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Abstract

Ethanol can be self-infused directly into the posterior ventral tegmental area (pVTA) and these 

effects involve activation of local dopamine neurons. However, the neuro-circuitry beyond the 

pVTA involved in these reinforcing effects has not been explored. Intra-pVTA micro-injection of 

ethanol increases dopamine release in the nucleus accumbens (NAC), medial prefrontal cortex 

(mPFC) and ventral pallidum (VP). The current study tested the hypothesis that the reinforcing 

effects of ethanol within the pVTA involve activation of dopamine projections from the pVTA to 

the NAC, VP, and mPFC. Following the acquisition of self-infusions of 200 mg% ethanol into the 

pVTA, either the dopamine D2 receptor antagonist sulpiride (0, 10 or 100 µM), or the D1 receptor 

antagonist SCH-23390 (0, 10 or 100 µM) was micro-injected into the ipsilateral NAC shell 

(NACsh), NAC core (NACcr), VP or mPFC immediately prior to the self-infusion sessions to 

assess the involvement of the different dopamine projections in the reinforcing effects of ethanol. 

Microinjection of each compound at the higher concentration into the NACsh, VP or mPFC, but 

not the NACcr, significantly reduced the responses on the active lever (from 40–50 to 

approximately 20 responses). These results indicate that activation of dopamine receptors in the 

NACsh, VP, or mPFC, but not the NACcr, is involved in mediating the reinforcing effects of 

ethanol in the pVTA, suggesting that the ‘alcohol reward’ neuro-circuitry consist of, at least in 

part, activation of the dopamine projections from the pVTA to the NACsh, VP and mPFC.
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Introduction

Identifying brain regions and circuits involved in the reinforcing effect of ethanol is critical 

toward understanding the neurobiology of alcohol abuse and addiction. A prior study 

reported ethanol can be self-infused directly into the ventral tegemental area (VTA), 

suggesting this region as an anatomical site underlying the reinforcing effects of ethanol 

(Gatto et al, 1994). Subsequent studies demonstrated that ethanol is self-infused into the 

posterior, but not anterior, VTA (Rodd-Henricks et al, 2000; Rodd et al, 2005). 

Pharmacological studies indicate that such effects depended on activation of local dopamine 

neurons (Rodd et al, 2004), involving local 5-HT3 and 5-HT2A receptors (Ding et al, 2009b; 

Rodd-Henricks et al, 2003), but not local 5-HT1B or GABAA receptors (Ding et al, 2009b, 

2011). So far, the neuro-circuits beyond the pVTA underlying this effect have not been 

explored.

Dopamine neurons in the VTA project to the forebrain coritco-limbic regions, including the 

nucleus accumbens (NAC), medial prefrontal cortex (mPFC), and ventral pallidum (VP) 

(Oades and Halliday, 1987; Swanson, 1982). Dopamine neurotransmission in these regions 

has been suggested to mediate the rewarding and reinforcing effects of ethanol (Koob and 

Volkow, 2010). Ethanol can increase dopamine release in the NAC following oral self-

administration or systemic injection (Doyon et al, 2003; Imperato and Di Chiara, 1986; 

Weiss et al, 1993). Inhibition of dopamine receptors in the NAC attenuated oral self-

administration of ethanol (Czachowski et al, 2001; Hodge et al, 1997; Rassnick et al, 1992; 

Samson et al, 1993). Similarly, both passive- or self-administration of ethanol increased 

extracellular dopamine levels in the VP (Melendez et al, 2003, 2004). In addition, 

pharmacological manipulation of dopamine receptors in the VP regulated alcohol drinking 

in the alcohol-preferring P rat (Melendez et al, 2005). In contrast to the NAC and VP, the 

neurochemical effect of ethanol on dopamine neurotransmission in the mPFC has been 

controversial. Early studies indicated that systemic injection of ethanol failed to increase 

extracellular dopamine levels in the mPFC (Engleman et al, 2006; Hegarty and Vogel, 

1993). However, one recent study demonstrated that passive intravenous injection of ethanol 

increased extracellular dopamine levels in the mPFC (Schier et al, 2013). Microinjection of 

dopamine receptor agents in the mPFC altered oral alcohol operant self-administration 

(Hodge et al, 1996; Samson and Chappell, 2003). Therefore, the current evidence implicates 

these three regions in the systemic effects of ethanol. However, the role of dopamine 

neurotransmission in these regions in the local reinforcing effects of ethanol in the pVTA 

has not been examined.

Self-infusions of ethanol into the pVTA depend on activation of local dopamine neurons 

(Rodd et al, 2004). Microinjection of ethanol into the pVTA increased dopamine release in 

the NAC shell (NACsh), VP and mPFC (Ding et al, 2009a, 2011). These results suggest that 

stimulation of dopamine projections from the pVTA to the NACsh, VP and mPFC and 

subsequent activation of dopamine receptors within these regions may constitute a feed-

forward circuitry that is critical to mediating the reinforcing effects of ethanol in the pVTA. 

Therefore, the current study was designed to examine the effects of local administration of 

dopamine D1 or D2 receptor antagonists within the NAC, VP and mPFC on ethanol self-

infusions into the pVTA. The hypothesis is that activation of dopamine neurotransmission to 
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these three regions is involved in mediating the local rewarding effects of ethanol in the 

pVTA.

Materials and methods

Animals

Experimentally-naïve adult female Wistar rats (body weight 270 to 320 g, Harlan Sprague 

Dawley, Inc., Indianapolis, IN) were used in the present study. Animals were habituated in 

pairs in a reverse 12-hr light-dark cycle room (light off at 10:00 am) controlled for 

temperature and humidity. Food and water were available ad libitum except during the ICSA 

test. Female rats were used because these rats maintain their head size better than male rats 

for more accurate stereotaxic placement (Ding et al, 2009b, 2012; Rodd-Henricks et al, 

2000). The estrous cycle was not monitored. Previous studies suggested that the estrous 

cycle did not appear to have a significant effect on ICSA behavior (Ding et al, 2009b, 2012; 

Rodd-Henricks et al, 2000). Experiments were performed during the dark phase. Protocols 

used were approved by the Institutional Animal Care and Use Committee of Indiana 

University School of Medicine. All experiments were performed in accordance with the 

principles outlined in the Guide for the Care and Use of Laboratory Animals (National 

Research Council 1996).

Chemical agents

The artificial cerebrospinal fluid (aCSF) consisted of 120 mM NaCl, 4.8 mM KCl, 1.2 mM 

KH2PO4, 1.2 mM MgSO4, 25 mM NaHCO3, 2.5 mM CaCl, 10 mM d-glucose, pH 7.2–7.4. 

Ethyl alcohol (190 proof) was obtained from McCormick Distilling, Weston, MO. The 

dopamine D2 receptor antagonist (−)-sulpiride and the D1 receptor antagonist R(+)-

SCH23390 were purchased from Sigma-Aldrich (St. Louis, MO). All chemicals were 

dissolved in the aCSF solution to the desired concentrations.

Stereotaxic surgery procedures

Rats were implanted unilaterally with two 22-gauge cannulae (Plastics One Inc., Roanoke, 

VA) aimed at the right pVTA (AP −5.6 mm, ML +2.1 mm, DV −8.1 mm) and one of the 

forebrain regions: NAC shell (AP +1.7 mm, ML +2.3 mm, DV −6.9 mm), VP (AP + 0.1 

mm, ML + 2.3 mm, DV −7.0 mm), or mPFC (AP + 3.0 mm, ML + 0.7 mm, DV −3.0 mm), 

according to Paxinos and Watson (Paxinos and Watson, 1998). Cannulae for the pVTA and 

NACsh were implanted with a 10° angle to the midline, whereas cannulae for the mPFC and 

VP were implanted with no angle. Stylets were inserted into cannulae when no experiments 

were being conducted. Since accumulating evidence suggests that the NAC consists of two 

distinct sub-regions, shell and core, which differ from each other in various aspects (Zahm, 

1999), the current study also examined the involvement of the NAC core (NACcr, AP + 1.6 

mm, ML + 2.7 mm, DV – 6.0 mm). Rats were individually housed after surgery and were 

allowed to recover from surgery for approximately 5–7 days prior to tests during which rats 

were habituated and handled on a daily basis. Each rat was used for only one ICSA 

experiment.
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General test procedure

The ICSA tests followed procedures previously described (Ding et al, 2009b; Rodd-

Henricks et al, 2000). Briefly, rats were placed into operant conditioning chambers equipped 

with two levers, one active and one inactive. The active lever was connected to an isolated 

pulse stimulator (Model 2100) from A-M systems, Inc (Varlsborg, WA) controlled by an 

operant conditioning control system. The A-M pulse stimulator was connected to two 

electrodes that were immersed in a solution-filled cylinder container equipped with a 28-

gauge injection cannula. Each response on the active lever (FR1 schedule of reinforcement) 

activated the pulse stimulator that produced a 5-sec infusion current between the electrodes, 

resulting in an infusion of 100-nl solution into the p-VTA. Each infusion was followed by a 

5-sec timeout period. During both the infusion and timeout periods, responses on the active 

lever were recorded but did not produce further infusions. The responses on the inactive 

lever were recorded but did not result in any infusions. The assignment of active and 

inactive lever was counterbalanced among rats. There were a total of seven sessions 

conducted with each session being 4-hr long and 48–72 hr between sessions.

Experiment 1 examined the involvement of NACsh dopamine receptors in 
ethanol self-infusions into the pVTA—Rats started with self-infusions of 200 mg% 

ethanol into the pVTA during the first 4 sessions (acquisition). For sessions 5 and 6, rats 

received microinjection of aCSF, the dopamine D2 receptor antagonist sulpiride (10 or 100 

µM), or the dopamine D1 receptor antagonist SCH-23390 (10 or 100 µM) in the NACsh 

immediately prior to the commencement of ethanol self-infusion in the pVTA. During 

session 7 (reinstatement), rats self-infused 200 mg% ethanol in the pVTA without treatment 

in the NACsh. All antagonists were injected in a volume of 0.5 µl with a flow rate at 0.25 µl/

min. The injector remained in place for another 2 min before being removed. The 200 mg% 

ethanol is an optimal dose to produce both behavioral and neurochemical effects in the 

pVTA (Ding et al, 2009a; Rodd-Henricks et al, 2000). Since both antagonists showed 

efficacy at the 100- µM concentration, this concentration was tested in subsequent 

experiments.

Experiment 2 examined the involvement of NACcr dopamine receptors in 
ethanol self-infusions into the pVTA—The ICSA procedure was the same as in 

experiment 1 except sulpiride (100 µM) or SCH-23390 (100 µM) was microinjected into the 

NACcr immediately before sessions 5 and 6.

Experiment 3 examined the involvement of VP dopamine receptors in ethanol 
self-infusions into the pVTA—The ICSA procedure was the same as in experiment 1 

except that the microinjection of aCSF, sulpiride (100 µM) or SCH-23390 (100 µM) into the 

VP was given immediately before sessions 5 and 6.

Experiment 4 examined the involvement of mPFC dopamine receptors in 
ethanol self-infusions into the pVTA—The ICSA procedure was the same as in 

experiment 1 except that the microinjection of aCSF, sulpiride (100 µM) or SCH-23390 

(100 µM) into the mPFC was given immediately before sessions 5 and 6.
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Histology

At the end of experiments, rats were euthanized and bromophenol blue was injected into the 

target regions, and placement of injection sites were verified following procedures 

previously described (Ding et al, 2009b).

Statistical analysis

For each individual group, lever discrimination was determined by ‘lever (active vs inactive) 

x session’ mixed ANOVA with repeated measures on session; t-tests were used to compare 

responses between active and inactive lever following a significant main effect of lever (p < 

0.05). For determination of drug effect, paired t-tests were used to compare the responses on 

the active lever during sessions 5 and 6 to average responses on the active lever during 

acquisition sessions 3 and 4 following significant effects of session and interaction (p < 

0.05).

Results

Figure 1 depicts the representative non-overlapping placements of injection sites within the 

pVTA, mPFC, VP, NACsh and NACcr. The pVTA is defined as the VTA region from −5.3 

mm to −6.0 mm relative to bregma (Ding et al, 2009a; Rodd-Henricks et al, 2000). The 

injection sites in the mPFC were mostly within the prelimbic sub-region of the mPFC. The 

injection sites in the VP were mostly within the ventral portion of the VP.

The involvement of NACsh dopamine receptors in ethanol ICSA in the pVTA

Fig. 2 depicts the lever responses in groups that received ethanol self-infusions into the 

pVTA and microinjection of aCSF or sulpiride in the NACsh. The “lever × session” 

repeated ANOVAs were conducted in each group. The aCSF-treated group (Fig. 2A) 

demonstrated a significant effect of lever (F1, 14 = 21.5, p< 0.001), but no effect of session 

(F6, 9 = 1.1, p = 0.42) or interaction (F6,9 = 0.9, p = 0.55). Lever discrimination was 

observed during sessions 3 to 7. The 10 µM sulpiride-treated group demonstrated significant 

effects of session (F6, 7 = 37.7, p < 0.001), lever (F1, 12 = 17.8, p = 0.001), and interaction 

(F6, 7 = 10.1, p = 0.004). Lever discrimination was observed during the last two acquisition 

sessions and the reinstatement session. Microinjection of 10 µM sulpiride significantly 

reduced responses on the active lever only during the second treatment (Fig. 2B, p < 0.05). 

The 100 µM sulpiride-treated group (Fig. 2C) demonstrated significant effects of session 

(F6, 13 = 18.4, p < 0.001), lever (F1, 18 = 16.5, p = 0.001), and interaction (F6, 13 = 6.8, p = 

0.002). Lever discrimination was developed during acquisition and reinstatement sessions. 

Microinjection of 100 µM sulpiride into the NACsh significantly depressed responses on the 

active lever during both treatment sessions (ps < 0.05). Responses on the active lever during 

the reinstatement session returned toward the acquisition levels in both sulpiride-treated 

groups (Fig. 2B&C). In addition, response patterns in 30-min bins (Fig. 2D) indicated that 

the highest responding on active lever occurred during the first 30 min of session 4, with 

continued but lower responding occurring throughout the 4-hr session. In contrast, responses 

on the active lever following microinjection of sulpiride into the NACsh during session 5 

were observed essentially only during the first 30-min period.
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Fig. 3 shows the effects of microinjection of SCH-23390 into the NACsh on ethanol self-

infusion into the pVTA. The repeated measures ANOVA revealed significant effect of lever 

(F1, 8 = 49.1, p < 0.001), but no effect of session (F6, 3 = 2.5, p = 0.25) or interaction (F6, 3 = 

1.0, p = 0.54) in the 10 µM SCH-23390 treated group (Fig. 3A). Lever discrimination was 

observed during sessions 2 to 7. Microinjection of 10 µM SCH-23390 did not alter responses 

on the active lever. However, the 100 µM SCH-23390-treated group (Fig. 3B) demonstrated 

significant effects of session (F6, 5 = 11.6, p = 0.008), lever (F1, 10 = 37.8, p < 0.001), and 

interaction (F6, 5 = 9.2, p = 0.014). Lever discrimination was seen during acquisition 

sessions 2–4. Microinjection of 100 µM SCH-23390 significantly reduced responses on the 

active lever during both treatment sessions, but lever discrimination remained. Responses on 

the active lever returned toward acquisition levels during the reinstatement session. In 

addition, response patterns (Fig. 3D) indicate that the highest responding on the active lever 

in session 4 occurred during the 1st and 3rd hr; whereas responses on the active lever were 

reduced throughout with almost no responding observed after the 1st hr during session 5 

following microinjection of SCH23390 into the NACsh.

The involvement of NACcr dopamine receptors in ethanol ICSA in the pVTA

The effects of microinjection of sulpiride or SCH-23390 into the NACcr on lever responses 

are shown in Fig. 4. The repeated measures ANOVAs revealed a significant effect of lever, 

but no effect of session or interaction for both the sulpired-treated (Fig. 4A: session F6, 9 = 

0.9, p = 0.52; lever F1, 14 = 13.4, p = 0.003; interaction F6, 9 = 2.6, p = 0.1) and SCH-23390-

treated (Fig. 4B: session F6, 5 = 0.6; p = 0.70; lever F1, 10 = 25.1, p = 0.001 ; interaction F6, 5 

= 0.7, p = 0.65) groups. Lever discrimination was observed in sessions 2 to 7 in both groups. 

Microinjection of either sulpiride (100 µM) or SCH-23390 (100 µM) did not alter responses 

on the active lever.

The involvement of VP dopamine receptors in ethanol ICSA in the pVTA

In the aCSF-treated group (Fig. 5A), repeated ANOVA revealed significant effects of 

session (F6, 3 = 89.2, p = 0.002), lever (F1, 8 = 33.2, p < 0.001), and interaction (F6, 3 = 34.1, 

p = 0.007). Lever discrimination was observed during sessions 3 to 7. The significant effect 

of session appeared to be due to lower responses on the active lever during sessions 1 and 2. 

However, microinjection of aCSF did not alter responding for ethanol. The 100 µM 

sulpiride-treated group (Fig. 5B) demonstrated significant effects of session (F6, 5 = 8.9, p = 

0.015), lever (F1, 10 = 15.9, p = 0.003), and interaction (F6, 5 = 10.1, p = 0.011). Lever 

discrimination developed during acquisition sessions 2–4. Sulpiride significantly reduced 

responses on the active lever during the first treatment session compared with those during 

sessions 3 and 4, but not during the second treatment session. In the 100 µM SCH-23390-

treated group, repeated measures ANOVA showed significant effects of session (F6, 3 = 

45.3, p = 0.005), lever (F1, 8 = 5.37, p = 0.049), and interaction (F6, 3 = 61.8, p = 0.003). 

Lever discrimination developed during the acquisition sessions 3 and 4. Microinjection of 

SCH-233920 significantly reduced responses on the active lever during both treatment 

sessions to levels seen on the inactive lever. Responses returned toward acquisition levels 

during the reinstatement session.
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The involvement of mPFC dopamine receptors in ethanol ICSA in the pVTA

Repeated measures ANOVA in the aCSF-treated group (Fig. 6A) revealed a significant 

effect of lever (F1, 8 = 27.2, p = 0.001), but not session (F6, 3 = 1.5, p = 0.39) or interaction 

(F6, 3 = 1.9, p = 0.32). Lever discrimination was observed in sessions 2 to 7. Microinjection 

of aCSF did not alter responses on the active lever. The 100 µM sulpiride-treated group (Fig. 

6B) demonstrated significant effects of session (F6, 5 = 14.9, p = 0.005), lever (F1, 10 = 27.6, 

p < 0.001), and interaction (F6, 5 = 5.4, p = 0.042). Lever discrimination developed during 

acquisition sessions 2–4. Sulpiride significantly reduced responses on the active lever during 

both treatment sessions. However, lever discrimination remained during both treatment 

sessions. Responses on the active lever returned toward the acquisition levels during the 

reinstatement session. In the 100 µM SCH-23390-treated group (Fig. 6C), repeated ANOVA 

shows significant effects of session (F6, 3 = 22.8, p = 0.013), lever (F1, 8 = 16.4, p = 0.004), 

and interaction (F6, 3 = 36.6, p = 0.007). Lever discrimination developed during acquisition 

sessions 2–4. Microinjection of SCH-233920 significantly reduced responses on the active 

lever during both treatment sessions to levels seen on the inactive lever. Active lever 

responses returned toward the acquisition levels during the reinstatement session.

Discussion

The major findings of the current study are that microinjection of either a dopamine D1 or 

D2 receptor antagonist into the NACsh, the prelimbic sub-region of the mPFC, or ventral 

portion of the VP, but not the NACcr, reduced ethanol self-infusions into the pVTA. These 

results suggest that concurrent activation of dopamine receptors in the NACsh, mPFC and 

VP are required to maintain the rewarding actions of ethanol within the pVTA. Although the 

activation of dopamine receptors in these regions may involve multiple mechanisms, 

previous studies found that local application of ethanol into the pVTA increased dopamine 

release in the NACsh, mPFC and VP (Ding et al, 2009a, 2011), suggesting that activation of 

dopamine projections from the pVTA to these forebrain regions is one important mechanism 

mediating the reinforcing effects of ethanol in the pVTA. In addition, the feed forward 

process of the reinforcing effects of ethanol appears to require concurrent activation of both 

D1 and D2 receptors, since microinjection of either antagonist was effective in reducing 

ethanol self-infusions into the pVTA. These findings suggest that the neuro-circuitry 

underlying the rewarding effects of ethanol include, at least in part, the dopamine 

projections from the pVTA to the NACsh, ventral VP and prelimbic mPFC, but not the 

dopamine projections to the NACcr.

Numerous studies have indicated that the NAC is critical for mediating the reinforcing and 

rewarding effects of ethanol (Gonzales et al, 2004; Koob et al, 1998). Systemic and intra-

NAC administration of the non-specific dopamine receptor antagonist fluphenazine 

attenuated oral operant self-administration of ethanol in rats (Rassnick et al, 1992). The 

intra-NAC administration of the D1 antagonist SCH 23390 or the D2 receptor antagonist 

raclopride reduced responding for oral ethanol self-administration (Hodge et al, 1997; 

Samson et al, 1993). In addition, microinjection of SCH23390 or raclopride into the NAC 

reduced ethanol seeking behavior (Chaudhri et al, 2009; Czachowski et al, 2001). The 
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current study agrees with these studies and further indicates the involvement of NAC in the 

reinforcing effects of ethanol in the pVTA.

In the NACsh, both sulpirde and SCH23390 reduced ethanol self-infusions into the pVTA 

(Figs. 2 & 3), suggesting that a concerted activation of both D1 and D2 receptors within the 

NACsh is required for processing the rewarding information of ethanol in the pVTA. Both 

doses of sulpiride appeared to be more effective than doses of SCH23390 (Figs. 2 & 3). The 

pattern of responding on the active lever following sulpiride indicated it was effective within 

the first 30 min (Fig. 2D). Since SCH23390 and sulpiride have nM affinity to their 

respective receptors, their differences on the ICSA of ethanol into the pVTA may be due to 

differences in the cellular distribution of D1 and D2 receptors on median spiny projection 

neurons within the NACsh (Lu et al., 1998; Meredith 1999).

On the other hand, inhibition of either D1 or D2 receptors in the NACcr did not alter ethanol 

self-infusions in the pVTA (Fig. 4). Although it remains possible that concurrent inhibition 

of both receptors may alter ethanol self-infusions into the pVTA, the present results suggest 

that activation of each individual receptor may not be involved in the reinforcing effects of 

ethanol in the pVTA. A previous study suggests that D2 receptors in the NACcr may be 

involved in systemic reinforcing effects of ethanol, because local injection of a D2 receptor 

antagonist raclopride into the NACcr reduced operant responding for oral self-

administration of ethanol in rats (Samson et al, 2003). It is possible that different behavioral 

paradigms used (oral operant self-administration vs ICSA) may contribute to such 

difference.

The differential involvement of the NACsh and NACcr in the reinforcing effects of ethanol 

in the pVTA agrees with the findings that activation of dopamine receptors in the NACsh, 

but not NACcr, produced reward (Ikemoto et al, 1997). The mechanisms for this difference 

remain unknown, but may be associated with substantial difference between these two sub-

regions in their afferent and efferent projections (Brog et al, 1993; Zahm, 2000). For 

example, the NACsh projects mainly to the ventro-medial VP, which feeds to the 

mediodorsal thalamus, whereas the NACcr projects mainly to the dorsal lateral VP, which 

projects to the subthalamic nucleus (Zahm, 2000). In addition, different dopamine 

projections to the NACsh and NACcr may also contribute to this difference. The pVTA 

projects mainly to the NACsh, while the NACcr receives projections mainly from the 

anterior VTA (Ikemoto 2007).

Locomotor activity was not monitored in the current study. Several studies have examined 

the effects of intra-NAC administration of SCH23390 or sulpiride on locomotor activity. 

The general consensus among these studies is that intra-NAC treatment did not alter 

locomotor activity at concentrations up to 1.5 mM for SCH23390 (Coccurello et al, 2000; 

Gerrits et al, 1994; Taslimi et al, 2012; Zarrindast et al, 2012), or up to 700 µM for sulpiride 

(Coccurello et al, 2000; Taslimi et al, 2012; Zarrindast et al, 2012). These studies suggest 

that the reduction of ethanol self-infusions into the pVTA by SCH23390 or sulpiride (100 

µM each) infusion in the NACsh were not likely due to impairment of general locomotor 

activity.
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Administration of dopamine receptor antagonists into the ventral portion of the VP also 

reduced self-infusions of ethanol into the pVTA, suggesting that inhibition of dopamine D1 

or D2 receptor-mediated transmission in the VP prevented the feed forward information 

needed for maintaining the reinforcing effects of ethanol within the pVTA (Fig. 5). The 

reduction of self-infusions of ethanol is unlikely due to impairment to general locomotor 

activity because the concentrations used in the current study were within the range that was 

shown not to alter motor activity. Microinjection of SCH23390 (0.5 mM) or sulpiride (58 

mM) into the VP did not produce motor responses (Napier, 1992). Microinjection of 

SCH23390 (1.5–25 mM) or sulpiride (1.2 mM–12 mM) into the VP did not reduce water or 

ethanol consumption in rats, suggesting no alteration in general locomotor activity 

(Melendez et al, 2005; Shimura et al, 2006). In addition, the treatments with SCH23390 or 

sulpiride did not alter responses on the inactive lever (Fig. 5).

These results are consistent with the dopamine-stimulating effects of ethanol on the meso-

pallidal pathway, following either systemic or intra-pVTA administration of ethanol (Ding 

et al, 2011; Melendez et al, 2003). These results also agree with studies suggesting a general 

role of the VP in mediating the reinforcing and rewarding effects of ethanol (Kemppainen et 

al, 2012; Melendez et al, 2005). Findings from the current study are in contrast to a previous 

study that examined the involvement of VP D1 and D2 receptors in ethanol drinking 

(Melendez et al, 2005). Microinjection of sulpiride into the VP significantly increased 

ethanol drinking, whereas microinjection of SCH23390 into the VP produced a small, but 

non-significant decrease of ethanol intake (Melendez et al, 2005). The different animal 

models may explain the different results in these two studies.

A concerted activation of D1 and D2 receptors in the prelimbic mPFC seems to be critical to 

the reinforcing effects of ethanol within the pVTA, as evidenced by the results that either 

sulpiride or SCH23390 was able to attenuate self-infusions of ethanol into the pVTA (Fig. 

6). These effects were not likely due to locomotor impairment. A number of studies have 

shown that microinjection of SCH23390 into the mPFC did not alter locomotor activity at 

concentrations up to 6 mM (Hall et al, 2009; St Onge et al, 2011), and that microinjection of 

sulpiride into the mPFC did not alter locomotor activity at concentrations up to 3 mM 

(Beyer and Steketee, 2001; Steketee and Walsh, 2005). These results are consistent with 

previous findings that intra-pVTA administration of ethanol increased dopamine release in 

the mPFC (Ding et al, 2011). In addition, passive intra-venous infusion of ethanol was 

shown to increase dopamine overflow in the mPFC (Schier et al, 2013). These 

neurochemical data suggest a role of mPFC dopamine neuro-transmission in the effects of 

ethanol. Chemical lesion of the mPFC with 6-OHDA altered alcohol drinking behavior 

(Nielsen et al, 1999). Infusion of the D2 receptor antagonist raclopride into the mPFC 

reduced oral operant responding for ethanol in rats (Hodge et al, 1996; Samson et al, 2003). 

So far, the role of D1 receptors in the mPFC in oral operant self-administration or voluntary 

drinking of ethanol has received little attention.

During reinstatement, there appeared to be a difference in the recovery of responding in the 

VP compared to the other two regions. It is not clear why differences were observed 

between the reinstatement following sulpiride in the NACsh (Fig. 2) and VP (Fig. 5), and 

between the reinstatement in the mPFC (Fig. 6) and VP (Fig. 5) following SCH23390 
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administration. The differences may be due to a combination of factors, such as the unique 

neuronal circuitry within the VP, the interactions of the VP with the NACSh and pVTA, and 

differences in the recovery of the VP neuronal circuits to the dopamine antagonists.

In conclusion, the results of the current study provide evidence for an ‘alcohol reward 

circuit’ involving the pVTA, NACsh, prelimbic mPFC and ventral VP. The anterior VTA 

(Rodd-Henricks et al., 2000) and the NACcr (Fig. 4) do not appear to be involved in this 

circuit. The first step in processing the rewarding effects of ethanol within the pVTA is the 

concurrent activation of local dopamine neurons projecting to the NACsh, prelimbic mPFC 

and ventral VP to forward the rewarding signal to circuits that initiate and maintain goal-

directed behavior. This activation of pVTA dopamine neurons is mediated, at least in part, 

by excitatory 5-HT3 receptors (Ding et al., 2011; Rodd-Henricks et al., 2003). The activation 

of local dopamine neurons results in increased dopamine release in the NACsh, mPFC and 

VP (Ding et al., 2009a, 2011). Following the release of dopamine, a concerted activation of 

both D1 and D2 receptors in these three regions appear to be needed to process the rewarding 

information forward. The major feed forward effects of the dopamine inputs into the (a) 

NACsh are to regulate GABA outputs to the ventral-medial VP; (b) ventral VP are to 

regulate GABA outputs to the medio-dorsal thalamus; and (c) the prelimbic mPFC to 

regulate glutamate outputs to the premotor cortex. The net results of these actions are to 

initiate and maintain the goal-directed behavior to obtain self-infusions of ethanol into the 

pVTA. This hypothetical simple scheme does not take into account the multiple interactions 

these limbic regions have with other structures, nor does it take into account the complex 

neuronal interactions that occur within each region.
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Figure 1. 
Representative non-overlapping placements of the injection sites within the medial 

prefrontal cortex (A, filled triangle), ventral pallidum (B, open triangle), nucleus accumbens 

(C, filled circle for shell sub-region and open circle for core sub-region), and posterior 

ventral tegmental area (D, filled square), according to the brain atlas of Paxinos and Watson 

(1998). Placements within the medial prefrontal cortex were mainly within the prelimbic 

subregion. Placements within the ventral pallidum were mainly in the ventral portion.
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Figure 2. 
Effects of microinjection of vehicle (A, n = 8) or the D2 receptor antagonist sulpiride (B & 

C, 10 and 100 µM, n = 7 and 10 respectively) into the nucleus accumbens shell on responses 

(Mean ± SEM) on the active and inactive lever for self-infusions of 200 mg% ethanol into 

the posterior ventral tegmental area. All rats received self-infusion of 200 mg% ethanol into 

the posterior ventral tegmental area in all sessions; the microinjection of sulpiride was given 

immediately prior to sessions 5 and 6. * Responses on the active lever were significantly 

higher than responses on the inactive lever (p < 0.05). # Responses on the active lever were 

significantly lower than average basal responses during sessions 3 and 4 (p < 0.05). 
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Response on the active lever in 30-min bins during acquisition session 4 and following 

treatment with 100 µM sulpiride in session 5 (panel D).
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Figure 3. 
Effects of microinjection of the D1 receptor antagonist SCH-23390 (10 and 100 µM, n = 5 

and 6, respectively) into the nucleus accumbens shell on the responses (Mean ± SEM) on the 

active and inactive lever for self-infusions of 200 mg% ethanol into the posterior ventral 

tegmental area. All rats received self-infusions of 200 mg% ethanol into the posterior ventral 

tegmental area in all sessions; the microinjection of SCH23390 was given immediately prior 

to sessions 5 and 6 (panels A and B). * Responses on the active lever were significantly 

higher than responses on the inactive lever (p < 0.05). # Responses on the active lever were 
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significantly lower than average basal responses during sessions 3 and 4 (p < 0.05). 

Responses on the active lever in 30-min bins during acquisition session 4 and following 

treatment with 100 µM SCH 23390 in session 5 (panel C).
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Figure 4. 
Effects of microinjection of the D2 receptor antagonist sulpiride (100 µM, n = 8) or the D1 

receptor antagonist SCH23390 (100 µM, n = 6) into the nucleus accumbens core on 

responses (Mean ± SEM) on the active and inactive lever for self-infusions of 200 mg% 

ethanol into the posterior ventral tegmental area. All rats received self-infusions of 200 mg% 

ethanol in the posterior ventral tegmental area in all sessions; the microinjection of sulpiride 

(panel A) or SCH-23390 (panel B) was given immediately prior to sessions 5 and 6. * 
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Responses on the active lever were significantly higher than responses on the inactive lever 

(p < 0.05).
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Figure 5. 
Effects of microinjection of aCSF (n = 5), the D2 receptor antagonist sulpiride (100 µM, n = 

6) or the D1 receptor antagonist SCH23390 (100 µM, n = 5) into the ventral portion of the 

ventral pallidum on the responses (Mean ± SEM) on the active and inactive lever for self-

infusions of 200 mg% ethanol into the posterior ventral tegmental area. All rats received 

self-infusions of 200 mg% ethanol into the posterior ventral tegmental area in all sessions; 

the microinjection of aCSF (panel A), sulpiride (panel B) or SCH23390 (panel C) was given 

immediately prior to sessions 5 and 6. * Responses on the active lever were significantly 
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higher than responses on the inactive lever (p < 0.05). # Responses on the active lever were 

significantly lower than average basal responses during sessions 3 and 4 (p < 0.05).
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Figure 6. 
Effects of microinjection of aCSF (n = 5), the D2 receptor antagonist sulpiride (100 µM, n = 

6) or the D1 receptor antagonist SCH23390 (100 µM, n = 5) into the prelimbic sub-region of 

the medial prefrontal cortex on responses (Mean ± SEM) on the active and inactive lever for 

self-infusions of 200 mg% ethanol into the posterior ventral tegmental area. All rats received 

self-infusions of 200 mg% ethanol into the posterior ventral tegmental area in all sessions; 

the microinjection of aCSF (panel A), sulpiride (panel B) or SCH23390 (panel C) was given 

immediately prior to sessions 5 and 6. * Responses on the active lever were significantly 
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higher than responses on the inactive lever (p < 0.05). # Responses on the active lever were 

significantly lower than average basal responses during sessions 3 and 4 (p < 0.05).
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