Skip to main content
. Author manuscript; available in PMC: 2017 Feb 10.
Published in final edited form as: Inf Sci (N Y). 2016 Feb 10;330:245–259. doi: 10.1016/j.ins.2015.10.011

Table 3.

Performance comparison of different algorithms based on the AUC values (along with their standard deviation)

State LOCAL_Ada Multboost AdaBoost.PL.V2 BOPPID
AZ 0.799 ± 0.103 0.831 ± 0.085 0.845 ± 0.096 0.865 ± 0.088
CA 0.895 ± 0.046 0.844 ± 0.060 0.870 ± 0.064 0.902 ± 0.049
FL 0.882 ± 0.065 0.861 ± 0.059 0.878 ± 0.056 0.899 ± 0.053
IL 0.849 ± 0.071 0.876 ± 0.076 0.885 ± 0.053 0.896 ± 0.046
MI 0.881 ± 0.065 0.926 ± 0.038 0.923 ± 0.037 0.934 ± 0.038
MO 0.914 ± 0.034 0.886 ± 0.052 0.902 ± 0.048 0.921 ± 0.040
NJ 0.802 ± 0.040 0.835 ± 0.051 0.847 ± 0.042 0.857 ± 0.048
NV 0.863 ± 0.045 0.877 ± 0.033 0.891 ± 0.029 0.901 ± 0.019
NY 0.858 ± 0.060 0.857 ± 0.038 0.873 ± 0.061 0.891 ± 0.056
OH 0.885 ± 0.041 0.879 ± 0.066 0.892 ± 0.053 0.900 ± 0.050
PA 0.816 ± 0.082 0.809 ± 0.117 0.873 ± 0.071 0.885 ± 0.071
SD 0.892 ± 0.072 0.920 ± 0.067 0.929 ± 0.056 0.937 ± 0.047
TX 0.854 ± 0.040 0.838 ± 0.038 0.845 ± 0.027 0.871 ± 0.027
VA 0.789 ± 0.056 0.827 ± 0.045 0.838 ± 0.072 0.863 ± 0.059