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Abstract

Adverse drug events (ADEs) are an important public health concern, accounting for 5% of all 

hospital admissions and two-thirds of all complications occurring shortly after hospital discharge. 

There are often long delays between when a drug is approved and when serious ADEs are 

identified. Recent and ongoing advances in drug safety surveillance include establishment of 

government-sponsored networks of population databases, use of data mining approaches, and 

formal integration of diverse sources of drug safety information. These advances promise to 

reduce delays in identifying drug-related risks, allowing earlier identification of risks as well as 

reassurance about the absence of specific risks.
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INTRODUCTION

The science of assessing post-approval drug safety is changing rapidly. This paper describes 

recent regulatory and methodologic advances in drug safety surveillance. These advances 

promise to reduce the delays that often occur in the identifying important drug-related risks. 

By reducing these delays, these advances can reduce the clinical and public health burden 

caused by serious adverse drug events. For new drugs without important risks, these 

advances will provide earlier reassurance about safety.
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CLINICAL AND PUBLIC HEALTH CONSEQUENCES OF ADVERSE DRUG 

EVENTS (ADES)

The use of prescription drugs continues its decades-long increase, with recent data showing 

that 90% of Americans age 65+ and 48% of Americans of all ages take at least one 

prescription drug in a given month (1). Given such widespread medication use, it is not 

surprising that adverse drug effects (ADEs) have become an important public health 

concern, accounting for 5% of all hospital admissions (2) and two-thirds of all complications 

occurring shortly after hospital discharge (3). Common, well-known toxicities of widely-

used older drugs (e.g., hypoglycemia from antidiabetic drugs, neutropenic fever from 

chemotherapeutic agents, intestinal obstruction from opiates) are responsible for a clear 

majority of serious ADEs (4). However, low-frequency but serious ADEs associated with 

newer drugs (e.g., ventricular arrhythmia from terfenadine and cisapride, myocardial 

infarction from rofecoxib and possibly from rosiglitazone) seem to garner much more 

regulatory attention and news coverage. This may be due to the controversy that often 

surrounds unfolding evidence of a newly identified adverse effect, the commercial 

implications to highly marketed and profitable drugs, and/or the observation that people tend 

to be more accepting of known risks than unknown risks (5). Regardless, post-approval drug 

safety research is needed both to identify previously unrecognized ADEs and to better 

quantify and understand well-known ADEs so that their risks can be mitigated. As described 

below, there are often long delays between when a drug is approved and important adverse 

effects are identified.

DELAYS IN IDENTIFYING AND ELUCIDATING ADVERSE DRUG EVENTS

Despite the clinical and public health need for such research to identify serious adverse drug 

events, their identification can be delayed for many years after a drug is approved. In the US 

for example, 20% of drugs receive at least one new boxed warning (the strongest type of 

warning that can be placed on a drug’s label) after approval (6), with a median time between 

approval and issuance of a new boxed warning of 10 years (7). Such long delays can result 

in serious harm to many thousands of patients. For example, in the US alone, encainide and 

flecainide caused an estimated 50,000 premature deaths from cardiac arrhythmia (8), and 

rofecoxib may have caused an estimated 88,000–140,000 cases of serious coronary heart 

disease (9). To reliably detect rare adverse events, many thousands of patients taking a new 

drug need to be studied. Given the high per-patient cost of pre-approval trials, it is 

unrealistic to expect them to enroll a sufficient number of patients to reliably identify all 

serious adverse effects of drugs, especially uncommon effects, even if they are very 

important. Therefore, earlier post-approval identification, characterization, and mitigation of 

these risks is a major public health imperative, both to identify serious adverse effects and to 

provide reassurance when such effects are absent or vanishingly rare. New information 

about previously unknown drug effects comes from a variety of different sources, described 

below.

Hennessy and Strom Page 2

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2015 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SOURCES OF INFORMATION UNDERLYING THE IDENTIFICATION OF NEW 

DRUG SAFETY INFORMATION

Spontaneous adverse drug reaction reporting systems use reports of suspected ADEs 

submitted by manufacturers, health professionals, and patients to identify signals of potential 

ADEs. Such systems were developed in industrialized countries in response to the 

thalidomide disaster of the early 1960s in which women given thalidomide (a sleep agent 

promoted as being safer than barbiturates) gave birth to infants with phocomelia, a rare but 

serious birth defect syndrome characterized by often severe limb deformities (10).

Spontaneous reporting systems remain to this day a crucial means of identifying important 

post-approval drug safety information. Their importance is illustrated by a recent study by 

Lester and colleagues, who identified the sources of information that led to the 407 drug 

safety labeling changes that were made in the US in 2010. They identified 500 sources of 

information that led to these changes. Spontaneous reports were the leading source of such 

information, accounting for 52% of the sources (7). Other information sources that 

commonly led to safety-related labeling changes were clinical trials (16%), pharmacokinetic 

studies (11%), published case reports (6%), and observational pharmacoepidemiologic 

studies (6%). Spontaneous reporting systems appear to be particularly effective at 

identifying adverse events that occur rarely in the absence of drug exposure (e.g., 

rhabdomyolysis), but seem to perform poorly at identifying adverse events that represent an 

increase in the rate of relatively common events (e.g., myocardial infarction in persons with 

arthritis) (11). Further, spontaneous reports are by their nature anecdotal, and while useful 

for identifying potential drug safety signals and as a source of hypotheses about such 

features as induction period, susceptible subgroups, etc., they are of much more limited 

value for measuring incidence and inferring causality. While new surveillance systems such 

as those described below should increase the role of systematically collected healthcare data 

in identifying and quantifying new adverse effects, spontaneous reporting systems are likely 

to remain an essential component of drug safety surveillance for the foreseeable future.

CONTINUUM OF EVIDENCE THAT A DRUG CAUSES OR DOES NOT CAUSE 

AN ADVERSE DRUG EVENT

Figure 1 depicts a conceptual continuum of evidence that any given drug causes or does not 

cause any particular adverse event. Such a continuum can be said to exist for every drug-

adverse event pair. This evidence continuum ranges from evidence that the risk is absent, or 

at most small, on the left to an established, well-characterized risk on the right. It is 

important to distinguish strength of the drug-outcome association from strength of the 

evidence, although the two are related. This relationship stems from the fact that strength of 

association (often expressed as risk ratio or rate ratio) is widely regarded as an important 

factor in considering the strength of evidence for a causal relationship (12). Nevertheless, 

there can be strong evidence for a weak association (e.g., a meta-analysis of rigorous studies 

showing that oral contraceptives are associated with a 1.24-fold risk of breast cancer (13)) or 

weak evidence of a strong association (e.g., a non-population-based case-control study 
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showing that drinking three or more cups of coffee per day was associated with a 2.7-fold 

risk of pancreatic cancer (14), an association that was later refuted)(15).

On the far left hand side of the continuum lies evidence against risk. While 

pharmacoepidemiologic studies can demonstrate that any incremental risk, if present, is 

within certain numeric bounds, neither they nor any other kind of empiric research can fully 

disprove the existence of effect. For example, medications used to treat attention deficit 

hyperactivity disorder (ADHD) produce modest increases in average blood pressure and 

heart rate (16), which in population-based epidemiologic studies have been associated with 

an increased risk of cardiovascular events. These hypertensive and chronotropic effects of 

ADHD medications together with case reports of cardiovascular events occurring in children 

and adolescents taking ADHD medications led to widespread concern that ADHD 

medications might increase the risk of cardiovascular events in this population (17). Adding 

to the concern is the high prevalence of exposure to ADHD medications that is seen in some 

countries (17). Because of this concern, several large pharmacoepidemiologic studies were 

performed to assess this potential risk. These studies, which collectively included more than 

2.5 million children and adolescents, identified no increased risk of myocardial infarction or 

stroke associated with use of ADHD medications in children and adolescents (18–20). 

However, despite their large size, these studies still cannot exclude the possibility of a small 

or delayed risk, or a risk in an as-yet unidentified subgroup (e.g., those with undiagnosed 

congenital anomalies). Nevertheless, these studies do provide important reassurance that any 

incremental risk of cardiovascular events due to short-term use of ADHD medications in the 

overall population of children and adolescents, if it exists at all, is probably small.

At the far right-hand side of the evidence of risk continuum in Figure 1 lie established, well-

characterized risks. However, even risks that are regarded as well-characterized usually need 

additional research to better understand their frequency, determinants, and mechanisms, and 

to explore strategies to mitigate them. For example, the anticoagulant warfarin has been used 

clinically since 1954, and many studies have examined the risk of bleeding while on 

warfarin and determinants of this risk. Nevertheless, warfarin continues to be widely-used, 

and bleeding due to warfarin remains common and of enormous clinical and public health 

importance. Therefore, studies to better understand and reduce the risk of warfarin-

associated bleeding continue to be performed. Such studies include examinations of genetic 

determinants of responses to warfarin (21), drug-drug interactions involving warfarin (22), 

and the effectiveness of genetically-based warfarin dosing to minimize the risks of bleeding 

and thromboembolic events (23). Thus, even well-characterized risks often need further 

study to better understand and mitigate them. This is especially true given the high public 

health burden of common, serious adverse effects of widely-used drugs.

As described above, it can take many years after a drug’s approval for evidence concerning 

the existence of an ADE to accumulate, and at any juncture there can be great uncertainty 

and disagreement as to what the actual level of evidence is. Making regulatory decisions in 

the setting of such uncertainty and disagreement can be challenging for public health 

officials who on the one hand wish to minimize the burden of ADEs and on the other avoid 

dissuading or preventing safe use of the drugs in question. For example, at a Food and Drug 

Administration Advisory Committee hearing on the issue of whether antiepileptic drugs 
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increase the risk of suicide, committee members expressed concern that warning the public 

about a potential but unproven risk of suicide might dissuade some patients from taking 

needed antiepileptic drugs, leading to preventable seizures and their attendant consequences, 

such as motor vehicle crashes (24). Such seizures would be particularly unacceptable if the 

potential antiepileptic drug-suicide link was later refuted. Therefore, earlier development of 

rigorous evidence for or against such risks would greatly benefit regulators, clinicians, 

manufacturers, and most importantly patients.

A typical scenario for the development of evidence for a particular drug-ADE pair (Figure 

1) is to start at “no suggestion or refutation of risk” and move to “suggestion of possible 

risk” (often based on case reports) to “evidence for risk” to “established risk” and then 

possibly to “well-characterized risk” (often based on controlled pharmacoepidemiologic 

studies). This pattern has characterized many recently identified serious ADEs, including 

terfenadine-ventricular arrhythmia (25, 26), cisapride-ventricular arrhythmia (27, 28), and 

cerivastatin-rhabdomyolysis (29, 30). Regulatory action has often preceded confirmation 

and characterization of risk in pharmacoepidemiologic studies, particularly when acceptable 

therapeutic alternatives were available. With the ongoing development of government-

sponsored prospective epidemiologic surveillance systems (described below) that 

increasingly provide early pharmacoepidemiologic data about potential ADEs, regulatory 

action in the absence of pharmacoepidemiologic data may soon be less common.

Moving from right to left on the evidence of risk continuum is also possible, although 

seemingly less common. That is, data can emerge that argue against the existence of a risk 

that had previously been suggested or believed to be true. For example, metformin is the 

second member of the biguanide class of antidiabetic drugs, and at the time of approval was 

feared to cause lactic acidosis because phenformin, the first marketed biguanide, was 

withdrawn from the market because of this sometimes fatal adverse event (31). However, in 

the time since metformin has become widely used, evidence has emerged that the risk of 

lactic acidosis in patients with diabetes treated with metformin is no higher than that risk in 

similar patients treated with other antidiabetic drugs (32), arguing against an effect of 

metformin on increasing the risk of lactic acidosis. Further, the use of metformin appears 

safe even in persons with renal insufficiency (33), a very large population in whom 

metformin is currently officially contraindicated.

Thus, post-approval information can provide reason for either concern or reassurance. As 

discussed below, recent and proposed changes to drug safety surveillance promise to reduce 

the current delay in the generation of this information.

RECENT AND PROPOSED APPROACHES TO IMPROVING POST-

APPROVAL DRUG SAFETY SURVEILLANCE

Establishment of Government-Sponsored Networks of Population Databases for Drug 
Safety Surveillance

When a new drug is approved, identifying rare adverse effects (or conversely, providing 

reassurance about the apparent absence of such effects) as early as possible necessitates 

obtaining access to databases that record drug exposures and health outcomes in very large 
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populations. Historically, population databases, such as those recording the experience of 

people in a particular health care plan, have each been examined individually, most often by 

academic investigators and/or pharmaceutical companies. More recently, government 

agencies have established networks of population databases and begun using them to 

perform medical product safety surveillance. Such networks can be used to prospectively 

assess the safety of a drug, vaccine, or other medical product as it begins to be used. 

Prominent examples of such networks are presented in Table 1.

Crucial to the operation of many of these networks is the use of a distributed data model in 

which the data remain in possession of the data holder, which is often is a health plan, 

commercial insurance company, or other non-governmental entity (34). This distributed 

model is in contrast to a centralized data model in which data holders transfer a full copy of 

the data to a central repository. A major advantage of a distributed data model is that data 

holders retain physical possession and control over the data. This ameliorates issues related 

both to patient privacy and to the proprietary value of the individual-level data. An 

additional advantage of a distributed data model is that it ensures that the data holders, who 

are most familiar with the environment in which the data were produced, have maximal 

opportunity for scientific input into the planning, conduct, and reporting of safety 

evaluations. In some distributed data models, each data holder creates a separate copy of its 

data in a standard format. This approach is known as a common data model (35, 36). Use of 

a common data model allows statistical analysis programs to be written centrally and 

executed peripherally, with aggregated results (which can be either devoid of personal 

identifiers or be restricted to only highly summarized personal identifiers, depending on the 

analytic approach) provided to the coordinating center (37). Writing statistical programs 

centrally improves consistency, reduces the opportunity for error, and confers operational 

efficiencies. The development of analytic methods that accommodate distributed data 

environments is an active area of methodologic research (38, 39), as is the development of 

methods for safety surveillance that accommodate health care data that accrue over time (40, 

41).

One early example of a post-approval surveillance activity using a government-sponsored 

network was an assessment of the risk of serious bleeding in users of dabigatran, an 

anticoagulant approved in Europe and Canada in 2008 and the US in 2010. In response to a 

large number of spontaneously reported episodes of serious and fatal bleeding in users of 

dabigatran, Mini-Sentinel (a pilot project sponsored by the FDA to create an active 

surveillance system—the Sentinel System—to monitor the safety of FDA-regulated medical 

products) rapidly compared the frequency of serious bleeding between new users of 

dabigatran and new users of warfarin in a set of health plans. The rapid evaluation found that 

rates of serious intracranial and gastrointestinal bleeding in dabigatran users were no higher 

than the corresponding rates in users of warfarin (42). Although this evaluation was not 

randomized and did not control for potential confounding factors, it did provide relatively 

early reassurance that real-world use of dabigatran was not associated with higher bleeding 

rates than warfarin, in accordance with the results of a prior randomized trial (43). In follow-

up to this initial evaluation, FDA is conducting additional assessments that will control for 

measured potential confounding factors (42).
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Use of Data Mining to Identify Potential Adverse Drug Events

We are currently experiencing an explosion in the application of data mining (i.e., the use of 

computational processes to discover patterns in large data sets) to predict, identify, and 

explain drug effects. Data mining approaches use a wide variety of source data, including 

collections of anecdotal adverse drug event reports (42), coded and free-text health care data 

(44–46), published biomedical papers (47), curated drug information sources (48), and 

internet message boards (49, 50). One family of data mining approaches used to predict and 

explain drug action is the construction of biological networks linking drugs with other 

entities including genes, metabolites, microRNA, proteins, etc. through pairwise links 

reflecting current knowledge and/or new empiric findings (51). Construction of such 

networks is a key tool of systems pharmacology, an emerging field that uses empiric 

observation and computation to develop an understanding of drug action across multiple 

scales of complexity (52). Naturally, many potential relationships identified through 

network analysis and other data mining approaches may be spurious rather than reflect 

biologically-driven relationships. Therefore, potential relationships identified through data 

mining require confirmation that they are biologically and clinically meaningful, and 

elucidation of the mechanisms of such relationships. That said, data mining approaches hold 

promise for reducing the delay in identification of important ADEs.

Integration of Diverse Sources of Information to Better Predict and Identify Adverse Drug 
Effects

Many different types of information are used to predict, identify, and explain potential 

adverse drug effects. This information includes the structural, physiochemical, 

pharmacokinetic, and pharmacodynamic properties of drugs, and characteristics of the 

multiple pathways and systems that the drugs and their metabolites interact with. Such 

information relates to vastly different biologic scales (e.g., molecules, tissues, organs, 

physiologic systems, whole organisms, populations) and derives from a wide variety of 

methods (e.g., in vitro studies, animal studies, human biomarker studies, randomized trials 

examining health outcomes, spontaneous reporting systems, pharmacoepidemiologic 

studies).

Biologic plausibility is often considered when evaluating whether a given drug safety signal 

(such as one arising from spontaneous reporting systems) indicates a true causal relationship 

between a drug and a health outcome. Biologic plausibility is assessed and expressed 

implicitly and qualitatively, in contrast to the results of clinical and epidemiologic studies of 

health outcomes, which are expressed quantitatively (e.g., risk ratio, risk difference). 

Integration of biologic plausibility together with the results of health outcome studies is also 

done qualitatively, with biologic plausibility often assessed in response to the emergence of 

unexpected drug-outcome associations. As pointed out in the 2012 Institute of Medicine 

(IOM) report entitled Ethical and Scientific Issues in Studying the Safety of Approved Drugs 

(53), drug safety would be improved by the development of approaches to express biologic 

plausibility quantitatively, and further through quantitative incorporation of biologic 

plausibility together with the results of health outcome studies. As further pointed out by the 

2012 IOM report, a Bayesian approach to quantifying biologic plausibility and incorporating 

biologic plausibility with health outcome data holds promise. Such an approach might begin 

Hennessy and Strom Page 7

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2015 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with the elicitation from biological scientists of a mechanistically-based prior probability 

that a drug causes a given outcome or a distribution of such probabilities if (as seems likely) 

a single satisfactory estimate cannot be elicited. This distribution of prior probabilities 

would then be combined explicitly and mathematically with the results of health outcomes 

studies as they emerge. Such results would be expressed as a Bayes factor, which is the ratio 

of the posterior probability that a causal relationship exists relative to the probability that 

one does not (54). Multiplying the mechanistically-based prior probability by the Bayes 

factor derived from health outcome studies would yield a posterior probability (with a 

credible interval, the Bayesian analogue of a confidence interval) that the drug causes the 

outcome. This posterior probability could inform (but not replace) regulatory decision-

making and later serve as a prior probability when subsequent mechanistic and health 

outcome data emerge.

Conceivably, a set of mechanistically-based prior probabilities that a new drug causes a set 

of health outcomes commonly associated with drugs (e.g., liver injury, myocardial 

infarction, ventricular arrhythmia, venous thromboembolism, pancreatitis, etc.) could be 

estimated when a drug is approved and updated as new mechanistic and health outcomes 

information emerges.

A number of challenges need to be addressed to make such an approach practical. One 

challenge is the uncertainty in identifying which biologic scientists should provide 

mechanistically-based probabilities. The concept of “biologic plausibility” is broad and ill-

defined, and it is unclear who would give the best prior probabilities. It seems likely that 

experts in one area relevant to a drug’s mechanism may have little knowledge about others. 

Further, because many or most of the experts in the pharmacology of a new drug may have 

participated in that drug’s development, it may be difficult to identify experts with the 

requisite knowledge who do not possess disqualifying intellectual and/or financial conflicts 

of interest.

Experts being asked to provide mechanism-based prior probabilities should presumably be 

provided with standard summaries of the most relevant information. The ideal content and 

format of such information also needs study, and deciding what is “relevant” in this context 

may be difficult. Further, much of the relevant biologic information may be considered 

confidential and proprietary.

In addition, while there is a modest literature examining approaches to eliciting Bayesian 

prior probabilities (55–57), there is no agreed-upon standard, nor even criteria as to how 

different approaches should be assessed and compared.

Determining the best approach for eliciting prior probabilities is made challenging by the 

lack of a gold standard prior probability. While one could consider using “settled” cases 

(e.g., rofecoxib and myocardial infarction) to develop and test elicitation methods, it would 

be unrealistic to ask experts to forget what they know about the health outcome data.

Other challenges include how to express the full range of the results of health outcome data 

as a single Bayes factor. Pharmacoepidemiologic studies often yield multiple results that can 

inform causal judgments, including the overall association, associations with alternatively-
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defined outcomes, analysis of dose-response, duration-response, subgroups, and sensitivity 

to various assumptions. However, current Bayesian methods assume that a single metric 

expresses the strength of the evidence for the null vs. alternative hypotheses. Thus, 

approaches to deriving Bayes factors that more fully the broad range of study results are 

needed. Further, the potential for Bayes factors to incorporate potential sources of error such 

as selection bias, confounding, and information bias needs further development.

Finally, it is unclear who will provide the considerable resources needed to implement and 

maintain such a system for all drugs or even all new drugs, given that there is often a near-

constant flow of new information for rapidly emerging safety issues.

Despite these challenges and knowledge gaps, quantitative incorporation of biologic 

plausibility with health outcome data is a promising approach to reduce the delay in 

identifying important drug safety issues.

SUMMARY AND CONCLUSIONS

The use of prescription drugs is continues to grow, and adverse drug effects have 

enormously important clinical and public health consequences. The discovery of new 

adverse events is often delayed for many years after a drug is approved, resulting in many 

thousands of deaths and cases of serious injury. At any point in time, the evidence for or 

against a given drug-outcome association can be plotted on a continuum of certainty, and 

this evidence changes over time. A number of ongoing and proposed changes to drug safety 

surveillance promise to reduce the delay in identifying these risks or, conversely, providing 

reassurance. These changes include establishment of government-sponsored networks of 

population databases, use of data mining, and explicit quantitative integration of diverse 

sources of drug safety information, including mechanistic information. These changes 

promise to reduce the delay in identifying serious adverse drug events and thus reduce their 

considerable clinical and public health burden.
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Figure 1. 
Continuum of evidence that a given drug causes a given adverse outcome.

Hennessy and Strom Page 14

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2015 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hennessy and Strom Page 15

Table 1

Large networks of government-sponsored networks of population databases used for research and surveillance 

of drug and vaccine safety.

Sponsor Name Populations covered* Number of
individuals in
population
actively
contributing 
data

Examples of recent evaluations

Health Canada; 
Canadian Institutes of 
Health Research

Canadian Network for 
Observational Drug 
Effect Studies 
(CNODES) (58)

Alberta, British Columbia, 
Manitoba, Nova Scotia, 
Ontario, Quebec, UK 
Clinical Practice Research 
Database

3.3 million in 
Canada + 11.8 
million in the UK

• Statins and acute 
kidney injury (59)

• PPIs and risk of 
pneumonia (59)

• Antipsychotic drugs 
and hyperglycemia 
(59)

European Commission Exploring and 
Understanding 
Adverse Drug 
Reaction by 
integrative mining of 
clinical records and 
biomedical 
knowledge (EU-
ADR) (60)

Italy, Denmark, 
Netherlands, United 
Kingdom,

20 million (61) • Nonsteroidal anti-
inflammatory drugs 
and gastrointestinal 
bleeding (60)

US Food and Drug 
Administration

Mini-Sentinel (62) multiple health plans in 
United States

43 million (63) • Dabigatran and 
bleeding (42)

• Agents acting on the 
renin-angiotensin-
aldosterone system and 
angioedema (37)

US Food and Drug 
Administration

US Federal Partners’ 
Collaboration (64)

US Medicare, Medicaid, 
Department of Veterans 
Affairs, and Department of 
Defense

153 million (64) • Safety of antiviral 
drugs used in the 2009 
H1N1 (64) influenza 
pandemic

• Dronedaroneand heart 
failure (65)

US Centers for Disease 
Control and Prevention

Vaccine Safety 
Datalink (66)

multiple health plans in 
United States

9 million (67)

*
Entire populations of these geographic areas are not necessarily covered.
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