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Abstract

Explicitly modeling underlying relationships between a survival endpoint and processes that 

generate longitudinal measured or reported outcomes potentially could improve the efficiency of 

clinical trials and provide greater insight into the various dimensions of the clinical effect of 

interventions included in the trials. Various strategies have been proposed for using longitudinal 

findings to elucidate intervention effects on clinical outcomes such as survival. The application of 

specifically Bayesian approaches for constructing models that address longitudinal and survival 

outcomes explicitly has been recently addressed in the literature. We review currently available 

methods for carrying out joint analyses, including issues of implementation and interpretation, 

identify software tools that can be used to carry out the necessary calculations, and review 

applications of the methodology.
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1. Introduction

The objective of this article is a summary of currently available methods for joint modeling 

of survival data and longitudinal nonsurvival data with emphasis on Bayesian approaches, 

including evaluations of strengths and weaknesses of the various methods. We explore the 

practical implications of applying Bayesian approaches to the joint modeling of longitudinal 

and survival-type outcomes, with the aim of providing recommendations for how such 

models could or should be constructed, illustrating how they might be used, and elucidating 

the potential advantages they present and their limitations. We also evaluate software 

currently available for carrying out calculations needed for designs and data analyses, and 

identify needs for further software development.

1.1. General background

The joint modeling of survival with longitudinal data continues to be an active area of 

statistical methodological research. Much of the work has addressed improving efficiency 

and reducing bias in the survival component [1]. Accordingly, most of the inferential 

objectives have concerned characterization of survival estimates. Nonetheless, researchers as 

early as McArdle et al [2] have focused on the quantitative changes in the longitudinal 

trajectory component of these joint models. More recently, researchers have focused on the 

magnitude of the association between the survival and longitudinal data-generating 

processes to show person-level correspondence between these outcomes [3–5].

Joint modeling can benefit the analyses of both longitudinal and survival outcomes. The use 

of longitudinal mixed models to incorporate the effects of time-varying covariables in the 

evaluation of survival endpoints more accurately represents the quantitative influence of 

these factors on the survival estimates, compared with direct inclusion of the factor × time 

terms into the survival regression. Including survival information into the evaluation of the 

longitudinal observations directly incorporates the effect of an informative missing-data 

mechanism into the assessment of trends in these observations. Accounting for a clinical 

outcome as an informative censoring event is especially important when inferences about a 

longitudinal process are the key objective. Other approaches such as list-wise deletion to 

remove the uncensored cases or some form of averaging to retain them do not portray the 

true data-generating mechanism accurately.

The precision of the estimates of the parameters of the survival model, the longitudinal 

model, or both and, therefore, the accuracy of inferences about the underlying data-

generating mechanisms, may be increased by models that incorporate both kinds of 

outcome, especially if the outcomes are strongly associated. Increased sensitivity for 

detecting significant treatment effects can be particularly important when evaluating the 

longitudinal outcomes of RCTs. Practical and scientific considerations impose constraints 

that limit the trial size and result in designing studies to meet the criteria of primary study 

endpoints (e.g., overall or progression-free survival). Trial sizes are seldom large enough to 

provide adequate power for highly variable endpoints such as patient-reported outcomes 

(PROs), so that the increased sensitivity joint modeling can provide and offers the hope of 

detecting real treatment effects.
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1.2. Patient-reported outcomes

Longitudinal values of objective measurements such as blood pressure and CD4 cell counts 

are familiar features of trials evaluating the effects of treatments or interventions on clinical 

outcomes such as disease progression or death. However, subjective measures also can be 

helpful for understanding the effects of the treatments or interventions. Indeed, corroborative 

support associating health outcomes as reflected in PROs can improve the interpretability of 

clinical measures. Moreover, information concerning how patients feel during and after 

treatment is a topic of growing interest, and addressing this information need will require 

more methodological development and more careful consideration when designing RCTs [1, 

6, 7].

There has been an increase in the desire to evaluate the patients’ perspectives by including 

specific questionnaires in clinical research programs [8–10]. Although the evaluation of 

subjective responses often is viewed as a soft science, the psychometrics used to develop, 

present, and analyze these data are at least as advanced as methods used for traditional 

clinical outcomes (e.g., overall survival). Nonetheless, results typically have been 

disappointing for various reasons, such as correct analyses not being based on appropriate 

study designs, inadequate data collection schedules, and nonmeaningful analyses driven by 

descriptive-only research hypotheses [1, 3, 4, 7].

The situation has been aggravated by the common practice of viewing quality of life (QOL) 

assessments or health outcomes information as supplementary information that is presented 

in separate trial protocols and analysis plans. This practice ignores the fact that these 

observations are like any other outcomes. Generally, symptom-based evaluations are more 

accepted by regulators (Food and Drug Administration PRO guidance) perhaps thereby 

elevating their status among other psychometrically-based constructs.

Experience from oncology trials suggests that there may be some practical constraints. The 

requirements for design and analysis of oncology clinical trials are well researched and 

documented [11, 12]. The prescribed endpoints are viewed as standard, particularly for 

developing oncology bio-pharmaceuticals, and essential for successful product registration 

and clinical use. However, as a practical matter, practitioners are trained and experienced in 

working with these standard outcomes, so that changing the methodology (e.g., from a Cox 

regression to a parametric non-PH model) generally would yield a different statistic but 

impart little or no additional useful clinical information upon which to base patient 

decisions. Hence, although joint modeling of survival and longitudinal data may improve 

oncology survival endpoint estimates, the pragmatism of regulators and practitioners might 

limit the widespread adoption of alternative approaches.

The Food and Drug Administration has published guidance on general principles of 

including PROs into RCTs with the goal of achieving label claims based on these 

assessments [13]. There is, however, evidence that operationalization and methodological 

gaps remain when seeking to meet standards for inclusion of PRO measures in RCTs [14]. 

The CONSORT-PRO extension offers a checklist of considerations for inclusion of PROs in 

RCTs, which includes specific mention of interpreting PRO data in relation to clinical 

outcomes, including survival data [15]. Additionally, general references are available to 
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inform the design and analysis of clinical studies that include PROs as study endpoints [16]. 

Nonetheless, these references do not provide detailed recommendations and rationale that 

are needed to overcome the traditional methodological challenges such as showing 

compelling evidence of the association across time between PROs and clinical endpoints as 

well as the need for comprehensive inclusion of PROs in the study design and analysis plans 

(e.g., including properly timed and sufficient collection of PRO data to provide internal 

validity and statistical power). There are no well-developed standards for the use of PROs in 

registration designs or in routine clinical practice for oncology or other therapeutic areas 

[13]. Progress has been made, so opportunities exist for outlining appropriate design and 

analysis principles for incorporating PRO outcomes into these studies. That said, it still is 

advisable to consult informative references before undertaking the design and analysis of 

clinical studies that include PROs as study endpoints.

Patient-reported outcome assessments should be developed routinely with the goal of 

correspondence to other well-known endpoints using traditional methods such as cross-

sectional correlation [17]. Demonstrating such correspondence at the patient level and 

longitudinally through the use of joint modeling would provide a more compelling rationale 

in support of the PRO validity. For example, when evaluating therapies for treating diabetes, 

PRO and longitudinal measurements should be linked to actual progression of diabetes, 

especially as manifested by recurrent events such as episodes of hypoglycemia.

Patient-level modeling of a recurring event, linked to a PRO trajectory, would inform the 

event antecedents thereby allowing characterization of factors associated with heterogeneity 

in treatment effect. Clinical trials often include many PROs in order to examine a wide 

range of patient outcomes. Under such a scenario, the correspondence between these 

different self-reported items and constructs would provide a much more data-informed 

picture upon which to evaluate the efficacy of an investigational compound.

1.3. Benefits of joint modeling [1, 18]

Joint models provide more efficient estimates of the treatment effects on the time to event 

and the longitudinal marker, and reduce bias in the estimates of the overall treatment effect 

[1, 5]. For example, if a particular drug reduces the hazard of a particular disease by 30%, 

then a joint model may lead to an estimated hazard ratio of 0.75, whereas a conventional 

model (e.g., a Cox model) that does not incorporate the longitudinal data into the analysis 

may yield a hazard ratio of 0.80. In this case, we say that the estimate based on the joint 

model is less biased than the Cox model estimate because 0.75 is closer to the true hazard 

ratio of 0.70. As a result, joint models are now increasingly used and often preferred over 

the Cox model alone because they yield more accurate and more precise estimates of the 

treatment effect. Greater efficiency implies higher power and smaller sample sizes in 

designing clinical trials. Thus incorporating the longitudinal data into the design of a study 

has the potential of yielding lower sample sizes with higher power compared with that of 

conventional designs based on time-to-event data alone.
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1.4. Challenges of joint modeling

Some of the practical challenges are those encountered by any technology seeking 

penetration into established practices and beliefs: fear of the new, unknown risk 

consequences of new methods, and so on. Overcoming these challenges will take time and 

demonstration of the benefits of joint modeling, which is one of the aims of this article.

The methodology does rely on assumptions about the random effects. However, recent work 

has shown that the robustness of the assumptions about random effects increases with the 

number of observations per subject [19, 20].

1.5. Other considerations/applications/extensions

The joint modeling of survival with semicontinuous data, that is, data characterized by a 

large portion of responses equal to a single value (e.g., zero or one on a bounded 0–1 scale), 

may be used to estimate a treatment-to-progress effect on oncology symptom data in 

otherwise healthy clinical trial enrollees reporting a strong floor effect corresponding to a 

general lack of symptoms. Under this scenario, right-skewed data with a mode at zero can be 

represented as a longitudinal two-part model consisting of a mixture of a binary and a 

continuous process, respectively, indicating the absence/presence of a symptom and the 

intensity of a symptom. The post-progression nonignorable absence of longitudinal data, by 

design collected until disease progression, can be incorporated through the joint modeling of 

progression-free survival with the longitudinal mixture [3, 4].

2. Joint models

Joint models generally consist of two parts: a model for event occurrence and a model for 

trajectory of longitudinal measurements that share some parameters. These two parts can be 

linked in various ways, which fall into three major categories: (i) naively using observed 

values of longitudinal variables as covariates in a Cox or parametric survival model; (ii) a 

two-stage approach in which a model first is fit to the longitudinal data, and then the fitted 

values of the longitudinal trajectory for each individual are used as covariates in the time-to-

event model; and (iii) using shared random effects in the models for the longitudinal and 

time-to-event likelihoods. Additional applications of joint models are described in what 

follows.

Joint models are not the same as survival models with time-varying covariates. The 

longitudinal data in these latter models just provide additional covariates to illuminate the 

survival process. The longitudinal observations in joint models are important in their own 

right, and the possibility of differential withdrawal (survival) raises the problem of 

differential bias and difficulty in understanding the true nature of the longitudinal process.

The following discussion addresses some specific issues associated with the definition and 

choice of various modeling approaches.

2.1. Longitudinal models

Longitudinal observations typically are described by a linear (usually) mixed model, (e.g., 

[21])
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(1)

β is a vector of fixed effects with corresponding time-varying design/covariate matrix. 

Xi(tij), bi is a vector of (usually normally distributed) random effects with corresponding 

time-varying design/covariate matrix Zi(tij). ui is a vector of time-invariant covariates (e.g., 

baseline measurements/assessments) contained in some larger set Ui(ui ℰ Ui).

Expression (1) can be generalized in various ways. The time dependence of the observations 

could be expressed by a simple polynomial regression or a more complex functional 

representation such as a spline regression could be used. The residual errors might not be 

independently distributed. The longitudinal measurements could themselves be vectors, so 

that survival or time to event might depend on a collection of correlated biomarkers or other 

longitudinal measurements, and not on just a single observable.

2.2. Survival models

‘Survival’ does not necessarily mean death. It could refer to a number of ‘terminating’ 

events such as progression of cancer, progression to full AIDS, progression of kidney failure 

to requiring dialysis, etc. In principle, although this is not addressed here, the events could 

be recurrent (see also [22–24]).

Survival models usually are employed in later-stage clinical trials as part of the evaluation of 

efficacy with respect to terminating endpoints. However, time-to-event models can also be 

used for safety endpoint modeling during early stages of development. Time to occurrence 

of toxicity is of particular interest in phase I oncology trials, for example, where late-onset 

toxicities become a serious concern for the development of targeted therapies [25]. Bayesian 

dose-finding methods based on time-to-toxic events currently are modeled using a single 

survival model [26, 27], but its joint use with a continuous PRO-endpoint such as pK 

(pharmacokinetics = measures of exchanges of administered doses among body 

compartments) or pD (pharmacodynamics = biological response measures such as blood 

pressure, EEG, and tumor volume) would allow a more accurate determination of the proper 

dose. In general, pK/pD model analyses proceed sequentially or simultaneously. The 

sequential approach first fits a model to the pK data and then fits a pD model to pD data 

using the expected value of pK predictions as covariates. With the simultaneous, or joint, 

approach (e.g., [28, 29]), the entire pK/pD model is fitted simultaneously to all of the data 

using shared parameters. The details, which are crucial and sometimes controversial, are 

outside the scope of this article. A number of software packages can be used to analyze 

pK/pD models, for example, WinBugs with the WBDiff package [30, 31], GNU MCSim 

[32], or NonMEM 7 [33]; considerations governing the choice of software are discussed in 

[34, 35].

2.2.1. Proportional hazards time-to-event model—The idea behind a joint model is 

to link the component processes together through some shared parameters. Let mi(t) denote 

the complete true unknown patient-specific longitudinal trajectory, and let Mi(t) = {mi(s); 0 
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≤ s ≤ t denote the corresponding true unknown longitudinal profile up to time t. We define 

the proportional hazards time-to-event submodel

(2)

where h0(t) is the baseline hazard function, vi ℰ Ui denotes a set of baseline time-

independent covariates, φ denotes the associated vector of log hazard ratios, and α denotes 

an interpretable association parameter. The quantity exp(α) is the hazard ratio for a one-unit 

increase in mi(t), at time t. Including the true unobserved trajectory function, mi(t), into the 

linear predictor of the proportional hazards model provides a way to link the component 

submodels to form the joint modeling framework, that is, to combine the functional 

representation (1) of the longitudinal observations with the survival submodel. Formulation 

(2) assumes that the association is based on the current value of the longitudinal response at 

time t. The survival function follows naturally

(3)

The time-dependent nature of the longitudinal process mi(t) means that the integral in (3) 

often will need to be calculated numerically, which complicates the estimation process.

In fact, the model does not have to depend only on the current value of a univariate 

longitudinal process [18, 36] and does not have to assume proportional hazards. Early work 

in the field of joint modeling chose the Cox model as the survival submodel of choice, 

which of course does not directly estimate the baseline hazard function [37–39]. This is both 

a strength and a weakness. Leaving the baseline hazard function unspecified avoids the need 

for assumptions about the underlying functional form. However, a parametric framework is 

more useful and convenient when the objective is to obtain absolute measures of risk, such 

as predictions of the outcomes for individual patients.

Moreover, a fully nonparametric survival model raises the problem of bias, because an 

unspecified baseline hazard leads to underestimation of the standard errors of parameter 

estimates [40]. Consequently, bootstrapping is required to obtain appropriate standard errors 

when incorporating the Cox model as the survival model of choice. The computationally 

intense numerical integration required to fit these models is an undesirable aspect of this 

particular joint modeling framework.

Using parametric survival distributions such as the exponential, Weibull, or Gompertz 

distributions avoids this issue, but assuming a standard survival distribution can restrict the 

range of baseline hazard functions that can be captured accurately. This has motivated 

alternative approaches, for example, using B-splines [36] or piecewise constant baseline 

hazard functions (e.g., [36, 41], but certainly other authors as well).

2.2.2. Proportional cumulative hazards time-to-event model—The flexible 

parametric survival model of Royston and Parmar provides an alternative to the commonly 

used parametric distributions [42]. This has recently been incorporated into the joint 
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modeling framework [21] by modeling on the log cumulative hazard scale instead of on the 

log hazard scale,

Flexibility is incorporated by using restricted cubic splines to model the baseline log 

cumulative hazard function.

2.2.3. Accelerated failure time models—The accelerated failure time framework can 

be used as the survival submodel, with covariates incorporated as described by Cox & Oates 

[43]

where S0(.) is the baseline survivor function, such as the Weibull distribution, log-normal 

distribution, log-logistic distribution, and generalized gamma distribution.

2.3. Alternative association structures

The parametrization of models relating the risk of the event at time t to the true unobserved 

longitudinal profile at that time often is called the current value parameterization. This is not 

the only way to relate longitudinal and time-to-event observations. Exploring alternative, 

clinically meaningful, ways of linking the two processes expands the usefulness of the joint 

modeling framework.

2.3.1. Interaction effects—The joint model association structure just described assumes 

the same association between the true longitudinal value and the risk of event for all 

patients. Sometimes it may be more realistic to allow for different values of association for 

different patient subgroups. This can be achieved by forming interactions between the 

baseline covariates and the true unobserved longitudinal trajectory function, as follows:

The quantities vi1 and vi2(vi1, vi2 ℰ Ui) are time-invariant baseline covariates; vi1 is the same 

as in (2) and (3). The new covariates vi2 are interaction covariates that multiply the true 

longitudinal profiles (as above), so that the association parameters α can reflect different 

associations for different covariate patterns. The association structure reduces to the 

standard current value parameterization when vi2 = 1.

2.3.2. Time-dependent slope—The association structures described earlier incorporate 

the current value of the true longitudinal response. But they could as well incorporate the 

rate of change of the true longitudinal response, especially when the direction and strength 

of trend of a biomarker are as important as its level at any point in time. That is, (2) could be 
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generalized to include the slope  of the longitudinal trajectory, so that the hazard 

function becomes

(4)

where

Ye et al incorporated this association structure into a two-stage regression calibration joint 

model [44]. Wolbers et al described the added benefit of including the rate of change of 

CD4 trajectories within a joint model framework to model the risk of progression to AIDS 

or death in HIV-positive patients [45].

2.3.3. Random effects parameterization—Yet another time-independent association 

structure includes only the random effects in the linear predictor of the survival submodel,

(5)

This formulation includes both the population level mean of the random effect, plus the 

subject specific deviation. This model can be simplified by including only the subject-

specific deviation,

(6)

The association parameters in (5) and (6) have different interpretations. Suppose, for 

example, that the longitudinal trajectories are described by a random intercept and random 

slope model,

The hazard ratio at time t = 0 that reflects association between patient-specific values of the 

true longitudinal outcome at t = 0 can be evaluated using

where exp(α1) is the hazard ratio for a one-unit increase in the baseline value of the 

longitudinal outcome, that is, the intercept. If only the subject-specific deviations are 

included (model (6)), then the hazard becomes
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which assumes that the association is based only on the subject-specific deviation from the 

population mean intercept. The function h0(t) does not include covariate effects that may be 

relevant at baseline, so the second factor adjusts the baseline hazard function to 

accommodate these effects.

The associations assuming time independence must be interpreted cautiously. For example, 

linking the random coefficients of the spline terms when the random effects of a longitudinal 

trajectory function are described by complex functions such as fractional polynomials or 

splines leads to uninterpretable association parameters. From a computational perspective, 

however, the time-independent association structures are particularly useful because they 

lead to directly computable closed functional forms for the cumulative hazard function.

2.4. Bayesian methods for joint modeling of longitudinal and survival data

The methods reviewed thus far for joint modeling have been based on a frequentist 

approach. The parameters were obtained by maximizing the likelihood or partial likelihood 

[46]. However, it often may be advantageous to apply a Bayesian approach. In the Bayesian 

paradigm, asymptotic approximations are not necessary, model assessment is more 

straightforward, computational implementation is typically much easier, and historical data 

can be incorporated easily into the inference procedure. This section describes three 

Bayesian approaches [47–49], all of which use the Wulfsohn and Tsiatis [39] general model 

building approach.

All three Bayesian approaches use a proportional hazards model for the survival component 

of the model. Where they differ is in the modeling of the longitudinal component. Ibrahim, 

Chen, and Sinha [48] used a random effects model with a multivariate outcome. Faucett and 

Thomas [47] used a univariate random effects model. Wang and Taylor [49] also used a 

random effects model but included an integrated Ornstein-Uhlenbeck process that added 

more flexibility to the trajectory curve, but greatly increased the number of parameters in the 

model and the computational complexity. Note: an integrated Ornstein-Uhlenbeck process is 

the only nontrivial random process that is stationary, Gaussian, and Markovian, and allows 

linear transformations of the space and time variables. It is used commonly to model the 

error distribution in semiparametric regression models, e.g., [50]. All of these approaches 

used Gibbs sampling to obtain realizations from the joint posterior distribution of the 

parameters.

Faucett and Thomas [47] took a Bayesian approach to solving the same random effects and 

proportional hazards models as Wulfsohn and Tsiatis [39]. They used non-informative priors 

on all the parameters in order to achieve similar results to maximum likelihood approaches. 

Wang and Taylor [49]) introduced another Bayesian method for jointly modeling 

longitudinal and survival data.

Joint models can become very complex very quickly, especially when multiple events are 

considered and the longitudinal observations are multivariate. This is especially true when 

the models include subject-specific random effects that must be removed or accounted for. 

Frequentist methods attempt to do this by integrating with respect to the distributions of 

these random effects, an approach that can become computationally unstable, if not 
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altogether infeasible, when there are many such effects or when the models are very 

complex. Bayesian approaches provide a practicable way to address complex models that 

incorporate multivariate survival, multivariate longitudinal observations (e.g., multiple 

symptoms—pain, breathing difficulties, cardiovascular symptoms—see [36] for an 

example). Moreover, the application of Bayesian methods do not require assuming 

normality for the distributions of the random quantities.

2.5. Additional considerations

Even though survival depends on ‘true’ longitudinal model Mi(tij), only the observed 

longitudinal values Yi(tij) are known, so that the censoring implied by the survival 

component may be informative. If the hazard function depends on the entire longitudinal 

trajectory, there may be bias because only snapshots in time and not the whole trajectory are 

observed [18]. This potential problem could be addressed by an appropriate longitudinal 

model relating outcome to time, for example, via spline regression.

The joint modeling framework can be used to assess the effect of a longitudinal trajectory of 

observable values on the probability of occurrence of some event. Some care is needed in 

the interpretation because the analysis of the survival component incorporates time-

dependent covariates that necessarily are measured with error even though models such as 

those described earlier are functions of the unknown true longitudinal trajectories.

The framework also can be used to assess the potential effect of the occurrence of an event 

on the distribution of observed outcomes, which raises some issues. The event occurrence 

may cause a subject to withdraw from observation so that the opportunity for subsequent 

longitudinal measurements is lost. This poses a potential informative censoring issue 

because the probability of the event may depend on the actual or true values of the 

observations not made. Standard time-to-event methods such as proportional hazard models 

cannot be used when this happens.

Sweeting and Thompson compared three approaches with joint modeling via simulation and 

via application to the prediction of abdominal aortic aneuryism growth and rupture [51]. The 

three approaches were (1) naively using observed values of longitudinal variables as 

covariates in a Cox or parametric survival model, (2) using shared random effects in the 

models for the longitudinal and time-to-event likelihoods, and (3) using a two-stage 

approach in which a model was first fit to the longitudinal data and then the fitted values of 

the longitudinal trajectory for each individual were used as covariates in the time-to-event 

model. Software for the analyses of these models is readily available, including the jm and 

joineR packages available in R. The supplementary material for their paper provides code 

for carrying out Bayesian analyses using WinBUGS or OpenBUGS. Sweeting and 

Thompson found that naively using the observed data as covariates (approach 1) led to 

severe underestimation, that using fitted values as covariates (approach 3) led to bias and 

poor coverage properties, but that the shared effect method (approach 2), although not 

perfect, performed acceptably well.
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3. Software

3.1. JM joint modeling R package [52]

The JM package is designed to fit a variety of joint models for normal longitudinal 

responses and time-to-event data using maximum likelihood. The package is extensively 

documented, with worked examples. The main arguments of the key function in the package 

(jointModel()) are a linear mixed effects object as returned by the lme() function from the 

nlme package and a survival object returned by the coxph() or survreg() functions in the 

survival package. A number of relative risk and accelerated failure time survival model 

options are available, including Weibull, piecewise proportional hazards, Cox proportional 

hazards, and proportional hazards with a spline-approximated baseline risk function. A wiki 

page, http://rwiki.sciviews.org/doku.php?id=packages:cran:jm provides information on 

continuing developments plus detailed analyses of real data sets. No special expertise 

appears to be required to use the package other than a knowledge of what is being 

calculated.

3.2. joineR R package [53]

The joineR package implements methods for analyzing data from longitudinal studies based 

on an extended Wulfsohn and Tsiatis model [39] in which the response from each subject 

consists of a time sequence of repeated measurements and a possibly censored time-to-event 

outcome. The modeling framework for the repeated measurements is a linear model with 

random effects and/or correlated error structure. The model for the time-to-event outcome is 

a Cox proportional hazards model with log-Gaussian frailty. Stochastic dependence is 

captured by allowing the Gaussian random effects of the linear model to be correlated with 

the frailty term of the Cox proportional hazards model. If λi(t) denotes the hazard for subject 

i and Yij, the jth repeated measurement on subject i, the model specifies latent vectors Ui 

and Vi that follow zero-mean multivariate normal distributions, realized independently for 

different subjects. Given Ui and Vi, the repeated measurements submodel is

and the hazard submodel is

where xij, aij, wij, and bij are vectors of possibly time-varying explanatory variables and the 

Zij are mutually independent, Zij ~ N(0, τ2). Although this model formulation is flexible in 

principle, the computational cost of evaluating the likelihood restricts routine 

implementation of the model to low-dimensional Ui and Vi.

The package is well documented, and an accompanying report clearly describes its use with 

a number of examples. No special level of expertise appears to be necessary to use the 

package other than a knowledge of what is being calculated.
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3.3. Bayesian joint models in WinBUGS (or OpenBUGS) and SAS®

Guo and Carlin describe the application of the Markov chain Monte Carlo (MCMC) 

approach as implemented in WinBUGS [54] to a joint analysis of longitudinal data and 

survival times [55]. The code for carrying out the analysis is available from the website 

http://www.biostat.umn.edu/~brad/software.html. In addition to the WinBUGS code, the 

website also provides code for carrying out similar calculations using the NLMIXED 

procedure in SAS® written by Oliver Schabenberger. The joint model approach uses shared 

latent random effects that appear in both the longitudinal and survival submodels. The 

longitudinal submodels are of the form

where yij denotes the measurement on subject i at the jth measurement occasion for that 

subject, tij denotes the corresponding time point,  denotes the possibly time-dependent 

fixed effects, and W1i(tij) = U1i + U2itij is the sum of random intercept and slope effects 

corresponding to subject i. The survival submodels express the logarithm of the hazard at 

time t as

where h(t) is a baseline hazard that depends on the model used (exponential/Weibull or Cox 

proportional hazards), ξi(t) denotes possibly time-dependent fixed effects, and W2i(t) denotes 

the random effect contribution, generally expressed as

where the shared U1i and U2i are as for the longitudinal model and U3i is an optional random 

frailty term that is independent of U1i and U2i. The models were applied jointly and 

separately to data from a trial comparing two antiretroviral drugs. The parameter estimates 

from the separate and joint models were similar, but the joint model provided a more 

accurate and clinically realistic estimate of the median survival time as a function of 

baseline characteristics. Simulations of the performance of the method in three scenarios 

indicated satisfactory performance in all cases.

3.4. JMBayes R package [56]

This package fits shared parameter models for the joint modeling of normal longitudinal 

responses and event times under a Bayesian approach using JAGS, WinBUGS, or 

OpenBUGS. The package has a single model-fitting function that accepts as main arguments 

a linear mixed effects object fit returned by function lme() of package nlme and a Cox 

model object fit returned by function coxph() of package survival. The method allows for 

joint models with relative risk survival submodels with Weibull or B-spline approximated 

baseline hazard functions. The association structure between the longitudinal and survival 

process can be specified in various ways. One can optionally use the classic joint model 
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formulation of Wulfsohn and Tsiatis (1997), or define possibly time-dependent, term so as 

to include terms, such as the time-dependent slope (i.e., the derivative of the subject-specific 

linear predictor of the linear mixed model), and the time-dependent cumulative effect (i.e., 

the integral of the subject-specific linear predictor of the linear mixed model), or combine 

these two possibilities, or include only the random effects of the linear mixed model in the 

linear predictor of the survival submodel. The package also provides functionality for 

computing dynamic predictions for the longitudinal and time-to-event outcomes.

3.5. Bayesian/frequentist fit package (JMFit) [57]

The JMfit package is a joint modeling frequentist SAS software package that fits several 

types of shared parameter joint models. The longitudinal model is allowed to be a linear 

mixed model, and the survival model is allowed to be a piecewise constant hazards model 

with random effects. Six types of trajectories can be used for the longitudinal model. The 

software produces maximum likelihood estimators of the parameters, standard errors and the 

AIC and BIC goodness of fit statistics. This is the first joint modeling software package that 

allows for simultaneously fitting and evaluating joint models. It includes decompositions of 

the AIC and BIC statistics that allow the user to assess the contribution of the longitudinal 

data to the survival component of the model.

3.6. stjm Stata package [58]

The stjm package implements joint modeling of a normal longitudinal response and a time-

to-event using maximum likelihood, with an emphasis on parametric time-to-event models. 

The package is documented with examples in the help file and an associated Stata journal 

paper. The data setup is consistent with standard survival analysis with time-varying 

covariates, requiring only a single call to the main function, stjm, to fit a joint model. The 

longitudinal outcome can be modeled flexibly using fixed/random polynomials or splines. 

The survival probabilities can be modeled using exponential, Weibull, Gompertz 

proportional hazards models, the Royston–Parmar flexible parametric model, Weibull-

Weibull and Weibull-exponential mixture models, and spline-approximated baseline (log) 

hazard function.

Associations between the survival and longitudinal components can be expressed by the 

current longitudinal measurement value at a time point, the slope of the longitudinal 

trajectory at that time point, and random effects with or without a fixed mean; all of these 

can be considered separately or in combination. Estimation of the parameters can be 

accomplished using nonadaptive or fully adaptive Gauss–Hermite quadrature. No special 

level of expertise is required other than a knowledge of what is being calculated.

4. Examples of applications

4.1. HIV/AIDS

Immunologic and virologic markers are measured repeatedly over time on each patient in 

clinical trials of therapies for diseases associated with human immunodeficiency virus 

(HIV). The intervals between data collection times vary in length, and missing data are quite 

common. The markers are prone to measurement error and high within patient variability 
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because of biological fluctuations [59–61]. Modeling these covariates over time is preferable 

to using the raw data [46, 62–65]. In addition, models provide estimates for time points 

where data are not available. Many HIV clinical trials focus on the opportunistic infections 

(OI) associated with HIV disease where the survival endpoint is the time to development of 

the OI [66–73]. In these trials, immunologic and virologic markers might be utilized as time-

varying predictor variables.

The most common measure used to assess immunological health is the CD4+ lymphocyte 

count or CD4 count for short. Higher CD4 counts indicate a stronger immune system that is 

more prepared to resist infection. Lower CD4 counts indicate a higher risk of an OI. Viral 

load is a measure of the amount of virus in the blood plasma. A lower viral load is preferable 

and may indicate successful treatment of the disease. A patient’s success on treatment is 

often evaluated by these two markers. When a patient begins a successful treatment regimen, 

the viral load may drop drastically and fall below a detectable level. The CD4 count may 

take longer to respond or may not respond at all. As viral load decreases, we may expect the 

CD4 count to increase as the immune system has time to recover. However, CD4 count is 

slower to respond than viral load. Because of this complex relationship between the 

immunologic and virologic markers, we may want a multivariate model for longitudinal 

covariates. These trajectories are generally difficult to model parametrically; therefore, we 

may want to allow for more flexibility in the curve by considering semiparametric or 

nonparametric models [50, 74].

4.2. Cancer vaccine trials

In cancer vaccine (immunotherapy) trials, vaccinations are given to patients to raise the 

patients’ antibody levels against the tumor cells. In these studies, the time-to-event end point 

is often the time to disease progression or time to death. A successful vaccine activates the 

patient’s immune system against future tumor growth so that a patient’s antibody production 

increases to help eradicate tumors. Therefore, measurements of these antibodies may be 

associated with the time-to-event and may help the clinician to evaluate the vaccination 

before the event occurs. Ibrahim, Chen, and Sinha [48] presented a Bayesian joint model in 

a cancer vaccine study for patients with malignant melanoma. They performed a survival 

analysis adjusting for longitudinal immunological measures. The primary measures of 

antibody response were the IgG and IgM antibody titers. The levels of these markers were 

conjectured to be associated with the clinical outcome and were therefore monitored during 

follow-up. These markers are prone to measurement error so that the raw data should not be 

used in a survival analysis. A method that jointly models the longitudinal marker as well as 

the survival outcome is necessary.

4.3. Health related quality of life studies

The collection of QOL data in clinical trials has become increasingly common, particular 

when the survival benefit of a treatment is anticipated to be small or moderate. In fact, one 

might argue that QOL is at times an even more important factor in treatment decisions for a 

patient than any modest survival benefit. Besides the trade-offs between survival benefits 

and therapeutic adverse effects on QOL, QOL may be predictive of survival. A survival 

model that incorporated both treatment and QOL information is necessary. Often a QOL 
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survey instrument is administered to patients at a number of prespecified time points during 

follow-up. Complete QOL data for patients at all of the specified collection times are 

frequently unavailable, and measurement errors may occur for any single QOL assessment 

because of the imperfect reliability of the instrument. A joint modeling of longitudinal and 

survival data is not only able to evaluate the therapeutic impacts on both QOL and survival 

outcome but also able to investigate the prognostic impact of patients’ QOL. The 

measurement errors as well as the missingness of QOL assessments can also be managed by 

the longitudinal submodel of a joint model. Because different facets of QOL, such as 

appetite, mood, and physical well-being, are often assessed with a survey instrument, a 

multivariate model for the longitudinal QOL is necessary to model different dependence 

structures among observations.

4.4. Renal graft failure

Rizopoulos and Ghosh [36] developed a semiparametric model for time to event data with 

multivariate longitudinal observations for each subject. Spline models were used to express 

the true trajectories of the longitudinal observations, in order to capture with some fidelity 

the highly nonlinear pattern of variation demonstrated by the longitudinal observations. That 

is, given the values of the random effects corresponding to individuals, a known link 

function of the expected value of a sequence of measurements could be expressed in terms 

of a true, unknown, function that the authors approximated using splines. The approximation 

had two parts: a time-independent part and a time-dependent part, both with fixed and 

random effects. The relative hazard for the event time model was assumed to depend on the 

true longitudinal trajectories and on various random effects corresponding to latent effects 

shared with the longitudinal observations. A key point that the authors made is the need for 

careful consideration of how the models should be parametrized, and they discussed in some 

detail alternative ways to express the models. They also described some tools for evaluating 

the effect of different choices of parameterizations. The plethora of random and latent 

effects in the models makes a Bayesian approach attractive and practical.

The approach was applied to data on 407 patients with chronic kidney disease undergoing 

primary renal transplantation; the longitudinal data consisted of three markers related to 

graft function and survival. Joint modeling of the multiple outcomes was needed to evaluate 

association of each with graft failure risk after adjusting for others. Application of 

alternative models showed that correction for the effects of the other markers affected the 

strength of the association between a marker and the risk of graft failure. The spline function 

representation economically captured the main features of the subject-specific longitudinal 

trajectories, which were markedly nonlinear. The authors also observed that ‘…observed 

data may not contain enough information to distinguish between the different 

paramterizations without prior knowledge.’

4.5. Scleroderma lung study

Huang et al [75] described the application of joint modeling with competing risks to the 

analysis of data from a comparison of the effects of oral cyclophosphamide on the 

progression of scleroderma-related interstitial lung disease as expressed by changes from 

baseline in percent forced vital capacity (FVC) or the occurrence of (i) disease-related 
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withdrawal or (ii) treatment failure or death. The joint model used included a linear mixed 

effects submodel for the longitudinal outcomes (values of FVC over time), a proportional 

hazards competing risks survival submodel with cause-specific hazards including frailty, and 

a regression model for the covariance matrix of the multivariate latent random effects. This 

latter model incorporates separate regression models for the diagonal and off-diagonal 

elements, and allows the covariance matrices to vary among subjects, which is a new 

feature. Bayesian methods (MCMC) were used to avoid high-dimensional integration to 

remove latent effects.

Patients were assigned at random to a year of treatment with cyclophosphamide or placebo, 

and followed for a subsequent year. In addition to treatment and time, the covariates 

included baseline FVC and baseline lung fibrosis, plus their interactions with treatment. A 

linear spline fixed effects model was used with a change point at month 18. Two models for 

the covariance structure of the random effects were used, one that assumed homogeneity 

across subjects and one that modeled heterogeneity of the covariance matrices. It turned out 

that there was insufficient evidence from these data to reject the assumption of covariance 

matrix homogeneity. Simulation studies demonstrated that the heterogeneity model leads to 

almost unbiased parameter estimates, while the homogeneity model can lead to large biases 

in some parameter estimates.

5. Discussion and recommendations

The objective of this report was to illustrate how joint modeling methods actually can 

provide value for drug development. It was not our aim to provide another review of joint 

modeling methods, because there are many very good reviews, but rather to provide 

motivation to sponsors to use the methods and a jumping-off point for statisticians wanting 

to apply them. The key message is that joint modeling methods can be used, perhaps even 

routinely, to link survival-type outcomes with longitudinal measurements to get better 

insights into both.

One of the considerations that make joint modeling challenging is the complexity of the 

calculations that result from the need to integrate with respect to the distributions of the 

random effects even with fairly simple situations that involve a single longitudinal outcome 

and a single survival event. This in particular is why the more recent developments in the 

field have employed Bayesian methods to remove the need for explicit multivariate 

integration. Bayesian methods also provide a way to incorporate multiple longitudinal 

outcomes and multiple competing survival events. They also provide a path for addressing 

even more complex models that could include recurrent as well as absorbing effects.

We sought to accomplish our goal by describing specific areas of application that could 

benefit from joint modeling, by outlining in some detail how the calculations proceed, by 

identifying software that can be used to carry out the calculations (perhaps the most crucial 

part), and by identifying published applications that actually used joint modeling methods. 

The technical and practicability obstacles to using joint modeling for many applications in 

medical product development have pretty well been overcome. It is not clear, however, that 

sufficient attention has been given to the interpretability and clinical interpretation of the 
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results of analyses based on joint models, primarily because most discussions of joint model 

methods have been in the technical statistical literature. The challenge now is to encourage 

statisticians and managers in the pharmaceutical and medical product industries to embrace 

rather than resist the new, to their benefit and to the benefit of the public at large.
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