fear-associated learning. Nonetheless,
further research is required to address gender differences and
the various effects of sex hormones.
Among the neurotransmitter systems, variability in the

serotoninergic system has most often been reported to affect
fear-associated learning. The short allele 5-HTTLPR
(a serotonin transporter) genotype has been associated with
greater response to CS+ during fear conditioning in
amygdala, insula, thalamus, and occipital cortex (Klucken
et al, 2013), and subjects with the short allele 5-HTTLPR

genotype and history of stressful life events have shown
greater reactivity in insula in response to CS+ during fear
conditioning (Hermann et al, 2012; Klucken et al, 2013).
5-HTTLPR polymorphisms have also been shown to affect
connections between amygdala and the perigenual ACC
(Pezawas et al, 2005). Concerns have been raised, however,
about the reproducibility of genetic association studies
(Munafò et al, 2009), and thus further research is necessary
to confirm the results from these experiments. However,
in support of serotonin’s role in fear learning, serotonin-
depleted subjects have shown lower activation in amygdala
and OFC in response to CS+ during fear acquisition
(Hindi Attar et al, 2012). Together, these reports raise the
possibility that serotoninergic transmission might play an
important role in fear learning, such that lower serotonin
response impairs activation in critical emotional learning
regions, particularly the insula and amygdala.
Limited data have also implicated genetic variability in

dopaminergic, glutamatergic, and BDNF systems in fear-
associated learning. Subjects with a variant of an NMDA
receptor gene (GRIN2A) have shown lower amygdala
response during fear learning (Cacciaglia et al, 2013).
In a different study, subjects with the 9R allele of DAT1, a
dopamine transporter gene predominantly expressed in the
striatum, had significantly higher extinction rates, as
well as stronger activation following prediction errors in
the ventral striatum (Raczka et al, 2011). The Val66Met
single-nucleotide polymorphism (SNP) of the brain-derived
neurotrophin (BDNF) gene has been associated with
impaired fear extinction in mice and humans (Soliman
et al, 2010), but neuroimaging studies of Val66Met carriers
only found activation changes in amygdala and ACC during
fear acquisition (Lonsdorf et al, 2014). No changes were seen
in fear extinction. These studies have not been replicated,
and (as stated earlier) results from genetic association
experiments are often variable. However, these limited
findings do suggest that, like serotonin, individual differ-
ences in NMDA and BDNF may affect fear learning
processes in regions like the amygdala. Differences in the
dopaminergic system, on the other hand, may affect fear
learning by altering associated processes in striatum that
assess the probability of aversive outcomes, in concert with
the role of dopamine transmission in risk and reward
assessment.
More recently, evidence of the role of cannabinoids in the

modulation of fear-associated learning has been accumulat-
ing, particularly with respect to fear extinction. Genetically,
variants in the human FAAH gene (that controls expression
of an endocannabinoid-degrading enzyme) have been
associated with habituation to threat in the human amygdala
(Gunduz-Cinar et al, 2013), and participants who received
synthetic tetrahydrocannibinol (THC) showed greater
vmPFC and hippocampal activation during extinction recall
(Rabinak et al, 2014). In addition, synthetic THC adminis-
tration has since been associated with enhanced basolateral
and superficial amygdala connectivity to rostral ACC and
mPFC (Gorka et al, 2015). These results, observed in a
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number of laboratories, suggest that cannabinoids might
serve as interesting modulators of fear learning and
extinction, as well as potential therapeutic agents for some
disorders involving the same processes.
Studies of individual differences in patients with psychia-

tric disorders have the potential to elucidate how hormones
and neurotransmitter systems contribute to emotional
learning deficits. Currently, only a handful of neuroimaging
studies have investigated genotype associations with
differences in the fear learning neurocircuitry in patient
populations. Studies in PD/A patients, for example, reported
that inhibitory ACC–amygdala coupling during fear con-
ditioning was seen specifically in CBT responders with the
5-HTTPLR L/L genotype (Lueken et al, 2015). In contrast, a
serotonin receptor 1A gene (HTR1A) ‘risk’ genotype was
associated with reduced effects of CBT on differential
activation in ACC and insula during conditioning (Straube
et al, 2014b). These reports support the idea that individual
variance in serotonin signaling modulates fear learning, but
more work is needed to elucidate the relationship between
serotonin receptor genotypes and psychiatric symptomology.
In the same vein, the effects of gender/sex hormones on fear
extinction was examined in patients with PTSD, and
increased fear-potentiated startle was linked to low estrogen
levels (Glover et al, 2012). Thus, future research combining
neuroimaging, fear learning tasks, and measures of indivi-
dual differences in hormone levels in patient populations
may be useful in uncovering the complex mechanisms
responsible for emotional learning deficits in psychiatric
disorders.

SUMMARY AND FUTURE RESEARCH
DIRECTIONS

Functional neuroimaging studies of fear-associated learning
have been very useful in delineating the neural circuits
involved in human emotional learning by: (1) confirming the
roles of key brain regions identified by prior animal studies
in the support of fear and safety learning in humans;
(2) further extending our understanding of the neural
circuitry involved in explicit emotional learning in humans
by delineating the unique role of brain regions involved in
processes like anticipation, working memory, probability
assessment, and prediction error; and (3) starting to identify
the key biological systems (genes, neurotransmitters, and
hormones) that modulate emotional learning and contribute
to individual differences in conditioning, extinction, and
extinction retention. Beyond confirming the key roles of
ACC, amygdala, insula, hippocampus, and vmPFC in fear
conditioning, extinction, and extinction retention, these
studies highlight the contributions of regions like the
striatum and dlPFC to specific aspects of cognitive proces-
sing of explicit fear-associated learning like interoceptive
awareness, probability assessment, working memory, and
anticipation. Although only a handful of meta-analytic
studies involving fear-associated learning have been reported

so far in the literature, the convergence of evidence from
different studies provides initial support to the overall
picture outlined above. Furthermore, these findings under-
score the complexity involved in the emotional learning
process in humans and the need to carefully consider future
experimental design to allow valid interpretations. As explicit
cognitive processing during emotional learning is ubiquitous
in humans, we believe that this contribution might be
particularly important to the understanding of human
emotional learning and human psychopathology. This is
especially true considering the (at times) liberal application
of insights gained from rodent studies. Moreover, studies of
individual differences have also demonstrated that levels of
specific neurotransmitters, as well as stress and sex
hormones, modulate regional brain activation during fear
learning and extinction, both adding levels of complexity and
providing a potential link to the abnormalities in fear-
associated learning that might be present in various
psychiatric conditions. These initial findings are new,
exciting, and carry great promise, as they might help in
integrating genetic, molecular, cellular, and brain circuitry
information in understanding emotional learning, as well as
understanding the mechanisms underlying many psychiatric
disorders that involve abnormalities in related systems and
functions.
Human fear-associated learning studies have also started

delineating disorder-specific abnormalities in the brain
circuitry of PTSD, GAD, specific phobia, and schizophrenia
patients. The majority of published work has naturally
involved disorders of fear and anxiety, as abnormal fear-
associated learning had been postulated to contribute to their
pathophysiology. Interestingly, the converging findings in
PTSD patients suggest the presence of abnormalities in brain
regions that modulate extinction retention and renewal,
potentially implicating altered contextual processing and the
hippocampal-prefrontal circuit. Clearly, additional research
is needed to replicate existing findings and to extend these
findings to additional patient populations. Furthermore,
experiments using fear-associated learning tasks also offer a
potentially useful model to examine the effect of therapeutic
interventions. For example, one recent study of cognitive
reappraisal showed that this strategy seems to reduce fear
acquisition and enhance fear extinction, based on psycho-
physiological and regional activation changes in structures
like the ACC, insula, hippocampus, and vmPFC (Hermann
et al, 2014). This type of work, as well as studies described
earlier that have examined changes in fear learning following
CBT in various patient populations, suggest that
fear-associated learning might prove to be a useful and less
subjective tool to examine and compare therapeutic effects.
Similarly, investigating the effect of pharmacological
interventions like cannabinoids and antidepressants on
fear-associated learning may provide insight into how
modification of neurotransmitter systems involved in
emotional learning processes can be potentially harnessed
to achieve better therapeutic effects. Finally, the effect of
sleep on fear learning and extinction is another exciting and
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relatively novel area of research that is currently gaining
momentum. One recent study, for example, reported an
association between vmPFC activity during conditioning and
REM sleep the following night, as well as an association
between hippocampal activity during conditioning and stage
2 and stage 4 sleep (Spoormaker et al, 2014). Sleep before fear
extinction has been shown to enhance extinction learning in
spider phobics (Pace-Schott et al, 2012) and healthy controls,
with accompanying changes in hippocampal and amygdalar
activation (Hauner et al, 2013). These types of results,
together with a growing understanding of sleep physiology
and its underlying cellular and molecular processes, might
offer an opportunity to understand the key role that sleep
plays in healthy and abnormal emotional learning. These
studies are particularly relevant given the prevalence of sleep
disturbances in psychiatric disorders. Future studies exam-
ining sleep architecture, as well as other phases of
fear-associated learning (in both healthy subjects and patient
populations), should provide valuable insight into these
relationships.
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