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The ADAMTS proteinases are a group of multidomain and secreted metalloproteinases containing the thrombospondin motifs.
ADAMTS-7 is a member of ADAMTS family and plays a crucial role in the pathogenesis of arthritis. Overexpression of ADAMTS-
7 gene promotes the breakdown of cartilage oligomeric matrix protein (COMP) matrix and accelerates the progression of both
surgically induced osteoarthritis and collagen-induced arthritis. Moreover, ADAMTS-7 and tumor necrosis factor-a (TNF-or) form
a positive feedback loop in osteoarthritis. More significantly, granulin-epithelin precursor, a growth factor has important roles in
bone development and bone-associated diseases, disturbs the interaction between ADAMTS-7 and COMP, and prevents COMP
degradation. This review is based on our results and provides an overview of current knowledge of ADAMTS-7, including its
structure, function, gene regulation, and inflammatory diseases involvement.

1. An Introduction to ADAMTS
Family of Proteinases

The family of ADAMTS (a disintegrin and metalloproteinase
with thrombospondin-like motifs) proteinases consists of
19 secreted, multidomain proteolytic enzymes and plays a
crucial role in several pathophysiological processes includ-
ing extracellular matrix (ECM) assembly and degradation,
hemostasis, organogenesis, angiogenesis, genetic diseases,
cancer, and arthritis [1]. The ADAMTS gene was first cloned
as inflammation-associated gene in mice containing the TSP
type I motif [2]. In general, the structure of ADAMTS pro-
teins comprises a prodomain, a metalloproteinase domain,
a disintegrin-like and spacer domain, and thrombospondin
(TS) repeats [3]. The human ADAMTS proteins can be
divided into four subgroups according to the sequence align-
ments and functional difference [4]. The first subgroup
contains ADAMTS-1, -4, -5, -8, -9, -15, and -20 and degrades
aggrecan. ADAMTS-2, -3, and -14 consist of the second sub-
group and degrade peptides of procollagen [5-8]. ADAMTS-
13 alone represents the third subgroup and is essential for
von Willebrand factor cleavage (VWF) [9]. ADAMTS-7 and
-12 that specifically associate with and degrade cartilage

oligomeric matrix protein (COMP) belong to the fourth
subgroup [10-13]. The detailed biological characteristics of
ADAMTS proteins are summarized in Table 1.

2. ADAMTS-7

2.1. Structure. As shown in Figure 1, ADAMTS-7 is a prote-
olytic member of the ADAMTS family comprising a signal
peptide, a prodomain, a metalloproteinase domain, a disinte-
grin-like domain, and several thrombospondin type I
repeats (TSP1), interspaced by spacer domains [14, 15]. The
prodomain is generally considered to be essential for main-
taining enzyme latency. Cleavage of the ADAMTS propeptide
by convertases (furin or furin-like enzymes) is typically
required for enzyme activity. For example, furin is the main
convertase required for the maturation of ADAMTS-7
as compared with PACE4, PC6B, and PC7 convertases
[13]. A metalloproteinase catalytic domain has a high de-
gree sequence similarity of reprolysin-type zinc-binding
motif, HEXXHXXG/N/SXXHD, and a methionine residue-
containing Met-turn which plays an important role in the
structure of the active site [16]. a2-Macroglobulin (a2M)
associates with ADAMTS-7 and is a novel substrate of
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FIGURE 1: Domain structure and organization of ADAMTS-7.
TaBLE I: Biological characteristics of ADAMTS family members.
Gene Prote'o}ytic Expr essipn in Substrates Role References
activity human tissues
Liver, endotheliocyte, Agerecan Cancer, atherosclerosis, fibrosis,
ADAMTS-1 + skeletal muscle, and Vgegrsican ’ antiangiogenesis, [81-89]
ovary ovarian function, and stress
Connective tissue Ehlers-Danlos syndrome,
ADAMTS-2 + ’ Procollagen mesothelioma, and [90-93]
placenta
placenta development
ADAMTS-3 + Skin, lung, and brain Procollagen Dermatosparaxis, Qsteoartbrltls, [7, 94, 95]
and lymphangiogenesis
Heart, lung, skeletal . . .
ADAMTS-4 N muscle, liver, and Aggrecan, (;OMP, Glioma, atherosc.lerosw, arthritis, (63, 96-99]
. and brevican and tendinopathy
kidney
ADAMTS-5 + Macrophage, bladder, Aggrecan, brevican Arthritis, cancer [96, 100, 101]
oesophagus, and heart
ADAMTS-6 Tissue repair [102]
ADAMTS-7 N Heart, liver, kidney, COMP, a2M Arthritis., atherosclerosis, and (14, 42, 70, 103]
and skeletal muscle kidney damage
ADAMTS-8 . Heart,. lung, and Aggrecan Cancer, athergscl(?rosis, aFthritiS, 63, 104-106]
kidney and antiangiogenesis
Heart, lung, and . Cancer, atherosclerosis, arthritis
ADAMTS-9 > > > ’ > 107-109
* skeletal muscle Aggrecan, versican and tissue syndactyly [ ]
ADAMTS-10 Lens, casligilage, and Weill-Marchesani syndrome (110]
ADAMTS-12 N Chpndrocyte, .lung, COMP, a2M, and Art.hritis, cancer, and normal (14, 54, 111-113]
kidney, and liver aggrecan inflammatory response
ADAMTS-I3 N Liver, placenta, heart, ~ von Willebrand factor Thrombotic thrombocytopenic (9]
and skeletal muscle (VW) purpura
ADAMTS-14 . Collagen-rich tissue, Procollagen Fibrosis, osteoarthritis, [114-118]
lung, and kidney 8 tendon disorders, and sclerosis
ADAMTS-15 N Kidney, lung, heart, Aggrecan Cancer? follicle rupture, (1, 119-122]
ovary, and stem cells myogenesis, and spinal injury
ADAMTS-16 N Lung, kidney, ovary, oM Cancer, cryptorcl}idisrr}, and (22, 123-125]
cartilage, and brain premature ovarian failure
Epidermis, brain, . .
ADAMTS-17 heart, liver, lung, and Weill-Marchesani syndrome, [126-128]
short stature, and pediatric stroke
prostate
Lung, kidney, liver, .
ADAMTS-18 brain, and prostate Ocular disease, c.ancer, stroke, [129-133]
and bone disorders
chondrocyte
ADAMTS-19 Lung, endothelium, Aggrecan Premature ovarian failure, [134-137]
ovary osteosarcomas
ADAMTS-20 Ovary, heart, lung, Aggrecan Melanocyte differentiation, 19, 138]

placenta, and testis

pigmentation, and apoptosis
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ADAMTS-7 [10], and the metalloproteinase domain of AD-
AMTS-7 alone is essential for cleavage of a2M [15]. The
catalytic domain is also responsible for digestion of COMP
at more than one site [14]. The disintegrin-like domain has a
sequence similarity to the soluble snake venom disintegrins
and may serve a function in regulating activity through
providing an essential binding surface for substrates [17]. The
C-terminal TS repeats between the disintegrin-like domain
and cysteine-rich domain (CRD) of ADAMTS proteins are
variable and interspaced by spacer domains; for instance,
ADAMTS-4 lacks TS repeats [18], whereas ADAMTS-7 and
ADAMTS-20 have four and fourteen TS repeats, respectively
[14, 19]. The four C-terminal TS repeats of ADAMTS-7 are
required and sufficient for interaction with EGF domains
of COMP substrate and each granulin (GRN) unit of pro-
granulin (PGRN) [10, 12, 20]. The spacer domain is the
least homologous domain and in combination with a mucin
domain between the third and fourth C-terminal TS repeats
[13]. Unlike other ADAMTS proteins, the function of spacer
domain appears not to be essential for interaction with
ADAMTS-7 substrates, but for involvement in location of the
enzyme [15].

2.2. Regulation of ADAMTS-7. ADAMTS-7 was expressed in
bone, cartilage, synovium, tendon, and ligament, all of which
contain COMP [12, 14]. ADAMTS-7 was also detectable in
meniscus, skeletal muscle, and fat tissue [12, 14]. ADAMTS-
7 mRNA transcripts of 8.0kb and 4.5kb were detected in
skeletal muscle [15]. The identification of splice variants of
ADAMTS-7 suggested that a potential posttranscriptional
regulation might be a mechanism for gene regulation of
ADAMTS-7. For example, miR-29a/b served a function in
ADAMTS-7 mediated COMP degradation and subsequent
vascular smooth muscle cells (VSMCs) calcification through
directly targeting the 3’ untranslated region of ADAMTS-7
and markedly inhibited high-phosphate-induced ADAMTS-
7 expression [21]. Furthermore, the ADAMTS-7 protein was
also regulated at posttranslational levels since the recom-
binant protein from HEK293 stable lines showed a larger
molecular weight [15]. Anyway, the physiological functions
of ADAMTS-7 gene, which is expressed in many tissues at a
basal level, need to be further elucidated.

TNF-« and interleukin- (IL-) 1f strongly upregulated
the mRNA expression of ADAMTS-7 in human cartilage
explants cultures [10]. Furthermore, the upregulation of
ADAMTS-7 was also associated with the increased level
of TNF-a in rheumatoid arthritis (RA) patients [12] and
patients with femoral neck fracture (FNF) and osteonecrosis
of femoral head (ONFH) at different stages [22]. Interestingly,
TNF-« also induced the expression of ADAMTS-7, and the
binding sites of inflammatory transcription factors NF-xB
and AP-1were identified in the promoter of ADAMTS-7 gene
by chromatin immunoprecipitation (ChIP) [23]. Our in vivo
results also supported the relationship of ADAMTS-7 and
TNF-a. Briefly, the surgically induced osteoarthritis (OA)
model was established using ADAMTS-7 transgenic mice
and ADAMTS-7 small interfering (si)RNA knockdown mice;
the results demonstrated that TNF-« activates the expression
of ADAMTS-7 through NF-«B mediator and ADAMTS-7

upregulates TNF-a and forms a positive loop between
ADAMTS-7 and TNF-« in the pathogenesis of OA [24, 25].

2.3. The Role of ADAMTS-7 in Inflammatory Diseases

2.3.1 Arthritis. Cellsin all tissues are surrounded by extracel-
lular matrix (ECM). ECM has an important role in providing
structural support as a scaffold and regulating the cell activity
and behavior, including cell shape, survival, differentia-
tion, proliferation, and cell death [17]. The progression of
arthritic diseases is characterized by the breakdown the ECM
components and subsequent loss of articular cartilage and
bone. COMP is a 524 kDa disulfide-bonded, multidomain
glycoprotein composed of five 110kDa subunits. COMP
constitutes approximately 1% of the wet weight of the cartilage
tissue and is a prominent noncollagenous component of
cartilage ECM [26]. Mutations in the human COMP gene in
a region that encoding the calmodulin-like repeat elements
had been linked to the development of pseudoachondroplasia
(PSACH) and multiple epiphyseal dysplasia (MED), which
were dominantly inherited chondrodysplasias characterized
by short stature and early-onset osteoarthrosis [27-30]. The
pathophysiological function of COMP may be related to
stabilizing the ECM of articular cartilage through interaction
with matrix components such as collagen types II and IX,
aggrecan, and fibronectin [31-34]. Degradative fragments of
COMP had been observed in diseased cartilage, synovial
fluid, and serum of patients with posttraumatic knee injuries,
primary osteoarthritis (OA), and rheumatoid arthritis (RA)
[35, 36]. Thus, the isolation of COMP-degradative enzymes is
of great significance from both a pathophysiological mecha-
nism and a therapeutic standpoint [14].

Several matrix metalloproteinases (MMP) can digest
purified COMP in vitro, including MMP-1, MMP-3, MMP-
9, MMP-13, MMP-19, and MMP-20 [37, 38]. In addition,
ADAMTS-4 proteinase also can cleave COMP protein in
vitro [39]. In these assays, the concentration of degradative
enzymes and substrates is higher than physiological and path-
ological conditions. Furthermore, the exact role of ADAMTS
proteinases in COMP degradation still needs to be fur-
ther elucidated by in vivo animal studies. ADAMTS-7 and
ADAMTS-12 were identified as the physiological enzymes
responsible for COMP degradation by a functional genomic
study [11, 12]. The interaction between ADAMTS-7 and
COMP in vitro was verified using a glutathione S-transferase
(GST) pulldown assay, and the specifically binding between
ADAMTS-7 and COMP in vivo was further confirmed by
coimmunoprecipitation assay. ADAMTS-7 colocalized with
COMP both in the cytoplasm and on the surface of human
chondrocytes and selectively interacted with the EGF repeat
domain of COMP, whereas the four C-terminal TSP motifs of
ADAMTS-7 were essential for association with COMP [12],
supporting the notion that C-terminal domain of metallopro-
teinases are important for determining substrate specificity
[40].

The recombinant enzyme of ADAMTS-7 purified from
condition medium is able to digest COMP in vitro. The cat-
alytic domain of ADAMTS-7 produced in transgenic bacteria



as a GST fusion protein also can digest COMP in a time-
dependent manner [12]. Intriguingly, the catalytic domain
alone can degrade COMP and produce three fragments, sug-
gesting that ADAMTS-7 might digest COMP at more than
one site [12]. Furthermore, ADAMTS-7 was also involved in
inflammatory cytokines TNF-«- and IL-1f-mediated diges-
tion of COMP protein, whereas anti-ADAMTS-7 antibody
efficiently blocked the production of 110 kDa COMP frag-
ments [10]. These findings had been further verified using
small interfering RNA silencing of ADAMTS-7 in human
chondrocytes. Animal results from surgically induced OA
and collagen-induced arthritis models using ADAMTS-7
transgenic mice also supported the digestion of COMP by
ADAMTS-7 in vivo. Overexpression of ADAMTS-7 in chon-
drocytes led to increasing COMP degradation in cartilage
tissues using immunohistochemistry and significantly elevat-
ing serum levels of COMP proteolytic fragments by a novel
sandwich enzyme linked immunosorbent assay (ELISA) [25]
which is able to recognize epitopes of the COMP protein
prone to degradation during the cartilage destruction [41].
The COMP fragments in joint sections and serum were
significantly higher in collagen-induced arthritic ADAMTS-
7 transgenic mice than that of the arthritic wild type controls
[42].

No evident differences in ADAMTS-7 gene expression
was observed between normal and OA patients’ tissues [14].
However, ADAMTS-7 mRNA was found to be significantly
increased in cartilage and synovium tissues from RA patients.
The increasing COMP fragments were observed in cartilage,
synovial fluid, and serum of OA and RA patients. And
the COMP fragments degraded by recombinant ADAMTS-
7 enzyme have a similar size to those seen in OA patients
[10]. These findings suggested that the COMP degradation
observed in OA and RA patients might associate with upreg-
ulation of ADAMTS-7.

Real-time PCR results of micromass cultures of a
mouse embryonic mesenchymal stem cell line suggested that
ADAMTS-7 was strongly induced during the terminal differ-
entiation of chondrogenesis [43]. ADAMTS-7 was also highly
expressed in both the early and later stages of cartilage devel-
opment, as well as in chondrocytes throughout the mature
growth plate [43]. These findings suggested that ADAMTS-7
may play a crucial role in chondrogenesis and may regulate
various stages of cartilage development. Overexpression of
ADAMTS-7 in murine mesenchymal stem cells resulted in
efficient inhibition of chondrocyte differentiation, specifically
during the stage of chondrocyte hypertrophy [43]. And
the inhibitory effect of ADAMTS-7 on chondrocyte dif-
ferentiation and endochondral bone growth was associated
with inactivating granulin-epithelin precursor (GEP) and
regulated by parathyroid hormone-related peptide (PTHrP)
signaling [43]. Granulin epithelin precursor (GEP), also
known as progranulin (PGRN), PC-cell-derived growth fac-
tor (PCDGF), proepithelin, and acrogranin, is a 593-amino-
acid secreted growth factor [44, 45]. GEP contains seven-
and-a-half repeats of a cysteine-rich motif in the order P-
G-F-B-A-C-D-E [46]. GEP was highly expressed in chon-
drocytes of the musculoskeletal system [47] and played a
key role in musculoskeletal development and diseases [48].
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Recent reports suggested that GEP played a protective role
in surgically induced OA [49, 50] and inflammatory arthritis
[46]. Recombinant GEP decreased destruction of cartilage
matrix and protected against OA progression in surgically
induced OA models [49]. Moreover, PGRN was also involved
in BMP-2 induction of osteoblastogenesis and ectopic bone
formation [50]. PGRN-deficient mice were more susceptible
to collagen-induced arthritis, and administration of PGRN
reversed inflammatory arthritis through the inhibition of
TNF-« signaling [46]. Data from yeast-2-hybrid and coim-
munoprecipitation assays demonstrated that ADAMTS-7
binds to GEP [43]. GEP colocalized with ADAMTS-7 on the
surface of chondrocytes and inhibited COMP degradation by
ADAMTS-7 in a dose-dependent manner [20]. Intact GEP
had anti-inflammatory effect through the inhibition of some
of the actions of tumor necrosis factor, while the proteolytic
peptides of GEP exerted proinflammatory effect through
stimulating the production of proinflammatory cytokines
such as interleukin-8 [51]. However, ADAMTS-7 also exerted
its function as a GEP convertase and was involved in the pro-
teolytic processing of GEP with the production of small frag-
ments [43]. Overall, ADAMTS-7 metalloproteinases, COMP
matrix protein, GEP growth factor, and TNF-« inflammatory
cytokine all act in concert to form a key interaction and
interplay networks in the pathogenesis of arthritis.

In order to further elucidate the role of ADAMTS-7 in
cartilage development and endochondral bone growth in
vivo, the transgenic mice were generated through targeting
overexpression of ADAMTS-7 in chondrocytes regulated by
Col IT promoter, and knockdown mice were generated using
Cre/loxp system [25]. Targeted overexpression of ADAMTS-
7 in chondrocytes resulted in chondrodysplasia characterized
by short-limbed dwarfism and a delay in endochondral
ossification in “young mice” and a spontaneous OA-like phe-
notype in “aged” mice [25]. In surgically induced OA model,
evident cartilage loss was found in transgenic mice at 4
weeks after surgery, whereas moderate cartilage loss was
observed in wild type mice at 8 weeks after surgery. However,
no evident cartilage loss occurred in ADAMTS-7 small
interfering (si)RNA knockdown mice even at 12 weeks after
surgery [25]. Anyway, these findings suggested that overex-
pression of ADAMTS-7 exaggerated destruction of cartilage
and accelerated development of OA, while knockdown of
ADAMTS-7 attenuated breakdown of cartilage matrix and
protects against OA progression. The potential mechanism
of ADAMTS-7 in the regulation of OA progression is sum-
marized in Figure 2. In collagen-induced arthritis (CIA)
mode, ADAMTS-7 transgenic mice were more susceptible
to induction of CIA, and arthritic transgenic mice displayed
significantly higher clinical and histological arthritis scores as
compared with wild type mice [42]. The role of ADAMTS-
7 in the pathogenesis of collagen-induced inflammatory
arthritis was also summarized in Figure 3. Thus, ADAMTS-7
expression was elevated during disease progression in surgi-
cally induced OA and collagen-induced arthritis model, and
the increasing ADAMTS-7 upregulated the level of inflam-
matory cytokines including TNF-« [24, 25]. The elevated
expression of ADAMTS-7 led to accelerated degradation
of COMP. In addition, the upregulation of inflammatory



Mediators of Inflammation

OA

Aggrecan development

Collagen

FIGURE 2: A proposed model for the potential role and mechanism of ADAMTS-7 in the regulation of OA development (edited according to

(25]).
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FIGURE 3: A proposed model for the potential role and regulation of ADAMTS-7 in the pathogenesis of inflammatory arthritis (edited

according to [42]).

cytokine TNF-« induced the expression of MMP and other
ADAMTS members. Eventually, these factors resulted in
accelerated progression of arthritis [24, 25]. Collectively,
the role of ADAMTS-7 in the pathogenesis of arthritis is
associated with degradation of COMP and upregulation of
inflammatory cytokines and other metalloproteinases.

In addition, ADAMTS-12 also played a critical role in the
pathogenesis of arthritis since ADAMTS-7 and ADAMTS-
12 share the common substrate (COMP) [11]. The expression
of ADAMTS-12 was significantly increased in the cartilage
and synovium of OA or RA patients [52, 53]. ADAMTS-
12 expression is required for normal cartilage development
and its dysregulation results in defects in the musculoskeletal
system including brachydactyly type E (BDE) [54]. The
potential role of ADAMTS-7 in OA is related to association
and degradation of COMP matrix [14, 54]. ADAMTS-12 as
an inflammatory protein and also played a role in RA [55].
The genotyping results of three single nucleotide polymor-
phisms (SNPs) of ADAMTS-12 in 303 RA patients and 495
control subjects suggested that the genotype frequency of
rs10461703 was associated with the RA development [55].
Overall, ADAMTS-12 has an essential role in the progression
of arthritis and may serve as a therapeutic target for arthritis
treatments. And results from ADAMTS-12 mice are helpful
for investigating its exact role in arthritic conditions.

2.3.2. Atherosclerosis. Atherosclerosis is a progressive inflam-
matory disease triggered by damage to the vascular endothe-
lium by many risk factors such as genetic predisposition,
hypertension, and type 2 diabetes mellitus [56]. The inflam-
matory process ultimately leads to the development of
complex plaques composed of cholesterol, lipids, inflam-
matory cells, and debris resulting from cell apoptosis [56,
57]. ADAMTS proteinases and their ability to interaction
with ECM have been implicated in the pathogenesis of
vascular disease processes including atherosclerosis. These
disease processes characterize by media-to-intima migra-
tion of vascular smooth muscle cells (VSMCs), resulting
in thickening of the intimal layer of vessel [58-60]. The
matrix metalloproteinase-mediated degradation and remod-
eling of ECM plays an essential role in these disease pro-
cesses and form a barrier to VSMC migration [61]. In
atherosclerosis progression, macrophages and monocytes
secrete the ADAMTS proteinases to influence the stability of
the complex plaque [62]. Several ADAMTS members were
highly expressed in human carotid lesions and advanced
coronary atherosclerotic plaques, including ADAMTS-1, -4,
-5, and -8 [63]. In the mouse carotid artery flow cessation
model, ADAMTS-1 transgenic/apoE-deficient mice show a
significant increase in intimal hyperplasia as compared with
apoE-deficient mice [64]. These findings suggested that the



potential role of ADAMTS proteinases in atherosclerosis
might associate with accelerated degradation of ECM of
vessel.

Results from genome-wide association studies (GWAS)
demonstrated that ADAMTS-7 was tightly associated with
the development of coronary atherosclerosis in existing coro-
nary atherosclerosis [65-68]. A common SNP near AD-
AMTS-7 was a common genetic risk factor for coronary
atherosclerosis, with a 19% increased risk for carriers [69].
The casual link between ADAMTS-7 and atherosclerosis
progression has yet to be established. Neointima formation
is considered as a response to vessel injury. The ADAMTS-
7 protein was expressed preferentially in neointima of the
carotid artery wall in response to balloon injury and colo-
calized with VSMCs in the newly formed neointima [70-
72]. The augmented expression of ADAMTS-7 increased the
proliferation and migration of VSMCs, while suppression of
ADAMTS-7 level using small interfering RNA (siRNA) had
the opposite effect in the rat model. The notion was supported
by the results from knockout mice mode which demonstrate
that ADAMTS-7 deficiency led to reduce neointima forma-
tion following carotid artery injury induced by ligation [73].
These findings suggested that ADAMTS-7 had a critical role
in intimal hyperplasia after vascular injury.

COMP, a component of vascular ECM which has been
observed in atherosclerotic lesions, is thought to be involved
in migration of VSMCs [74]. Overexpression of COMP
markedly inhibited VSMC dedifferentiation and the expres-
sion of phenotype-dependent markers [23], while knock-
down of ADAMTS-7 evidently attenuated COMP degra-
dation and retarded VSMCs calcification [21], suggesting
that the ADAMTS-7-mediated migration of VSMCs might
associate with degradation of COMP matrix. However,
ADAMTS-7 also can bind directly to thrombospondin-1
(TSP-1) and be involved in endothelium repair through
COMP-independent pathways since COMP deficiency did
not affect reendothelialization in injured arteries [75]. These
findings suggested that ADAMTS-7 is a potential therapeutic
target for atherosclerosis and vascular disorders [23, 66, 75,
76]. In conclusion, ADAMTS-7 is involved in the patho-
genesis of vascular disorders through degradation of COMP
matrix and TSP-1, accelerated migration and proliferation of
VSMCs, and regulation of inflammatory cytokines.

2.3.3. Other Pathological Conditions. ADAMTS-7 as a con-
nective tissue growth factor (CTGF) binding and processing
protein and has been reported to be an important regulator
in oval cell (OC) activation and biliary fibrosis, and its defi-
ciency decreased CTGF turnover ability and enhanced hep-
atic progenitor/oval cell (HPC/OC) activation and biliary
fibrosis during 3,5-diethoxycarbonyl-1,4-dihydrocollidine-
(DDC-) induced liver injury [77]. ADAMTS-7 expression
had been found in urine from patients with prostate, bladder,
and breast cancer, suggesting a diagnostic and prognostic
role of ADAMTS-7 in the detection and therapeutic value
in tumor growth, invasion, and metastasis [78]. In addition,
ADAMTS-7 was also found to be involved in host-pathogen
interaction [79, 80]. ADAMTS-7 played a critical role in
influenza virus replication and was involved in host cell
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pathways such as NF-«B activation, and its gene expression
resulted in reduced influenza virus replication through inhi-
bition of miR-106B [79]. ADAMTS-7 had been addressed to
be involved into V. splendidus challenged sea cucumber and
had significantly global proteome changes in expression at
all examined time points using isobaric tags for relative and
absolute quantification (iTRAQ) as compared with control
group [80].

3. Conclusion

ADAMTS-7 is a member of the ADAMTS family, which are
a group of secreted enzymes containing 19 members. The
ADAMTS proteinase members play a key role in a variety of
pathophysiological processes including development, human
genetic diseases, and chronic inflammatory conditions. In the
present review, we focused on the role of ADAMTS-7 in the
progression of inflammatory diseases including arthritis and
atherosclerosis. Overexpression of ADAMTS-7 accelerated
the degradation of COMP and the onset and progression of
arthritis through formation of a positive feedback loop with
TNF-a. ADAMTS-7 has potential to serve as a therapeutic
drug target in arthritis conditions. To do so, the precise
understanding of the exact role played by ADAMTS-7 and
its binding partners in inflammatory diseases appears to be
of particular importance.
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