Skip to main content
. Author manuscript; available in PMC: 2017 Feb 10.
Published in final edited form as: Inf Sci (N Y). 2016 Feb 10;330:245–259. doi: 10.1016/j.ins.2015.10.011
ALGORITHM 2: AdaBoost.PL.V2
Input: Training sets of M participators
   {Dn(1)1,Dn(2)2,,Dn(M)M}, and
Number of boosting iterations (T).
Output: The final classifiers H(·)
1 foreach p in M participators parallel do
2 Hp(·) ← AdaBoost(Dn(p)p,T);
3 Hp*(·) ← the weak classifiers in Hp(·) sorted w.r.t. αp(t);
4  Send Hp*(·) to central agent;
5 end
6 Initialize Λ={λp=n(p)m=1Mn(m)p=1,2,,M};
7 for t1 to T do
8 h(t)(·) ← Merge (h1*(t)(·), …, hM*(t)(·));
9 αtp=1Mαp(t)λp;
10 end
11 return H()=t=1Tαth(t)()