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Abstract

In recent years, electronic health records (EHRs) have been widely adapted at many healthcare 

facilities in an attempt to improve the quality of patient care and increase the productivity and 

efficiency of healthcare delivery. These EHRs can accurately diagnose diseases if utilized 

appropriately. While the EHRs can potentially resolve many of the existing problems associated 

with disease diagnosis, one of the main obstacles in effectively using them is the patient privacy 

and sensitivity of the medical information available in the EHR. Due to these concerns, even if the 

EHRs are available for storage and retrieval purposes, sharing of the patient records between 

different healthcare facilities has become a major concern and has hampered some of the effective 

advantages of using EHRs. Due to this lack of data sharing, most of the facilities aim at building 

clinical decision support systems using limited amount of patient data from their own EHR 

systems to provide important diagnosis related decisions. It becomes quite infeasible for a newly 

established healthcare facility to build a robust decision making system due to the lack of 

sufficient patient records. However, to make effective decisions from clinical data, it is 

indispensable to have large amounts of data to train the decision models. In this regard, there are 

conflicting objectives of preserving patient privacy and having sufficient data for modeling and 

decision making. To handle such disparate goals, we develop two adaptive distributed privacy-

preserving algorithms based on a distributed ensemble strategy. The basic idea of our approach is 

to build an elegant model for each participating facility to accurately learn the data distribution, 

and then can transfer the useful healthcare knowledge acquired on their data from these 

participators in the form of their own decision models without revealing and sharing the patient-

level sensitive data, thus protecting patient privacy. We demonstrate that our approach can 

successfully build accurate and robust prediction models, under privacy constraints, using the 

healthcare data collected from different geographical locations. We demonstrate the performance 

of our method using the Type-2 diabetes EHRs accumulated from multiple sources from all fifty 

states in the U.S. Our method was evaluated on diagnosing diabetes in the presence of insufficient 

number of patient records from certain regions without revealing the actual patient data from other 

regions. Using the proposed approach, we also discovered the important biomarkers, both 

universal and region-specific, and validated the selected biomarkers using the biomedical 

literature.
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1. Introduction

In recent years, electronic health records (EHRs) have been widely adapted at many 

healthcare facilities in an attempt to improve the quality of patient care and increase the 

productivity and efficiency of healthcare delivery. Typically, EHRs are generated and 

maintained within a particular healthcare facility, such as a hospital, clinic or physician’s 

office. These EHRs can not only aid in various daily healthcare operations but can also help 

in accurately diagnosing diseases, if utilized appropriately [32].

While the EHRs can resolve many of the existing problems associated with disease 

diagnosis, one of the main obstacles in effectively using them is the patient privacy and 

sensitivity of the medical information available in the EHR. EHRs generally contain patient 

information about demographics, diagnostics, medications, living habits and other health-

related information. It is needless to say that most of these information is extremely sensitive 

[31]. EHR systems must abide the Health Insurance Portability and Accountability Act 

(HIPAA) [6] to preserve the privacy of patient information. Thus, the public EHR products 

must be certified by certain institutes such as Certification Commission for Healthcare 

Information Technology (CCHIT), and Office of the National Coordination for Health 

Information Technology (ONC) [38]. Due to these legal concerns and medical ethics [19, 4], 

physicians are always keen about maintaining the highest possible standards while 

protecting patient privacy [36].

Due to these concerns, even if the EHRs are available for storage and retrieval purposes, 

sharing of patient records between different healthcare facilities has become a major concern 

and has hampered some of the effective advantages of using EHRs. Due to this lack of data 

sharing, most of the facilities do not have any other option but to build their own clinical 

decision support systems with limited amount of patient data available in their own EHRs 

for important diagnosis related decisions. In addition, it becomes quite infeasible for a newly 

established healthcare facility, small hospital, or rural hospital to build a robust decision 

making system due to lack of sufficient patient records. However, to make effective 

decisions from clinical data, it is indispensable to have large amounts of data to train the 

decision making models. As a result, these small and/or rural hospitals are less motivated, 

and in 2011, only 20.8% of them were using EHR systems [12]. In this regard, it is clear that 

there is a conflicting objective of maintaining patient privacy and having sufficient data for 

modeling and decision making.

The problem statement of the work that is being developed in this paper is as follows. Given 

healthcare data collected from multiple facilities, how do we obtain a decision model that 

leverages the knowledge from all the facilities without revealing any patient specific 

information from any of the individual facilities. In other words, the goal is to develop a 

knowledge based data integration mechanism in a privacy-preserving context.
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To deal with these challenges, we propose a privacy-preserving data mining framework 

based on horizontally distributed healthcare data. The goal of our work is to build an 

effective decision making system that can utilize the knowledge from multiple facilities (or 

geographical locations) without revealing any patient-level information [24]. In our 

approach, an elegant model for each participating facility to accurately learnt for 

approximating the local data distribution, and the useful healthcare knowledge acquired on 

such local data is then transferred in the form of their own decision models without 

revealing and sharing the sensitive data, thus, protecting the patient privacy. Transferring 

knowledge between multiple locations is a common practice with the goal of improving the 

prediction power [22]. Our approach can successfully build accurate and robust prediction 

models, under privacy constraints, with healthcare data collected from different 

geographical locations. Each participator shares its own local model with others and builds a 

specific integrated model based on its own specifications.

Merely trying to acquire the entire knowledge available from all the participators without 

carefully accounting for the distribution differences can potentially degrade the performance 

of the classifier [33]. While the overall data distribution for a particular disease must be 

similar within different hospitals since we are dealing with the same disease, there will still 

be certain significant differences that arise due to the differences in the demographics of the 

patient population. Such distribution differences will play a vital role in building robust 

integrated decision making models that are specific to the population group. However, in the 

horizontal distribution privacy-preserving problem, there is no access to the original EHR 

data, one can not directly measure the data distribution differences among participators but 

can only approximately say how large the difference might be by analyzing the difference 

between the models trained by each participator.

Most of the state-of-the-art privacy-preserving data mining methods for horizontally 

distributed data are built based on a star network, where an untrusted third-party is needed 

[40, 11]. Each participator shares their statistical data distribution with a centralized agent, 

and this central agent is responsible for building the integrated decision model [24]. 

However, this framework suffers from two important issues: 1) participators need frequent 

information exchange with the central agent and hence the communication cost is high; 2) 

the decision model is built on the central agent whose aim is to provide a decision support 

for all participators, but it ignores the data distribution differences between the participators.

In addition, in the horizontal distributed privacy preserving data mining literature, there is no 

prior work on preventing “negative impact during integration”. In our work, as each 

participator will build a specific integrated model based on their own specifications, they 

can selectively decide which of the models from other participators can be used to build the 

integrated model. We build local prediction models to represent data, detect the data 

distribution difference, and transfer knowledge. In our work, the ADABOOST algorithm is 

chosen to be the local learner for each participator because it is a simple yet effective 

classifier which is extensively studied in the literature.

The main contributions of our work are summarized as follows:
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• Propose an adaptive distributed privacy-preserving data mining technique based on 

an ensemble strategy which can successfully acquire knowledge from multiple 

healthcare facilities without gaining access to the sensitive patient data.

• Propose a new integration scheme which does not require a third-party agent, and 

each participator can build its own integrated model based on its particular needs 

and can selectively prevent the “negative impact” during the integration process.

• Demonstrate the performance of the proposed distributed privacy-preserving 

ensemble method using type-2 diabetes patient records gathered from multiple 

sources from all the fifty states in the U.S. Evaluate our method on diagnosing 

diabetes in the presence of insufficient number of patient records from certain 

regions without revealing the actual patient data from other regions.

• Identify the important global and region-specific biomarkers for Type-2 diabetes 

and validate the selected biomarkers using the biomedical literature.

The rest of this paper is organized as follows: In section 2, we provide important relevant 

works on privacy-preserving data mining and also information about the Type-2 diabetes 

disease. In Section 3, we propose our adaptive distributed privacy-preserving ensemble 

method. Our experimental results along with the important biomarkers discovered using the 

proposed work are presented in Section 4. Finally, Section 5 concludes our discussion with 

some future research directions.

2. Related Work

In this section, we will provide the related literature in the field of privacy-preserving data 

mining and then discuss more about the Type-2 diabetes disease.

2.1. Privacy-Preserving Data Analysis

Recently, health data privacy has become an important area of research. As a result, privacy-

preserving data mining has gained much more attention especially in the context of 

healthcare data analysis. The state-of-the-art methods for privacy-preserving data mining 

can be categorized under three types, namely, randomization, k-anonymization, and 

distributed privacy-preserving data mining [1]. In randomization approach, some techniques 

are used during the data collection process to induce perturbation in the selected attributes of 

the original data records for concealing certain sensitive information [3]. These techniques 

include swapping attribute values [14], principal component analysis (PCA) based 

techniques [18], adding random components which follow a known probability distribution 

[2], etc. However, in some applications such as healthcare, randomization methods are not 

sufficient. It has been shown that by incorporating certain publicly available data, the hidden 

sensitive information in the processed records can be recovered and hence the privacy will 

be compromised. The k-anonymity procedure [34] was proposed as a solution for this 

indirect de-identification issue. By using generalization and suppression techniques, the k-

anonymity method guarantees that any attribute value can be indistinguishably backtracked 

to at least k records. In [7], k-Optimize algorithm has been developed to efficiently solve the 

problem of optimal k-anonymization in most cases.
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The third category, which is the distributed privacy preservation, is closely related to secure 

distributed computation which is a research topic in cryptography [30]. In this scenario, non-

fully trusting collaborators can jointly compute useful aggregate statistics over the entire 

dataset without sharing the original data. Thus the privacy of the individual dataset can be 

protected from various other participators. Based on the partitioning mechanism, distributed 

privacy-preserving data analysis can be grouped into two sub-categories: vertically 

partitioned distributed privacy preservation and horizontally partitioned distributed privacy 

preservation [10]. In the vertically partitioned distributed privacy preservation problem, each 

participant has a different set of attributes for the same group of data objects and the primary 

goal is to build a robust model that can leverage the entire set of attributes without revealing 

the individual details of the features to other participators. More detailed work about this 

approach can be found in [13]. In the horizontally partitioned distributed privacy 

preservation, each participator has different subset of records with the same set of attributes. 

The work proposed in this paper falls into this horizontally partitioned category where the 

patient data is being collected at multiple facilities and each patient record will consist of the 

same set of attributes. One of the first works in this category presented a strategy that 

extends the popular ID3 algorithm to two-party privacy preservation [23]. Then, there were 

a number of approaches proposed for horizontally partitioned distributed privacy 

preservation using various machine learning algorithms such as naive Bayes classifier [21], 

support vector machine [40], and ensemble based classifiers [16]. Amongst these methods, 

the ensemble-based approaches have demonstrated good performance in terms of 

simultaneously preserving privacy and having good accuracy.

Gambs et al. [16] proposed MULTBOOST algorithm which is a boosting-based privacy-

preserving data mining method. However, the main problem with these above-mentioned 

models is that they need a third-party (central agent) that participates in the protocol to 

revise and aggregate the integrated final models. This also leads to an extra cost in 

processing. In addition, as each participator must have frequent contact with the third-party, 

a significant portion of the time is spent on the communication between the participators 

rather than the actual computation itself. Most importantly, those methods are not adaptable, 

i.e., a new integrated model has to be learned from scratch by repeating the entire learning 

process every time when a new participator is added. In this paper, we propose a distributed 

ensemble based horizontally partitioned privacy preservation algorithm which overcomes 

these limitations by making each participator compute their own local models independently 

from each other. Therefore, each participator can take advantage of the aggregate statistics 

(or a basic prediction model) without compromising their own privacy. Also the 

communication cost is substantially reduced because a third-party is not needed in our 

model, and the participators will have to only recompute the models for the newly integrated 

components once a new participator is added.

2.2. Type-2 Diabetes

Diabetes is the 7th leading cause of death in the United States [17] and the 8th leading cause 

of death in the world [39]. Around 29.1 million Americans (or 9.3% of the U.S. population) 

have diabetes [9]. In adults, type-2 diabetes (or insulin-dependent diabetes mellitus) 

accounts for approximately 90% to 95% of all diagnosed cases of diabetes. The risk for 
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developing type-2 diabetes is mostly associated with older age, obesity, family history of 

diabetes, history of gestational diabetes, impaired glucose metabolism, physical inactivity, 

and race/ethnicity (African American, Alaska Native, American Indian, Asian American, 

Hispanic/Latino, or Pacific Islander American have a high prevalence of diabetes) [26, 9, 5].

There are several medical tests that can be performed to check if a person has diabetes or 

not. Currently, the American Diabetes Association (ADA) recommends four kinds of testing 

methods for diagnosing type-2 diabetes: 1) A1C test [27] which measures a person’s average 

levels of blood glucose over a period of 3 months. 2) Fasting Plasma Glucose (FPG) test 

[28] which measures the blood glucose in a person who has fasted for more than 8 hours. 3) 

Oral Glucose Tolerance Test (OGTT) [25] measures the blood glucose after a person fasts 

for at least 8 hours and 2 hours after the person drinks a liquid containing 75 grams of 

glucose dissolved in water. 4) Random Plasma Glucose (RPG) test [28] which is performed 

during a regular health checkup.

Though these medical diagnoses tests are relatively accurate (patients really have diabetes 

when these tests are positive), they typically have poor sensitivity (will miss a lot of cases). 

In 2012, 8.1 million (27.8% of 29.1 million) people with diabetes were undiagnosed [9]. In 

addition, in the data that we used in our study, only 1/8th of the patients suffering from 

diabetes were diagnosed by those medical tests. In addition, such tests cause inconvenience 

to the patients. Hence, it is an important problem to diagnose these patients at early stages 

through their electronic health records (EHR) using data-driven methods.

To improve the diagnosis of type-2 diabetes, a machine learning community hosted a 

“Practice Fusion Diabetes Classification” challenge [20] in 2012 which aims at developing 

some advanced EHR based type-2 diabetes diagnostic support system. There were a total of 

9,948 patients, and amongst them 1,904 patients suffer from diabetes. These patients come 

from all the 50 states and the District of Columbia in the U.S. and the Commonwealth of 

Puerto Rico. For each patient, the EHRs were comprehensively collected from the following 

primary sources of information [22]:

• Demographic information such as year of birth, gender, weight, and geographical 

location of each patient.

• Diagnosis information consists of the ICD9 Codes.

• Allergy and immunization consists of a list of allergies and vaccination records.

• Laboratory information consists of lab test observations for lab panels, and the 

lab test results received from lab facilities.

• Medication and Prescription consists of the medication history, where each 

medicine is identified by National Drug Code (NDC), and prescription records.

• Patient smoking status is an ordinal status variable maintained on a yearly basis.

• Transcripts consist of visited document records including allergy, medication, and 

diagnosis information.

Li et al. Page 6

Inf Sci (Ny). Author manuscript; available in PMC 2017 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We integrated all the information from 17 different sources and constructed a consolidated 

repository of diabetes EHR which contained 536 variables in total after combining all the 

data from multiple sources. It should be noted that, amongst all these features, only the 

gender and location are categorical in nature; the lab test results and personal information 

are real-valued attributes; certain status attributes such as smoking status, and emergency 

status have ordinal values. A significant majority of the remaining features are count 

variables.

3. Proposed work

In this section, we will explain the proposed framework for privacy-preserving data mining. 

Before describing the details of our proposed distributed ensemble based approach, we will 

first review the working of the standard ADABOOST algorithm [15]. The ADABOOST algorithm 

will be used as our local learner for each participator along with the decision stump which 

will be used as the weak learner. In our approach, we choose the ADABOOST algorithm because 

it is a simple, flexible and effective classifier, and it is constructed using a weighted 

combination of weak classifiers. Before going to the details of the proposed methods, we 

will first introduce the notations used in this paper in Table 1.

ADABOOST is a well-known high-performance ensemble learning method which iteratively 

generates a strong classifier from a pool of weak hypotheses. In each iteration, a base 

classifier is learned, and based on the correctness of the prediction in each iteration, the 

weights of the training examples are updated. Thus, in the subsequent iteration, the base 

classifiers will focus on the misclassified samples in the previous iteration. The final 

ensemble classifier is a weighted combination of these base classifiers, where for each base 

classifier, the weight depends on the corresponding error rate. In other words, a classifier 

with lower error rate gets higher weight. Simple learners such as decision stumps (decision 

trees with only two leaf nodes) often perform well for ADABOOST [8]. Typically, a decision 

stump can be expressed using three parameters: (i)the name of the attribute to be tested (fn), 

(ii) the test threshold (θ), and (iii) the sign of the test (δ ∈ {+1, −1}). Note that a decision 

stump can only handle one attribute (feature) at a time and hence the weights of weak 

classifiers can also be used to measure the ability to distinguish the corresponding features 

conditional on the learning task. The final boosted model will be a linear combination of 

these independent decision stumps, and this independence would not require each 

participator to have exactly the same set of features which is another primary advantage of 

our proposed model. Finally, this will allow us to select the common important features 

among all participators, and each participator can take advantage of the useful aggregate 

model statistics without sharing the original data.

3.1. Adaptive Distributed Privacy Preserving using Boosting

In this section, we will discuss the proposed boosting based adaptive model for privacy-

preserving data mining with horizontally partitioned data. In this case, each participant has 

different set of records with both common features and local unique attributes. Let 

 denote the datasets of M participators, the dataset of pth participator 

contains a total of n(p) samples, and it can be represented as
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where each example  is a covariate vector with K(p) components 

and each label  for the binary decision making that is being considered here. 

In our model, we employ ADABOOST algorithm to build an ensemble classifier for each 

participator, and these ensemble classifiers can be used to represent the data distribution of 

each participator. By sharing these local models with each other, all the participators can 

build their individual integrated model which takes advantage of other participators’ 

knowledge without direct access to the datasets. Hence, the privacy of the individual 

datasets can be preserved.

Firstly, the standard ADABOOST algorithm is applied to each participator for T boosting 

iterations, and set of T weak classifiers will be learned. In the decision stump case, each 

weak classifier can be represented by the variable set (fn, θ, δ), where fn denotes the name of 

the selected attribute, θ is the decision threshold of the attribute fn, and δ is the sign of the 

decision. For any instance Xi, the hypothesis h(Xi), which is made by decision stump, is 

either +1 or −1. For the pth participator, the ensemble classifier Hp(·) is a set of T weak 

classifiers:

where hp(t)(·) is the weak classifier at tth iteration and αp(t) is the corresponding weight of 

that weak classifier. For a particular test instance Xi, the binary prediction made by the pth 

participator’s local model can be defined as:

(1)

where sign {·} is the signum function. Once the local models are built, all the participators 

share their own models and sample sizes with each other, and hence each participator will 

receive M − 1 models from other participators. Then, each participator will build an 

integrated model independently based on their specific requirements. For example, some 

facilities might want to maximize the sensitivity of their models instead of the area under 

curve (AUC) value for their clinical decision support system. Using our ensemble based 

approach, they can use their own cost matrix to select the decision threshold for the 

integrated model that is being built in their own facility. The P2P network based distributed 

framework of the proposed ensemble system is shown in Figure 1, and we can see that no 

third-party (central agent) is needed to build an integrated model in our proposed 

framework.

As each participator will build their local model independently, when a new participator is 

added, it will learn a local model by itself and share this trained model with other 

participators. Then, each existing participator will decide whether it needs to update the 
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integrated model based on the new local model’s performance on their own data. We can see 

that this P2P network based framework is more adaptable and can provide more autonomy 

for participators than the star network based distributed privacy-preserving framework. Each 

participator integrates the final model independently, and hence the integrated model will 

take care of the specific needs of their own local data. In summary, having an individualized 

integrated model separately at each participator will tailor the model to their own local data. 

Only the integration component will have to be selectively computed again when a new 

participator is added, rather than re-training the entire model from scratch.

Each participator receives M − 1 models and another important issue needs to be resolved 

for a specific participator. That is, how to integrate those local models and its own model in 

an appropriate manner so that the integrated model performs better than the local model. 

Also, there is a slight risk that by integrating various unwanted (or poor) models, the 

performance of the integrated model might deteriorate. To prevent such “negative impact” 

during integration, when the model integration is performed for the pth participator, first one 

has to decide which of the other local models can be used to build the final integrated model.

The basic idea here is to not include the models from the other participators whose data 

distribution is very different from the data distribution of this pth participator. Since looking 

into the original data distribution of the other participators is infeasible due to patient 

privacy, we resort to applying all the other local models on the training set of pth 

participator, , and compare the error rate of each local model with the training error rate 

of pth participator’s trained model. Note that the models received from the other 

participators might include some decision stumps for their own unique local features. Hence, 

before using those models, the pth participator should select a suitable subset of common 

decision stumps based on fn. For the pth participator, the error rate of qth participator’s 

model is given by

(2)

where  is the selected subset of decision stumps from Hq(·), the model trained by qth 

participator, I(·) is the indicator function. The training error rate of the pth participator’s 

trained model is given by

(3)

For every local model, we compute the difference between  and ϵp. If  is less 

than a certain threshold τ, then we can assume that the data distribution in pth participator 

and qth participator are similar, and we can use qth participator’s trained model to build the 

integrated model for pth participator. The integrated model only uses other local models (not 

the other participators’ data) and selects the ones with similar data distribution to that of the 

local data; thus, it indirectly strengthens the data distribution. By doing this, it avoids the 
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overfitting problem in the presence of only a few samples in the local data. For our 

experiments, we set τ = 0.2 which is a relatively a large threshold. This is because ϵp (the 

training error rate of ADABOOST) is very small; thus, (ϵp + 0.2) is a reasonable threshold for 

(the testing error rate of qth model in the pth participator’s training data) as the qth model is 

not trained from the training data of pth participator.

Now that the model selection is complete, for pth participator we get a index set of selected 

models (S(p)) which will be used in the model integration. It should be noted that p also 

belongs to S(p). We will now explain the actual integration of the selected models. The 

model integration should not only take advantage of the aggregate statistics from other 

selected local models but also consider the specificity of the participator. To achieve this 

goal, we establish the following three criteria for the proposed ensemble based model 

integration in the pth participator:

1. More weight should be assigned to the participator’s own local model compared to 

any other local model with same sample size. This is because of the fact that the 

data from other participators might follow a slightly different distribution and 

hence one cannot give more importance to the other local models. The assumption 

here is that by adding other local models, one can strengthen the local data 

distribution. This is important especially since the participator weights suffer from 

insufficient data.

2. The weight of the pth participator’s own local model is positively related to n(p). 

This is because the more the number of samples, the fewer the mistakes that are 

caused by insufficient sampling.

3. The weight of the pth participator’s own local model should have an upper bound. 

Otherwise, the weight of selected participator’s model will become insignificant, 

and the final integrated model will be the same as pth participator’s own model and 

integration becomes unnecessary.

Considering these guidelines, the weight of each participator will be updated when building 

the integrated model for each participator. To illustrate this concept, let  denote the 

weight assigned to the qth participator’s model when we compute the integrated model for 

pth participator, where p ∈ {1, 2, ··· ,M}, q ∈ S(p), and  is the instance 

proportion of qth participator.  is updated as follows:

(4)

where λmin = min(λq) is the minimum proportion among all the selected participators, λmax = 

max(λq) is the maximum proportion, and ⌈·⌉ denotes the ceiling function. We will now 

prove that the proposed weight update mechanism  will satisfy all the three criteria 

mentioned earlier.
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Theorem 1—The weight update mechanism will assign more weight to pth participator’s 

own model compared to any other local models if they have the same sample size (criterion 

1).

Proof: If q ≠ p then ; that is to say the weight of other participator’s local model is λq. 

Now let us consider the value of , the weight of pth participator’s own model, i.e., 

when q = p. We note that the λq is bounded as follows. λmin ≤ λq ≤ λmax. We can see that the 

minimum possible value for  is obtained when λp = λmin. Now, this value 

. Thus, if λp = λq, we have  This 

means that for any participator, in the model integration procedure, its own model will have 

more weight compared to any of the other selected participators once they have the same 

sample size.

Theorem 2—The weight update mechanism will ensure that the weight of pth 

participator’s own model is positively related to n(p) (criterion 2).

Proof: For pth participator, since S(p) will be a constant set after model selection, λmin and 

λmax are also constant values. When  is the weight of pth 

participator’s own model and contains only one variable , which is 

proportional to n(p) since the denominator is just a normalization factor. So,  is 

positively related to n(p).

Theorem 3—The weight update mechanism will ensure that the weight of other 

participator’s local model will not become insignificant thus making the model integration 

unnecessary (criterion 3).

Proof: When , is the weight of pth participator’s own local model. We note that 

the λp is bounded as follows: λmin ≤ λp ≤ λmax. We observe that the maximum possible value 

for  is obtained when λp = λmax. This limitation ensures that the weight of 

other participators’ high-performance weak learner will not become insignificant.

Algorithm 1 outlines our proposed BOPPID (BOosting-based Privacy-Preserving 

Integration of Distributed data) algorithm. First, each participator employs standard ADABOOST 

algorithm to train their own local model and obtain the training error (lines 2-3). Then, they 

share their trained models with other participators (line 4). After the model sharing process, 

each participator will independently build its own integration model. In lines 7-13, each 

participator applies all the other local models to its own training data and selects a subset of 

“good” models from other participators for the subsequent integration process. The sample 
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size proportion of the selected local models is calculated in line 14. Finally, the integration 

model is built using Eq. (4) (lines 16-23).

3.2. Complexity Analysis

The computational complexity of proposed BOPPID depends on the ADABOOST algorithm in 

line 2. For pth participator, the overall cost of ADABOOST in all T iterations is Θ(K(p)(T + log 

n(p))) if the weak learner is a decision stump, and the training error rate can be calculated in 

Θ(n(p)). In the integration procedure for each participator, the cost of selecting a subset of 

the beneficial local models is Θ(Mn(p)). In the worst case scenario, where all M participators 

are selected, the computational cost of updating the weights for all participators is Θ(M) and 

generating the final classifier Hq*(·) takes Θ(MT) time. Thus, the total computational 

complexity of the pth participator is Θ(K(p)(T + log n(p)) + MT + Mn(p)). As each participator 

trains its local model and does the final integration independent from other participators, it is 

possible to perform these computations in parallel. In addition, note that the model 

integration can only start after all the participators complete the computation of their own 

local models, so the computational complexity of the proposed model depends on the 

participator with the largest number of samples. Hence, the total computational cost of 

BOPPID is Θ(Kmax(T+log nmax)+MT+Mnmax), here nmax and Kmax stands for the largest 

sample size and largest feature dimensions among all the M participators, respectively.

For the communication cost, let the network latency for transferring a model is f and the 

communication cost for sending and receiving a model are g and h respectively. For M 

participators, each of them will send their own model to M − 1 other participators, and 

receive M − 1 models from other participators. Hence, the total communication cost for 

BOPPID is (M − 1)(f + g + h).

Now let us consider the scenario where a new participator is added, and the number of 

participators grows from M to M + 1. In our model, only the integration part has to be 

recomputed, and hence the computational cost for the existing M participators is Θ((M + 1)T 

+ (M + 1)nmax), and for the new participator, the computation cost is Θ(Kmax(T + log nnew) + 

MT + Mnmax). Here nnew and Kmax corresponds to the sample size and feature dimension of 

the new participator, respectively. Because all of the existing M participators will send their 

own models to the new participatorand receive a new model from the new participator, the 

communication cost for the existing M participators is (f + g + h) and for the new 

participator, the communication cost is M(f + g + h). However, if a new participator is added 

in the existing methods such as MULTBOOST, a new integrated model has to be retrained from 

the beginning. Therefore, the computation cost for all M + 1 participators is 

 [16] and communication cost becomes 2T(f + g + 

h). Hence, we can clearly observe that our proposed model is more efficient when a new 

participator is added (which is a more practical scenario).
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ALGORITHM 1: BOosting-based Privacy-Preserving Integration of Distributed data (BOPPID)

Input: The training sets of M participators {D
n

(1)
1 , ⋯ , D

n
(M )

M },

   Number of boosting iterations (T), and

Threshold for error rate increase (τ).

Output: The set of M final classifiers {H1*(·), · · · , HM*(·)}.

1 foreach p in M participators parallel do

2  Hp(·) ← ADABOOST(Dn
(p)

p , T );

3  ϵp ← 1

n
(p) ∑i=1

n
(p)

I (sign{H p(X i
p)} ≠ yi

p) ;

4  Share Hp(·) with all other participators

5 end

6 foreach p in M participators parallel do

7  Initialize the Index set of selected participators S ← {p};

8  for q ← 1 to M do

9   ϵp
(q) ← 1

n
(p) ∑i=1

n
(p)

I (sign{Ĥ q(X i
p)} ≠ yi

p) ;

10   if (ϵp
(q)

− ϵp) ≤ τ then

11    Add q in S(p)

12     end

13   end

14  Λ = {λq =
n

(q)

∑s∈S n
(s) ∣ q ∈ S};

15  Find λmax, λmin;

16  foreach q in S do

17   if p = q then

18    σq
(p)

=
λq

λmax
2

⋅
λmax

2

λmin
;

19     else

20    σq
(p)

= 1;

21     end

22   end

23  return H p ∗( ⋅ ) = ∑q∈S ∑t=1
T h q(t)( ⋅ ) ⋅ α q(t)σq

(p)λq

24 end
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3.3. Adaptive Variant of Parallel Boosting

To strengthen our work, we also propose a new variant of an existing parallel boosting 

algorithm and make it applicable to the context of mining EHR data. In our previous work 

on parallel boosting [29], we developed a parallel variant of the boosting algorithm called 

ADABOOST.PL. Though originally designed for improving the computational efficiency, the 

overall layout of ADABOOST.PL can fit into the distributed privacy-preserving setting as it does 

not directly communicate the data from one participator to the others. The ADABOOST.PL 

algorithm follows the MapReduce workflows, where the original dataset is equally 

partitioned into M parts and mapped into M workers to learn M models which will then be 

reduced (integrated) into a final model. For each worker, its weak classifiers will be sorted 

with increasing order of αp(t) values (line 3 in Algorithm 2). The basic intuition of sorting 

the workers’ weak classifiers with respect to their weights is to place the classifiers with 

similar correctness at the same sorted level. This is a critical component of the ADABOOST.PL 

since this will ensure that like-minded classifiers will be merged during each boosting 

iteration. After sorting, hp*(t)(·) is the weak learner of pth participator at the tth iteration, and 

αp*(t) denotes the corresponding weight. In this paper, we generalize the idea of ADABOOST.PL 

and propose a new variant, ADABOOST.PL.V2, which can handle the diversity of sample size of 

each participator in the privacy-preserving context. It should be noted that similar to 

ADABOOST.PL, the proposed ADABOOST.PL.V2 is also built on a star network, which is shown in 

Figure 2. Most of state-of-the-art horizontally distributed privacy-preserving methods are 

also built on this star network, so that we can see to it that there is only one integration 

model that is being built for all hospitals.

Thus, compared with BOPPID, ADABOOST.PL.V2 is less adaptive and cannot preserve the data 

characteristics of each participator. ADABOOST.PL.V2 discards the “map” part of the 

ADABOOST.PL because the datasets are distributed and stored by each participator, and αt is the 

weighted average, (instead of the standard average used in ADABOOST.PL) of αp*(t) for all 

possible p. The weights are based on the sample size proportion (line 9 in Algorithm 2).

The merged classifier, h(t)(·) is a ternary classifier, a variant of weak classifier, which can 

return ‘+1’, ‘−1’, and ‘0’ as a way of abstaining from answering [35]. It is built by taking a 

simple majority vote among weak classifiers of the worker as follows:

(5)

The ternary classifier will answer ‘0’ if equal number of positive and negative predictions 

are made by the workers’ weak classifiers. Otherwise, it will answer the majority prediction. 

In line 8, the weight of the ternary classifier are obtained by the weighted average of the 

corresponding classifier weights. Once all the ternary classifiers for T rounds are generated, 

the algorithm returns their weighted combination as the final classifier.
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4. Experimental Results

In this section, we demonstrate the performance of the proposed approach using real-world 

EHRs of diabetes patients. We first present the clinical feature transformation performed on 

the EHR data. We will then compare the performance of our proposed model against the 

state-of-the-art distributed privacy preserving ensemble prediction models. In addition, we 

also perform a detailed study on the biomarkers selected by the proposed algorithm on this 

data. It shows that our proposed model can successfully select some important ‘universal’ 

and ‘region-specific’ biomarkers which can be used in the medical domain to improve the 

diagnosis of type-2 diabetes.

ALGORITHM 2: ADABOOST.PL.V2

Input: Training sets of M participators

   {D
n

(1)
1 , D

n
(2)

2 , ⋯ , D
n

(M )
M }, and

Number of boosting iterations (T).

Output: The final classifiers H(·)

1 foreach p in M participators parallel do

2  Hp(·) ← ADABOOST(Dn
(p)

p , T );

3  Hp*(·) ← the weak classifiers in Hp(·) sorted w.r.t. αp(t);

4  Send Hp*(·) to central agent;

5 end

6 Initialize Λ = {λp =
n

(p)

∑m=1
M n

(m) ∣ p = 1, 2, …, M };

7 for t ← 1 to T do

8  h(t)(·) ← MERGE (h1*(t)(·), …, hM*(t)(·));

9  α t ← ∑ p=1
M α p ∗(t)λp;

10 end

11 return H ( ⋅ ) = ∑t=1
T α th

(t)( ⋅ )

4.1. Clinical Feature Pre-Processing

We now explain the clinical feature transformation procedure which transforms the raw 

EHR data to a format that is more suitable for data analysis. The original data contains 

patient records for a total of 9,948 patients, and each patient can be identified using a 

specific serial number. In Figure 3, we show the feature creation procedure from EHR data 

by considering a sample patient. In this example, we use several records from different 

categories for a particular patient (with PatientGuid 

“0113E5B3-66A5-44DA-91BE-425EF133651E”).

We extracted all the features for distinct anthropometric variables present in the data. In this 

example, we consider height, weight, Body Mass Index (BMI), systolic blood pressure 
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(SystolicBP), and diastolic blood pressure (DiastolicBP). To tackle the problem of multiple 

anthropometric values for the same patient, we represent each anthropometric feature using 

a set of summary statistics (maximum, minimum, and median). Note that, in this example, 

some anthropometric features are missing. It should be noted that certain missing values 

(like height in this example) are easy to fill. For example, we can confidently replace 

‘NULL’ by 61 and calculate the corresponding BMI by using . 

However, other missing values like weight cannot be filled-in, and hence we leave them 

empty. “HighLowBP” is the difference between the median of systolic blood pressure and 

the median of diastolic blood pressure. Lab variables are also generated using a similar 

approach. In addition, we also created a variable which counts the number of times the lab 

was conducted for the patient. ICD-9 code is a list code for International Statistical 

Classification of Diseases, and each code presents a disease description. With the acute 

indicator, two binary variables can be created to reflect whether the patient has a special 

disease or not, and if the disease is present, whether it is acute or not (“L2_” represents acute 

and “L1_” represents not acute). In this example, the codes 278 and 724.5 represent obesity 

and backache, respectively. Because this patient suffered from serious backache only once, 

we give the value of 1 to “L2_ BackPain” feature. For the medication information, we 

created two variables for each distinct medication (according to NDC) given to the patient; 

one feature represents the number of times the individual medication was given to the 

patient, and the other feature represents the dose. There are several states corresponding to 

smoking status which can be represented using ordinal numbers, and we build two new 

features, one for the current smoking state and another for the smoking history. When the 

patient has never smoked in the past, the status of “0 cigarettes per day” is denoted by 0.

In summary, based on the generated features which are listed in tables with pale blue color, 

one can observe that following our transformation procedure not only helps in immensely 

reducing the dimensionality and complexity of the raw EHR data, but also summarizes the 

complex EHRs into a succinct representation which is then used for building prediction 

models.

4.2. Experimental Setup

We will demonstrate the performance of the proposed algorithms on improving the 

diagnosis of the diabetes condition. Hence, for our experiments, we selected the top 14 states 

based on the total patient population in each state (which will be considered as a 

participator). Table 2 shows the demographic statistics of these 14 selected states.

We compare our proposed adaptive distributed privacy-preserving ensemble system with the 

MULTBOOST [16] and local ADABOOST (LOCAL_Ada) algorithms. LOCAL_Ada algorithm is a 

local model obtained by applying the standard ADABOOST on each participator independently. 

For all the algorithms, the number of boosting iterations is set to 100. In Table 3, we provide 

the performance results of AUC values from different algorithms using 10-fold cross 

validation.

In Table 4, we present the comparison of F-measure values which is calculated as follows:
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(6)

where , and ; therefore, a high value of F-

measure indicates that both precision and sensitivity are reasonably high. It should be noted 

that the positive individuals are diabetics and the negative individuals are non-diabetics. 

Thus, here TP corresponds to the number of diabetics correctly predicted by the classifier, 

FN corresponds to the number of diabetics wrongly predicted as non-diabetics, and FP is the 

number of nondiabetics wrongly predicted as diabetics.

We observe that for all the 14 states, our proposed algorithm can diagnose type-2 diabetes 

more accurately compared with the other algorithms. This demonstrates that we have 

successfully transferred useful medical knowledge and clinical information within all the 

participators under the privacy constraints without revealing the data itself from each 

participator. This also means that those participators can take advantage of the aggregated 

global models without compromising the privacy of individual patients.

Figure 4 shows the 10-fold cross validation result of weighted average AUC values at 

different iterations of the algorithm. The weighted average AUC is defined as:

(7)

where AUC(p) is the AUC value of pth participator, n(p) is the number of patients in the pth 

participator. The figure shows that the proposed algorithm always works better than 

MULTBOOST and Local AdaBoost, and only a few selected important features (or iterations) can 

provide a good prediction model.

4.3. Biomarker Discovery

Biomarkers are important indicators used to diagnose a particular disease in a clinical 

setting. From Figure 4, we can see that the weighted average AUC of our proposed model 

achieves 0.88 after 10 iterations and approximately 0.89 after 20 iterations. This indicates 

that the top selected features in each state can well represent the corresponding data 

distribution. It should be mentioned that since the weak classifier used in our algorithm is a 

decision stump, each iteration will correspond to the usage of only one feature with a simple 

split. In Figure 5, we show the selected biomarkers for each state after 10 iterations (in the 

left) and 20 iterations (in the right). In the 10 iterations scenario, we find 39 important 

biomarkers, and in the 20 iterations case, this number becomes 60. For comparison, we 

present these two settings under a same coordinate system, where the vertical axis is the 

index of selected features and the horizontal axis corresponds to the list of states that contain 

this attribute in their top feature list. Figure 5 clearly shows the selected important features 

and the corresponding state.
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From Figure 5, we can conclude that there are a total of 6 universal biomarkers: 

“YearOfBirth” which represents the age of patient, “High-LowBP” measures the difference 

between systolic blood pressure and diastolic blood pressure, “L2_HypertensionEssential” is 

a biomarker that reflects whether the patient has been diagnosed with hypertension or not, 

“L2_MixedHyperlipidemia” is an indicator that tells whether the patient has suffered with 

mixed hyperlipidemia or not, “TotDiagPerVisit” indicates the number of complications the 

patient had, and “medication_diag_NA” indicates whether the patient was previously 

diagnosed with type-2 diabetes through medical tests. These 6 selected features meet the 

well known common knowledge in the clinical domain. The clinical study suggests that 

hypertensive persons are more predisposed to the development of diabetes than 

normotensive persons. Moreover, up to 75% of cardiovascular disease (CVD) in diabetes is 

attributed to hypertension [37] and older people are more likely to suffer from type-2 

diabetes [26]. Medical diagnoses tests are relatively accurate, i.e., most of the patients who 

were diagnosed with diabetes by the medical tests actually have diabetes. However, the 

sensitivity of these tests is low, i.e., a lot of diabetic patients remain undetected through 

these tests.

Our results can also reflect that overweight or obese is closely related to type-2 diabetes 

[26], but for different states it is represented in different ways. For most of the states the 

body mass index (BMI) (related to features 6-9) is more important than the direct body 

weight, while for few other states direct body weight plays an important role as well. It can 

be seen from our results, that our approach can provide a more accurate set of “region-

specific” biomarkers in addition to the global markers. Such analysis on region-specific 

biomarkers in comparison to the overall biomarkers (which are typically known in the 

medical literature) can provide new medical insights into specific regional patient data 

which can thus lead to new discoveries in the clinical domain.

5. Conclusions and future work

Healthcare in the United States is currently undergoing a revolutionary transformation and 

EHRs are playing a vital role in improving the quality of patient care. However, due to the 

patient privacy and the sensitivity of the patient information that is being stored in the 

EHRs, there are considerable barriers to EHR proliferation. In this paper, we developed a 

novel distributed privacy-preserving integration method based on an ensemble based 

strategy for building robust prediction models from EHR data. Using our approach, each 

participator will need to reveal only limited model information built using the local data 

without revealing any patient-specific information. The local models built from each 

participator will be effectively combined to build an integrated model that is specific to each 

participator. This integrated model is built by taking advantage of aggregate knowledge 

from all the participators instead of the local participator’s data alone. Compared to other 

existing works, our proposed framework can prevent the “negative impact” during 

integration from multiple sources, which typically happens when the data distribution 

differences amongst the participators are very large, by building a specific integration model 

for each participator with only a few selected local models instead of taking all the local 

models. We demonstrated the performance of our proposed method using the Type-2 

diabetes EHR data and have shown that constructing a global model which utilizes other 

Li et al. Page 18

Inf Sci (Ny). Author manuscript; available in PMC 2017 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



local models performs better compared to the original local models built on each 

participator’s data separately. In addition, we also successfully identified some important 

universal/global and region-specific biomarkers.

In the future, we will try to find more accurate ways to measure the difference of data 

distributions among multiple participators under privacy constraints. We also plan to extend 

our work with the idea of k-anonymity, so that we can measure the data distributions more 

accurately without compromising on patient privacy.
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Figure 1. 
Block diagram representing various participators, the local and the integrated models built at 

each participator.
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Figure 2. 
The framework of star network based horizontal distributed privacy-preserving method.
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Figure 3. 
Clinical feature transformation for a single patient.
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Figure 4. 
Comparison of weighted average AUC values of Local AdaBoost, MULTBOOST, and BOPPID 

algorithms on the diabetes dataset for 100 iterations.

Li et al. Page 25

Inf Sci (Ny). Author manuscript; available in PMC 2017 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Selected biomarkers for each state.
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Table 1

Notations used in this paper.

Notation Description

n (p) sampling size of pth participator

Dp dataset of pth participator

X n
(p) data matrix

Y corresponding labels ∈ {+1, −1}

fn name of the attribute

θ test threshold

δ sign of the test ∈ {+1, −1}

hp(t)(·) the weak classifier trained at tth iteration in pth participator

α p(t) the weight of hp(t)(·)

Hp(·) the classifier trained in the pth participator

ϵ p training error rate of pth participator

ϵp
(q)

testing error rate of qth model in the pth participator’s training data

S (p) the index set of selected models for pth participator

λ p instance proportion of pth participator

σ a factor of the integrated weight
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Table 2

Demographic statistics of the top 14 states based on patient population.

State
Total No.
of patients

No. of Diabetes
Patients

No. of Non-diabetes
Patients

Prevalence
Rate (%)

Arizona (AZ) 295 56 239 18.98%

California (CA) 1917 258 1659 13.46%

Florida (FL) 804 158 646 19.65%

Illinois (IL) 412 75 337 18.20%

Michigan (MI) 344 61 283 17.73%

Missouri (MO) 702 104 598 14.81%

New Jersey (NJ) 575 119 456 20.70%

Nevada (NV) 495 135 360 27.27%

New York (NY) 557 167 390 29.98%

Ohio (OH) 515 111 404 21.55%

Pennsylvania (PA) 250 67 183 26.80%

South Dakota (SD) 325 40 285 12.31%

Texas (TX) 897 243 654 27.09%

Virginia (VA) 484 79 405 16.32%
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Table 3

Performance comparison of different algorithms based on the AUC values (along with their standard 

deviation)

State LOCAL_Ada MULTBOOST ADABOOST.PL.V2 BOPPID

AZ 0.799 ± 0.103 0.831 ± 0.085 0.845 ± 0.096 0.865 ± 0.088

CA 0.895 ± 0.046 0.844 ± 0.060 0.870 ± 0.064 0.902 ± 0.049

FL 0.882 ± 0.065 0.861 ± 0.059 0.878 ± 0.056 0.899 ± 0.053

IL 0.849 ± 0.071 0.876 ± 0.076 0.885 ± 0.053 0.896 ± 0.046

MI 0.881 ± 0.065 0.926 ± 0.038 0.923 ± 0.037 0.934 ± 0.038

MO 0.914 ± 0.034 0.886 ± 0.052 0.902 ± 0.048 0.921 ± 0.040

NJ 0.802 ± 0.040 0.835 ± 0.051 0.847 ± 0.042 0.857 ± 0.048

NV 0.863 ± 0.045 0.877 ± 0.033 0.891 ± 0.029 0.901 ± 0.019

NY 0.858 ± 0.060 0.857 ± 0.038 0.873 ± 0.061 0.891 ± 0.056

OH 0.885 ± 0.041 0.879 ± 0.066 0.892 ± 0.053 0.900 ± 0.050

PA 0.816 ± 0.082 0.809 ± 0.117 0.873 ± 0.071 0.885 ± 0.071

SD 0.892 ± 0.072 0.920 ± 0.067 0.929 ± 0.056 0.937 ± 0.047

TX 0.854 ± 0.040 0.838 ± 0.038 0.845 ± 0.027 0.871 ± 0.027

VA 0.789 ± 0.056 0.827 ± 0.045 0.838 ± 0.072 0.863 ± 0.059
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Table 4

Performance comparison of different algorithms based on the F-measure values (along with their standard 

deviation)

State LOCAL_Ada MULTBOOST ADABOOST.PL.V2 BOPPID

AZ 0.541 ± 0.141 0.592 ± 0.084 0.612 ± 0.148 0.631 ± 0.151

CA 0.592 ± 0.092 0.498 ± 0.049 0.562 ± 0.079 0.608 ± 0.090

FL 0.664 ± 0.098 0.615 ± 0.085 0.643 ± 0.083 0.679 ± 0.092

IL 0.572 ± 0.102 0.643 ± 0.136 0.630 ± 0.110 0.659 ± 0.088

MI 0.619 ± 0.110 0.708 ± 0.087 0.707 ± 0.087 0.720 ± 0.091

MO 0.654 ± 0.069 0.608 ± 0.097 0.646 ± 0.094 0.667 ± 0.103

NJ 0.534 ± 0.059 0.583 ± 0.058 0.585 ± 0.056 0.589 ± 0.063

NV 0.668 ± 0.049 0.691 ± 0.058 0.705 ± 0.058 0.715 ± 0.043

NY 0.699 ± 0.086 0.682 ± 0.054 0.709 ± 0.099 0.731 ± 0.093

OH 0.657 ± 0.074 0.639 ± 0.104 0.688 ± 0.080 0.701 ± 0.084

PA 0.637 ± 0.090 0.623 ± 0.128 0.693 ± 0.092 0.721 ± 0.112

SD 0.666 ± 0.190 0.696 ± 0.159 0.691 ± 0.140 0.732 ± 0.107

TX 0.661 ± 0.065 0.628 ± 0.050 0.639 ± 0.035 0.675 ± 0.042

VA 0.493 ± 0.088 0.512 ± 0.075 0.560 ± 0.096 0.566 ± 0.079
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