Skip to main content
. Author manuscript; available in PMC: 2017 Feb 10.
Published in final edited form as: Inf Sci (N Y). 2016 Feb 10;330:245–259. doi: 10.1016/j.ins.2015.10.011

Table 4.

Performance comparison of different algorithms based on the F-measure values (along with their standard deviation)

State LOCAL_Ada Multboost AdaBoost.PL.V2 BOPPID
AZ 0.541 ± 0.141 0.592 ± 0.084 0.612 ± 0.148 0.631 ± 0.151
CA 0.592 ± 0.092 0.498 ± 0.049 0.562 ± 0.079 0.608 ± 0.090
FL 0.664 ± 0.098 0.615 ± 0.085 0.643 ± 0.083 0.679 ± 0.092
IL 0.572 ± 0.102 0.643 ± 0.136 0.630 ± 0.110 0.659 ± 0.088
MI 0.619 ± 0.110 0.708 ± 0.087 0.707 ± 0.087 0.720 ± 0.091
MO 0.654 ± 0.069 0.608 ± 0.097 0.646 ± 0.094 0.667 ± 0.103
NJ 0.534 ± 0.059 0.583 ± 0.058 0.585 ± 0.056 0.589 ± 0.063
NV 0.668 ± 0.049 0.691 ± 0.058 0.705 ± 0.058 0.715 ± 0.043
NY 0.699 ± 0.086 0.682 ± 0.054 0.709 ± 0.099 0.731 ± 0.093
OH 0.657 ± 0.074 0.639 ± 0.104 0.688 ± 0.080 0.701 ± 0.084
PA 0.637 ± 0.090 0.623 ± 0.128 0.693 ± 0.092 0.721 ± 0.112
SD 0.666 ± 0.190 0.696 ± 0.159 0.691 ± 0.140 0.732 ± 0.107
TX 0.661 ± 0.065 0.628 ± 0.050 0.639 ± 0.035 0.675 ± 0.042
VA 0.493 ± 0.088 0.512 ± 0.075 0.560 ± 0.096 0.566 ± 0.079