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Growth of tissues is highly reproducible; yet, growth of individual cells in a tissue is highly variable, and neighboring cells can
grow at different rates. We analyzed the growth of epidermal cell lineages in the Arabidopsis (Arabidopsis thaliana) sepal to
determine how the growth curves of individual cell lineages relate to one another in a developing tissue. To identify underlying
growth trends, we developed a continuous displacement field to predict spatially averaged growth rates. We showed that this
displacement field accurately describes the growth of sepal cell lineages and reveals underlying trends within the variability of in
vivo cellular growth. We found that the tissue, individual cell lineages, and cell walls all exhibit growth rates that are initially
low, accelerate to a maximum, and decrease again. Accordingly, these growth curves can be represented by sigmoid functions.
We examined the relationships among the cell lineage growth curves and surprisingly found that all lineages reach the same
maximum growth rate relative to their size. However, the cell lineages are not synchronized; each cell lineage reaches this
same maximum relative growth rate but at different times. The heterogeneity in observed growth results from shifting the same
underlying sigmoid curve in time and scaling by size. Thus, despite the variability in growth observed in our study and others,
individual cell lineages in the developing sepal follow similarly shaped growth curves.

Cells undergo multiple rounds of growth and divi-
sion to create reproducible tissues. In some plant tis-
sues, such as expanding cotyledons, reproducibility can
occur on a cellular level during specific intervals of
development, where cotyledon cells exhibit uniform
cellular growth (Zhang et al., 2011). However, several
studies on cell division and growth in other developing
plant tissues have demonstrated that plant cells exhibit
considerable cell-to-cell variability during development

(Meyer and Roeder, 2014). For example, in both the
Arabidopsis (Arabidopsis thaliana) meristem and leaf
epidermis, cells show spatiotemporal variation in in-
dividual cell growth rates (GRs; Asl et al., 2011; Elsner
et al., 2012; Kierzkowski et al., 2012; Uyttewaal et al.,
2012). Furthermore, cell divisions have been observed
with marked randomness in their timing and orienta-
tion (Roeder et al., 2010; Besson and Dumais, 2011;
Roeder, 2012). In this study, we identify a hidden, un-
derlying pattern in the seemingly randomGR (Box 1) of
cells during the formation of sepals in Arabidopsis.

Plant cell growth is definedas an increase in cell size due
to an irreversible expansion of the cell wall. Neighboring
cells physically accommodate one another during plant
growth because their cell walls are glued together with a
pectin-rich middle lamella, which prevents cell mobility.
The cell wall is a thin, stiff layer composed of a polymer
matrix including cellulose, hemicellulose, and pectin
(Somerville et al., 2004; Cosgrove, 2005). Plant cells change
their size and shape by modifying their turgor pressure
and/or the mechanical properties of their walls, such as
elasticity, plasticity, and extensibility. Growing plant cells
exert forces on their neighbors through theirwalls, and cell
wall stresses created by these forces feed back to alter the
growth anisotropy (Hamant et al., 2008; Sampathkumar
et al., 2014). Although these feedbacks can coordinate
growth, they may also amplify differences in growth be-
tween neighboring cells (Uyttewaal et al., 2012).

Two competing computationalmodels have proposed
explanations of the cellular heterogeneity observed in
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growing tissues by making different assumptions about
how cells grow. In the first, it is assumed that relative
growth rates (RGRs) of all cells are uniform in space and
time, whereas variation in the timing of division causes
the heterogeneity of cell sizes (Roeder et al., 2010). This
model suggests that cell divisions cut the sepal into
semiindependent cells, which grow uniformly within
the expanding organ (Kaplan andHagemann, 1991). The
second model postulates the reverse process: timing of
cell division is uniform, but cellular growth is variable
and depends on the size of the cell (Asl et al., 2011). This
model suggests that cells are autonomous. Currently,
there is biological evidence for both models. Variability
in cell division timing is observed in sepals and meri-
stems, whereas variability in cellular GRs has been ob-
served in leaves and meristem cells (Reddy et al., 2004;
Roeder et al., 2010; Asl et al., 2011; Elsner et al., 2012;
Kierzkowski et al., 2012; Uyttewaal et al., 2012). Thus,
the debate on how the growth of individual cells within
an organ relates to one another remains unresolved.
The identification of underlying patterns in noisy cel-

lular growth processes is challenging. Technical difficul-
ties include the capability for cellular-resolution imaging
of the tissue at sufficiently small time intervals. Previous
studies (Zhang et al., 2011; Elsner et al., 2012; Kierzkowski
et al., 2012) did not image and track individual cells, or
they had a coarse time resolution, with 11- to 48-h inter-
vals between images, which may have hidden important
temporal dynamics. We studied growing cells in the
Arabidopsis sepal, which allows for live imaging with
cellular resolution at 6-h intervals (Roeder et al., 2010). The
sepal is the leaf-like outermost floral organ of Arabidopsis
(Fig. 1) with four sepals of stereotypical size produced per
flower. Its accessibility for live imagingmakes the sepal an
excellent system for studying organogenesis (Roeder
et al., 2010, 2011, 2012; Qu et al., 2014). Sepals exhibit
high cellular variability in the timing of division and

endoreduplication, an alternative cell cycle in which a cell
replicates its DNA but fails to divide (Roeder et al., 2010).
Furthermore, quantifying cell growth in sepals may shed
light on growth mechanisms of other plant organs, such
as leaves (Poethig and Sussex, 1985; Roeder et al., 2010).

Another key challenge in analyzing cellular growth is
the identification of trends in noisy data. Inaccuracies in
data acquisition, such as segmentation errors, and noisy
growth of individual cells can hide meaningful spatio-
temporal trends in growth. GRs measured over longer
time intervals will have reduced noise, but they may also
obscure important temporal dynamics. Alternatively,
previous studies have examined growth of the whole
organ or its subregions to avoid cellular noise (DeVeylder
et al., 2001; Mündermann et al., 2005; Rolland-Lagan
et al., 2005, 2014; Kuchen et al., 2012; Remmler and
Rolland-Lagan, 2012). However, precise cellular patterns
are not resolved. In our study, we use cellular resolution
data to define spatially averaged kinematics while keep-
ing the full temporal resolution to identify course-grained
spatial trends in the dynamics of cellular growth (Box 1).

We analyze the relationships among the growth of
individual cell lineages in a developing Arabidopsis se-
pal by live imaging and computational analyses. We
have developed continuous low-order displacement
fields to represent the spatially averaged kinematics of
the sepal (Box 1). We find that the growth of the tissue
surface area, cell lineage area, and wall length follows S
curves, suggesting that their GRs vary over time. Addi-
tionally, we find that there is a linear correlation between
themaximumGR (i.e. size increase per hour) and the size
of the cell. We furthermore find that each sepal cell line-
age reaches the samemaximum RGR (i.e. GR divided by
size). However, each cell reaches the maximum RGR at a
different time during its development, generating the
observed heterogeneity. Thus, we find underlying simi-
larities in the growth curves of sepal cells.

Box 1. Definitions of GR terms. (For details on the calculations, see “Materials and Methods.”)
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RESULTS

To determine how the growth of plant cells within a
tissue relate to one another, we analyzed the growth of
sepal epidermal cells by live imaging, developing
flowers at 6-h intervals. We tracked the cell lineages
using the MorphoGraphX (http://www.mpipz.mpg.
de/MorphoGraphX/) image processing and analysis
software (Fig. 2; Supplemental Videos S1 and S2;
Supplemental Fig. S1; Kierzkowski et al., 2012; Barbier
de Reuille et al., 2015). In MorphoGraphX, we extracted
a surface mesh from each image and projected the re-
spective fluorescent nuclear and plasma membrane
markers (Supplemental Fig. S2; for details, see “Materials
and Methods”). The cells were then segmented, their
lineages were tracked, and their growth was measured
on the surface mesh. Thus, our growth analysis is based
on complete information about the size and location of
each cell and each of its descendants every 6 h for at

least 66 h during the development of the sepal. We an-
alyzed four flowers (arbitrarily named A–D for conve-
nience) including more than 600 cells. Flower A shows a
lateral sepal, and flowers B, C, and D show medial se-
pals. All flowers showed the same overall trends; flow-
ers C and D are presented in the supplement.

Filtering Growth Noise with a Continuous Low-Order
Displacement Field

Previous studies have shown that there are striking
differences in GRs between neighboring cells in leaves
and meristems (Asl et al., 2011; Elsner et al., 2012;
Kierzkowski et al., 2012). Likewise, in sepals, we found
that the RGRs (i.e. GR divided by cell area) of cell line-
ages over consecutive 6-h intervals were noisy, and
that neighboring cells commonly had different GRs
(Fig. 3; Box 1; Supplemental Videos S3 and S4;
Supplemental Fig. S3).We considered the growth of cell

Figure 2. Cell lineage tracking in live
images of growing Arabidopsis sepals.
Segmented cells and tracked cell line-
ages at an initial time point, after 36 and
72 h for a lateral sepal in flower A (A)
and a medial sepal in flower B (B). Each
segmented cell in the figure is colored
according to the lineage, which means
that cells with the samemother have the
same color. More than one lineage can
have the same color. The segmented
cells (colored) are displayed on top of
the original fluorescent plasma mem-
brane and nuclear data (gray). Scale =
50 mm.

Figure 1. Diverse sizes of Arabidopsis sepal cells.
A, Four sepals (s) are the outermost green leaf-like
floral organs in Arabidopsis. B and C, Scanning
electron micrographs of a mature Arabidopsis
sepal show that the outer epidermal cells have a
wide range of sizes. Asterisks mark some of the
largest cells (giant cells) that can span 1/4 the
length of the sepal. Scale = 100 mm.
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lineages instead of individual cells so that we could
include dividing cells in the analysis. If a cell divided
during the time interval, we summed the areas of the
daughter cells for the calculations. Similar to leaf cells
(Elsner et al., 2012), GRs of sepal cells also changed in
time, such that a fast-growing cell in one interval might

grow slowly in the next interval, and vice versa. Al-
though much of this variability in GR was attributed to
biological processes, we estimated about 20% is due to
segmentation errors (see “Materials andMethods”).We
therefore spatially averaged the kinematics of cells to
identify trends in the growth data. Each trend initially

Figure 4. A low-order displacement
field smoothens growth. The RGR for
each cell lineage using the spatially
averaged data for flowers A (A) and B (B)
is considerably less noisy than the same
quantity extracted from the real data
(Fig. 3). The colormap displays the av-
erage RGRi = ln(Ai+1 / Ai) / (ti+1 2 ti). The
cell areas Ai and Ai+1 at two subsequent
time points ti and ti+1 are computedwith
the low-order displacement fields u(X, ti)
and u(X, ti+1), respectively. RGRi is
displayed on the cells of the sepal at
time ti, showing the growth in the fol-
lowing time interval.

Figure 3. The RGR for each cell/lineage
computed over a 6-h interval for flowers
A (A) and B (B) is noisy, varying greatly
from cell to cell. The colormap displays
the average RGRi, which is computed
by comparing cell areas Ai and Ai+1 at
two subsequent time points ti and ti+1 as
RGRi = ln(Ai+1 / Ai) / (ti+1 2 ti). RGRi is
displayed on the cells of the sepal at
time ti, showing the growth in the fol-
lowing time interval.
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identified in the spatially averaged data was subse-
quently assessed in the real data.

To determine spatially averaged kinematics, we used
continuous low-order displacement fields u(X, t) (Box 1;
for details, see “Materials andMethods”). Wewere able
to apply a continuous displacement field to represent
tissue growth because the walls of neighboring plant
cells cannot slip relative to one another, and connec-
tivity in the tissue is preserved. For each flower, we
defined a reference time point image (i.e. a time point
that contains the highest number of shared landmarks
among the live-imaging series). For each time point tj,
we used the centers of shared cells and wall segments
between that image and the reference image as land-
mark points to derive the best-fitting low-order func-
tion u(X, tj) among linear, quadratic, and cubic models
(for details, see “Materials and Methods”). In all cases,
the number of data points was considerably larger than
the number of fitting parameters. When choosing the
best-fitting model, we avoided overfitting by selecting
themodel according to the Akaike information criterion
(Burnham and Anderson, 2002).

Global low-order displacement fields spatially aver-
age growth by smoothing and approximating the

change of location of the cell’s landmark points. Using
these low-order displacement fields and the cell shapes
in the reference time point, we calculated a new set of cell
areas and wall lengths for each time point, giving us an
averaged data set. This data set was compared with the
real data, which are derived directly from the live
imaging (Fig. 3). In the averaged data, we were able
to observe smooth changes in GRs between contig-
uous cells (Fig. 4; Supplemental Videos S5 and S6;
Supplemental Fig. S4). Due to the spatial averaging, we
do not see large variations in the GRs of neighboring
cells. However, we often observed that growth varied in
time: fast-growing regions could become slow, whereas
slow-growing regions could become fast.

To test whether the displacement field accurately de-
scribed the growth of the sepal cell lineages, we initial-
ized the cell outlines from the reference time point and
grew them in silico according to our calculated defor-
mation gradient. We compared the resulting spatially
averaged cell lineages with the real cell lineages that we
hadmeasured during live imaging (Fig. 5; Supplemental
Fig. S5). The quality of the fit was quantified with the
coefficient of determination (R2) and the RMSE. Strik-
ingly, the low-order displacement fields u(X, tj) fit each

Figure 5. Spatially averaged kinematics
fits the real datawell. Comparison of the
predicted cell lineage growth using the
continuous low-order displacement
fields u(X, tj; orange lines) with the real
imaging data (black lines) at time points
30 h before (A) or 42 h after (C) the
reference time point (B) for flower A and
18 h before (D) or 72 h after (F) the ref-
erence time point (E) for flower B. Note
that the predicted and real data match
remarkably well as the coefficient of
determination (R2) is close to 1 and the
root mean squared error (RMSE) is low.
To simplify the comparison visually in
the figure, each wall segment is repre-
sented as a straight line. The prediction
is for cell lineages and does not take into
account cell division. At time points
before the reference time, the predicted
data contain cells, which have not di-
vided yet in the real data, such that two
predicted cells may match one real cell.
At time points after, the opposite is the
case, such that several real cells may
match one predicted cell. For the real
imaging data, we show these additional
walls as black dashed lines. We do not
expect the prediction to match these
walls, as they did not exist in the refer-
ence time point.
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flower well (flower A: R2 . 0.98 and RMSE , 1.5 mm;
flower B: R2 . 0.97 and RMSE , 2.6 mm).
We further compared the data obtained from images

and the spatially averaged data computed from the
low-order displacement fields for individual cells. Oc-
casionally, we observed neighbors, in which one cell
grew faster than the spatially averaged predictionwhile
its neighbor grew slower than the predicted rate (Fig. 6).
This substantiates that the displacement field is a good
spatial average of the actual data. As expected, we also
observed that the real data were considerably noisier
than the spatially averaged data in most cases (Fig. 6).

Uniform Growth in Space Is a Good Approximation for
Sepal Cell Lineage Growth

In our previous simple geometric model (Roeder et al.,
2010), we approximated sepal growth as uniform in
space and time, and suggested that cell size diversity
resulted from differences in cell cycle duration. To de-
termine how much sepal cell lineage growth deviates
from the uniform growth hypothesis, we defined a cubic
displacement function u(X, tj) with the constraint of
having uniformgrowth in space for thewhole sepal, such
that the area of each cell lineage increased by the same
proportion.We used the same landmark points as for the
previous unconstrained displacement field u(X, tj). To
optimize the fit, we minimized the distance from the
displaced landmark points to the real landmark points as
in the unconstrained fit. To ensure uniform growth, we
additionally minimized the SD of the cell area increase.
Since we fitted u(X, tj) independently for each time point
tj, the GR could vary in time. To compare with the real
growth of the sepal, we again took the cell outlines from
the reference time point and grew them as the tissue
would grow according to the uniform growth hypothesis
to produce predicted cell lineages and walls. Remark-
ably, the cell lineages predicted by uniform growth
matched considerably well with the real cell lineages that
wemeasured by live imaging (flower A: RMSE = 2.4mm,
R2 = 0.990; flower B: RMSE = 2.9 mm, R2 = 0.972; Fig. 7, B
and E; Supplemental Fig. S6). However, the match was
not quite as good as the match with the spatially aver-
aged cells from the previous unconstrained low-
order displacement field u (flower A: RMSE = 1.4 mm,

R2 = 0.997;flower B: RMSE = 2.5mm,R2 = 0.979; Fig. 7, A
and D; Supplemental Fig. S6). It is surprising how well
the uniform growth displacement field fits despite the
fact that the real and spatially averaged RGRs were not
uniform (Fig. 7, C and F; Supplemental Fig. S6). This
suggests that there might have been compensation or
averaging between cell lineages such that the overall
growth is approximately uniform.

Tissue, Cell Lineage, and Cell Wall Growth Curves Fit
S Shapes

Weexamined the tissue growth curves aswell as those
of individual cell lineages and cell walls to determine
how the GR changes in time. The tissue growth curves
were calculated by taking the sum of the areas of the cell
lineages at a given time point and dividing by the sum of
the areas of the same cell lineages in the reference time
point. To test which function most accurately captures
GR changes, we assessed whether a linear, exponential,
or sigmoid (S) curve best fit the growth data. In each
case, an S curve best fit the tissue growth curves (R2 .
0.996 and RMSE, 0.07 in all cases; Fig. 8; Supplemental
Fig. S7). Growth data for individual cell lineage areas
and individual cell wall segments also best fit S curves
(Fig. 9; Supplemental Figs. S8 and S9). We used the
Akaike information criterion to calculate the probability
that each curve type represented the data (for details, see
“Materials and Methods”). In each case, the probability
of the S curve was highest, although in some individual
cells, the linear fit was a close second (Fig. 9D). The fit of
these growth curves to an S shape implies that the GR
initially accelerates until it reaches amaximum at time tm
and starts to decelerate (Fig. 8C). Similarly, the RGR (i.e.
GR divided by area) increases until it reaches a maxi-
mum at time tx and decreases afterward (Box 1; for de-
tails, see “Materials and Methods”).

Cell Division Increases Variability in Cell Sizes, But Does
Not Have a Major Effect on the Growth Curves

As we have been considering the growth of cell line-
ages, and not taking into account cell division, we next
looked atwhether cell division has an effect on the growth

Figure 6. Spatially averaged kinematics
balance out fast and slow growing cells.
We show real (dashed) and spatially
averaged (solid) growth curves for two
neighboring cells (red and blue). The
location of the two cells is shown in the
inset (red and blue dots). We observe
that one cell grows faster than in
the spatially averaged growth curve,
whereas the other one grows slower.We
define the growth curves as cell lineage
area (Ai) at time ti divided by cell area
(Aref) at the reference time point tref
plotted against time.
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curves. We identified the points at which individual cells
divide (orange arrows in Fig. 9, C,D,G, andH) during cell
lineage growth. We did not detect differences in growth
curves due to cell division with the 6-h time resolution of
our data set. Likewise, when we categorized lineages

based on whether the initial cell had divided or not
throughout the imaging series and compared the growth
curves from these two categories, cell division did not
have a major influence on the growth curves during the
stages observed (see Supplemental Text S1).

Figure 8. Tissue growth curves fit S shapes. We compare the tissue growth (blue dots) with fits to linear (blue dotted line), ex-
ponential (red dashed line), and S (green line) curves for flowers A (A) and B (B). In all cases, the S curve fits very well (low RMSE
values and R2 values close to 1). Probabilities computed with the Akaike information criterion clearly show that the S curve is the
most likely fit to the data. C, Sketch of a representative S curve (blue) and its corresponding RGR (yellow). We focus on two
relevant time points on the curves: the time where the GR is maximal (tm), and the time where the RGR is maximal (tx). We define
the growth curves as tissue area (Ai) at time ti divided by tissue area (Aref) at the reference time point tref plotted against time.

Figure 7. Uniform growth in space predicts cellular growth. Comparison of various growth prediction methods (orange lines)
with the real imaging data (black lines). A and D, The continuous low-order displacement field prediction (orange lines) for
flowers A (A) and B (D) best match the data (black lines). These images replicate Fig. 5, C and F. B and E, Predictions (orange lines)
from a displacement field with the additional constraint to have uniform growth in space (but not time), such that the relative
increase in cell area is uniform, also matches well with the real data (black lines). It matches almost as well as the unconstrained
displacement field (R2 and RMSE). For the real imaging data, we show additional walls, which did not exist in the reference time
point or were not considered there (black dashed lines). C and F, Graph of the average RGR relative to the cell area at the reference
time shows that the real data (blue dots) and the spatially averaged data (red squares) vary greatly around the uniform RGR (green
crosses) used in the prediction for flowers A (C) and B (F).
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Since cell division does not have a major effect on
growth, we asked if it has a role in generating cell size
diversity as we have previously reported (Roeder et al.,
2010). In mature sepals, epidermal cells exhibit con-
siderable variability in size (Fig. 1, B and C). We did not
observe any obvious spatial pattern in the distribution
of large and small cells (Fig. 10, A and B; Supplemental
Fig. S10). Large epidermal cells grew next to one an-
other andwere surrounded by small cells. We observed
that the range and variability of cell areas increased

over time (Fig. 10; Supplemental Fig. S10). To determine
how this variability is generated, we compared the cell
area distributions versus nondividing cell lineages be-
fore and after 72 h of growth. We first compared the
initial distribution of cell areas with the final distribu-
tion of cell areas and observed that distribution became
broader, indicating increased variability in cell area
(Fig. 10, C and D, red curve versus green curve). We
then considered the areas of the whole-cell lineages to
determine what would have happened if the cells had

Figure 9. Individual cell lineage growth
curves fit S shapes. We show growth
(blue dots) for individual cell lineages of
flowers A (A–D) and B (E–H) using the
spatially averaged (A, C, E, and G) and
real (B, D, F, and H) data. We compare
fits to linear (blue dotted line), expo-
nential (red dashed line), and S (green
line) curves. We chose growth curves
with as many data points as possible to
reduce errors from the fit. In all cases,
the S curve fits very well (RMSE and R2

values). Probabilities computed with
the Akaike information criterion show
that the S curve is the most likely fit to
the data, although a linear function was
a close second for some cells (D). We
consider nondividing (A and B, E and F)
and dividing (C and D, G and H) cells.
Cell divisions are marked with orange
arrows but did not have a major effect
on the lineage growth curves.We define
the growth curves as cell lineage area
(Ai) at time ti divided by cell area (Aref)
at the reference time point tref plotted
against time.
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not divided. The lineage area curves appeared similar
to the initial cell area curves, except that they were
shifted to larger sizes; the curves maintained approxi-
mately the same shape and width (Fig. 10, C and D,
purple curve). This suggests that the increased varia-
bility was not due to unequal GRs of different cell line-
ages, but instead was mostly produced by nonuniform
cell divisions within those lineages. These results are
consistent with our previous analysis showing that the
diversity in cell sizes correlates with variability in the
time at which cells divide or enter endoreduplication
(Roeder et al., 2010). Since cell division did not have a
major effect on growth, we continued to focus our
analysis on cell lineages.

Each Cell Lineage Reaches the Same Maximum RGR

To determine whether there are similarities in the
underlying growth trends between cell lineages, we

analyzed the relationships between the individual best-
fitting S growth curves. Cell lineages with insufficient
data points (,8), without a meaningful fit to an S curve
(R2 , 0.9) or high uncertainty in the fitting parameters
(see Supplemental Text S1 for details), were excluded
from the analysis. Given these conditions, we observed a
strikingly linear correlation between the GR and the cell
size at time tm, the time at which the maximal GR was
reached and growth began to slow down (Fig. 11, A–D;
Supplemental Fig. S11). This linear correlation suggested
that all cell lineages at their time tm have the same RGR:
RGR(tm) = GR(tm)/area(tm) (Table I). Furthermore, we
observed a linear relationship between the GR and the
cell size at time tx, the time at which the cell line-
ages reached their maximal RGR(tx) (Fig. 11, E–H;
Supplemental Fig. S11). This suggests that each cell line-
age reaches the same maximum RGR(tx) (Table I). To
confirm this, the RGR for each cell lineage was plotted.
All cell lineages indeed reached the samemaximumRGR,
but each lineage reaches it at different times (Fig. 12).

Figure 10. Cell size variability in-
creases in time. A and B, The variability
in cell areas increases after 36 h and
further increases after 72 h compared
with the initial time point for flowers A
(A) and B (B). Each cell is represented as
a dot whose size and color (colormap)
are scaled according to the cell area.
Each dot is positioned at the cell center;
note that there is no obvious spatial
pattern in the distribution of large and
small cells. The sepal and the cell cen-
ters of each cell are flattened to two
dimensions for visualization purposes.
C and D, The cell area distribution
curves from an initial time point (red)
become broader at the final time point
72 h later (green) when cell division is
taken into account for flowers A (C) and
B (D). In contrast, when cell lineages are
considered without cell division (blue),
the curve shape is maintained and the
curve is shifted to the right due to
growth.
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Variability in Cell Lineage Growth Is Mostly Due to the
Timing of Maximum Growth and the Size of the Cell
Lineage at That Time

To investigate the relationships between cell lineage
growth curves, we aligned the growth curves in time by
removing the dependency of tm and scaled the curves
according to the lineage size at time tm. Thus, the slope
of these curves at time tm corresponds to RGR(tm). If the
value of RGR(tm) is the same for each cell lineage and
the value of RGR(tx) is the same for each cell lineage,

then the transformed S curves should collapse into a
single S curve (for details, see Supplemental Text S1). If
both RGR values are different among lineages, then the
transformed curves may differ between cells because
each growth curve is still dependent on three of the four
fitting parameters. We found that the transformed
growth curves indeed collapsed onto a single S curve
(Fig. 13; Supplemental Fig. S12). This confirmed that
RGR(tm) and RGR(tx) were the same for all lineages.
Furthermore, the collapse of these curves demonstrates

Figure 11. GR and size are linearly
correlated at times tm and tx.We analyze
growth curves for flowers A (A, C, E, and
G) and B (B, D, F, and H) using both the
spatially averaged (A and B, E and F) and
the real (C and D, G and H) data. We
consider the time point tm (A–D) when
the GR is maximal, and the time point
tx (E–H)when the RGR(t) = GR(t) / area(t)
is maximal. In all cases, we observe a
linear correlation between GR and size,
which suggests that RGR(tm) is the same
for all cell lineages in the sepal. Like-
wise, this suggests that RGR(tx) is the
same for all cell lineages in the sepal
(see Fig. 12). Both the GR [GR(tm) and
GR(tx)] and the size [area(tm) and area
(tx)] are estimated from the fit of the data
to an S curve. We only consider data
with a meaningful fit. The uncertainty
from the fit is propagated into an SD for
GR and area, which is shown in the
plots as error bars. We fit constants for
RGR(tm) and RGR(tx) and show them as
red lines, with 95% confidence bounds
as dotted lines.
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that the time at which each cell lineage reaches tm and
the size of the cell lineage at tm are the major sources of
variability in cell lineage growth. Individual cell wall
growth curves followed the same pattern as cell lineage
areas (Supplemental Figs. S13 and S14).

Spatial Trends in Growth

Our previous analysis indicated that the time tm at
which the maximum GR is reached is one of the major
sources of variation between cell lineages. We there-
fore looked for correlations of tm with other properties
of the sepal (Fig. 14; Supplemental Figs. S15 and S16).
For instance, cells elongated along the main sepal axis

might be expected to have different growth timings.
Yet, we found that there was no obvious correlation
between tm and the cell orientation within the sepal
(Fig. 14, A and D; Supplemental Figs. S15 and S16).
Likewise, we hypothesized that growth might corre-
late with the cell cycle type, whether mitotic division
or endoreduplication. However, we found that there
was no obvious correlation between tm and the type of
cell cycle as determined by the time of the last ob-
served division (cells that divided toward the end of
the time series were in mitosis, whereas those that
never divided or divided only at the start of the time
series were likely to be endoreduplicating; Fig. 14, B
and E; Supplemental Figs. S15 and S16). Thus, endo-
reduplication does not appear to have amajor effect on
the cellular growth parameters. Finally, we saw no
correlation between tm and the cell area at the reference
time point (Fig. 14, C and F; Supplemental Figs. S15
and S16), suggesting that the time point when cell
growth slows down does not depend on the cell size at
a fixed time t. However, tm followed a smooth spatial
distribution with an apical to basal trend; cells in the
top of the sepal tended to reach tm earlier than those
further down the sepal (Fig. 15, A and B; Supplemental
Fig. S17).

Although our data suggest that all cells reach the
same maximum RGR(tx), each cell reaches this maxi-
mum at a different time. Each cell and each wall seg-
ment had a different value for tm, which shifted the S
curve in time (Fig. 15, A and B; Supplemental Fig. S17).
Thus, at a single time point in the developmental se-
ries, cells have different RGR(t). We evaluated RGR(t)

Figure 12. Cell lineages reach the same
maximal RGR. We show the RGR(t) for
flowers A (A and B) and B (C and D)
obtained from the best-fitting S curve for
the spatially averaged (A and C) and the
real (B and D) data. The maximum RGR
for each lineage is marked with a dot at
RGR(tx). The uncertainty from the fit is
propagated into an SD for RGR(tx), which
is shown in the plots as error bars. Note
that all cell lineages reach the same
maximum RGR, although the time tx, at
which a cell reaches its maximum RGR,
varies between cell lineages. The con-
stant value for the maximum RGR(tx)
(Table I; Fig. 11, C, D, G, and H) is dis-
played as a dashed black line with its
95% confidence bounds as dotted lines.
We only consider data with a meaningful
fit. The curves are colored according to
tx (early [cyan] to late [purple]).

Table I. All cell lineages in the sepal have the same RGR at t = tm
(where GR is maximal) and the same RGR at t = tx (where RGR is
maximal)

We report the RGR (h21) with SDS propagated from the uncertainty of
the fit. For the average data, the constant RGR is consistently lower.
This may be explained with a noisy fit for the real data. An S curve may
better approximate noisy data using a more step-like shape, which
essentially decreases the duration of growth and increases the GRs as
observed here.

Time Point Flower
RGR (h21)

Average Data Real Data

t = tm A 0.0234 6 0.00021 0.0293 6 0.000641
t = tx A 0.0293 6 0.000128 0.0339 6 0.000488
t = tm B 0.0232 6 0.000353 0.0269 6 0.00061
t = tx B 0.0312 6 0.000437 0.0331 6 0.000602
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based on the fit to an S curve (Fig. 15, C and D;
Supplemental Videos S7 and S8; Supplemental Fig.
S17), which resulted in a smooth distribution of RGR(t)
in comparison with our initial analysis of the RGR
(Figs. 3 and 4; Supplemental Figs. S3 and S4). We ob-
served that cells at the top of the sepal reached a high
RGR first, and this high RGR subsequently moved
down the sepal. Thus, both tm and the maximum RGR
show a spatial gradient progressing from top to bot-
tom as the sepal develops.

DISCUSSION

We have quantified the growth of cell lineages in the
Arabidopsis sepal. Our results reveal that sepal cell
lineages all follow the same growth curve, but that
curve is shifted in time and scaled by size, creating the
heterogeneity in GRs observed at a single time (t) in a
tissue. Using spatially averaged, smooth displacement
fields, wewere able to capture the cellular kinematics in
the sepal and provide a consistent smoothing of the

Figure 13. Individual growth curves
can be collapsed to similar S curves.We
analyze growth curves for flowers A (A,
C, E, and G) and B (B, D, F, and H) using
both the spatially averaged (A–D) and
the real (E–H) data. The growth curves
are colored according to tm (early [cyan]
to late [purple]). A, B, E, and F, The in-
dividual growth curves f(T) show the
change in each cell lineage area in time
compared with the reference time. The
curve f(T) is only defined at discrete
time points T = t i marked with dots
[f(ti) =Ai/Aref]. We only consider data with
a meaningful fit to an S curve. C, D, G,
and H, We collapsed the growth curves
into more similar curves by aligning
them according to the nearly constant
RGR(tm). We aligned them in time by
removing the dependency of tm, and we
scaled the curves according to their size
at time tm such that their slope corre-
sponds to RGR(tm). We therefore com-
puted fc(t) = f(t + tm)/f(tm) and plotted fc(t)
against t = T – tm. Both tm and f(tm) were
estimated from the best-fitting S curve,
whereas we evaluated f(t + tm) at dis-
crete time points t = ti – tm from the ac-
tual data [fc(ti2 tm) =Ai/A(tm)]. Note that
since f still depends on three of the four
parameters defining the S curve, it was
not obvious the curves would collapse
to a single curve. The fact that the
transformed growth curves fc(t) lined up
well confirmed that the RGRs at times tm
and tx were the same for each cell
lineage.
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experimental data. We extracted growth curves for in-
dividual cell areas and wall segment lengths as well as
the tissue. We found that the growth of the tissue, the
cell lineage areas, and the length of individual cell walls
fit S curves, indicating that the GRs change in time.
Within the S curves, we observed a striking linear re-
lationship between the GR and the size of cells and
walls at the time of maximal GR (tm) and at the time of
maximal RGR (i.e. GR divided by area; tx). We found
that all cell lineages reach the same maximum RGR(tx).
However, the time at which each lineage reaches this
maximum RGR is different within the development
of the sepal, accounting for the variability of growth
observed.

Our analysis showed that the growth of tissues, cell
lineages, and walls best fit S curves. For the parameter
ranges observed in our fits, the RGR(t) plotted against
time was a bell-shaped curve (Fig. 12). This meant that,
within a single cell lineage, RGR(t) was small at early
time points, increased until it reached its maximal
value at t = tx, and then decreased again afterward.
Similarly, studies that measured the full organ growth
reported size increases consistent with a S curve
(De Veylder et al., 2001; Mündermann et al., 2005;
Kuchen et al., 2012; Remmler and Rolland-Lagan,

2012; Rolland-Lagan et al., 2014). For instance,
Mündermann et al. (2005) measured the width of sepals
and reported fits to a S curve, consistent with our
results. They also observed S curves for the growth of
leaves, petals, anthers, carpels, pedicels, and filaments
(Mündermann et al., 2005). In contrast, the growth in
size of individual bacteria or fission yeast cells have
been shown to fit bilinear curves (Reshes et al., 2008;
Baumgärtner and Toli�c-Nørrelykke, 2009).

It is common in the analysis of plant cell growth to
implicitly assume exponential growth. Plant cell growth
is often modeled with Lockhart’s equations or variants
thereof, which relate cell expansion to water uptake and
turgor pressure (Lockhart, 1965; Cosgrove, 1986). Given
a constant turgor pressure, a constant yield stress for the
cell walls, and a comparably fast water uptake, Lockhart’s
equations predict a constant RGR, which leads to
exponential growth. An S curve, such as the ones ob-
served in sepal growth, may be approximated with an
exponential curve at early times, but at intermediate and
late times, a flattening of the GRs is observed that cannot
be captured by an exponential. To explain the S curve
with Lockhart’s equation, RGR(t) can vary in time if the
cell wall’s extensibility w or the difference in water po-
tential ΔC are a function of time. Lockhart envisioned

Figure 14. Tm does not correlate with cell orientation, time of last division, or area. We looked for correlations between tm and
cell orientation (A and D), time of last division (B and E), and ln(area) (C and F) for real (blue) and spatially averaged (red) cell
lineages of flowers A (A–C) and B (D–F). The cell orientation is measured as the angle (radians) between the main sepal axis and
the main axis of each cell. The time of last division is indicative of whether the cell lineage is actively dividing (late time of last
division) or endoreduplicating (early time of last division). We take the logarithm of the cell area to avoid spreading out. Both the
area and the angle are measured at the reference time point.
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that w(t) → 0 and ΔC(t) → 0 may be two mechanisms to
slow down the growth of cylindrical plant cells that
eventually reach maturity (Lockhart, 1965). Thus, it is
not surprising to see S curves when analyzing real
growth curves. A decreasing wall extensibility wmay be
obtained by strain stiffening (Kierzkowski et al., 2012),
wall hardening (Huang et al., 2012), or by having a
thicker cell wall (Schopfer, 2006). In future studies, it will
be interesting to use the results of our study to validate
numerical models (Dupuy et al., 2010; Koumoutsakos
et al., 2011; Huang et al., 2012; Kierzkowski et al., 2012;
Fozard et al., 2013) within a Bayesian uncertainty quan-
tification and propagation framework (Angelikopoulos
et al., 2012). Such a frameworkwould be able to quantify
which model is most probable given the data.
The striking similarity in the shape of the sepal cell

lineage growth curves and the finding that all cell

lineages reach the same maximum RGR have, to our
knowledge, not been observed previously. These find-
ing suggest a common underlying growth curve. How
can this underlying similarity be explained? The simi-
larity could imply that there is global coordination
between cells within the growing tissue, or intrinsic
constraints due to gene regulation or mechanical
properties of the walls. Although we do see differences
between neighboring cells, overall, our analysis shows
that the growth of cells in the sepal is less heteroge-
neous than it initially appears. The initial appearance of
growth heterogeneity observed in our results (Fig. 3)
and others’ results can be explained by shifting the S
curves of each cell lineage in time. At a single time
point, one cell lineage may be in the initial part of the S
curve where its RGR is low, whereas its neighbor may
be at the point of the sigmoid curve where its RGR is at

Figure 15. We observe spatial trends
for the RGR and the time of maximum
growth. A and B, Spatial distribution of
tm appears smooth,with a trend from the
top to the bottom of the sepal for flowers
A (A) and B (B). We only consider data
with ameaningful fit to a S function. The
data are shown on the mesh at t = tr.
Scale = 20 mm. C and D, The RGR(t) of
flowers A (C) and B (D) at an initial time
point and 36 and 72 h later. We show
RGR(t) based on the fit to an S curve.
Note that, whereas individual neighbors
can have different RGRs, there is a peak
of faster growth that starts at the tip of
the sepal and moves downward as the
sepal develops. Scale = 50 mm.

Plant Physiol. Vol. 169, 2015 2355

Analysis of Cellular Coordination in Sepal Growth



the maximum. At a single time point, cell lineages will
have different RGRs, whereas if we observed each cell
lineage when the RGR is at the maximum, they would
have the same RGR. Thus, neighboring cells are simply
at different stages of growth and consequently have
different RGRs at a single time point.

Most of the variability in the growth of cell lineages is
in the time tm, when the GR reaches its maximum and
starts to slow down, and the size of the cell lineage at tm.
Our analysis revealed a smooth spatial distribution of
tm. There is an apical to basal trend in tm,which parallels
the development of the sepal (Donnelly et al., 1999;
Roeder et al., 2010; Andriankaja et al., 2012). Cells at the
top of the sepal are generated first, and consequently
mature first, reaching tm earlier in development. Si-
multaneously, new cells are constantly generated at the
base of the sepal, and these cells subsequently mature,
reaching tm later in development of the sepal. This ex-
plains why cells in the tip of the sepal also reach the
maximum RGR earlier than cells lower in the sepal.
However, the apical basal gradient does not explain all
of the variation in tm, so it will be interesting to identify
other factors influencing tm in the future.

The use of continuous low-order displacement fields
enabled the filtering of spatial differences as well as
segmentation noise to capture the similarities and dif-
ferences in the growth curves of sepal cell lineages. Any
image-processing analysis is subject to errors from
segmentation noise, and such tools can help alleviate
this issue. Real spatial differences between cells may be
of interest biologically, and what we classify as noise
may be important subtle patterns in the growth (e.g.
fractals), but this hides broader trends. The spatially
averaged data from the low-order displacement field
allowed us to detect hidden similarities in growth
curves that were subsequently verified in the real data.
We believe this method will be useful for finding gen-
eral growth trends for other plant tissues. It will be in-
formative to determine whether leaf cell lineages in
Arabidopsis and other species also all have the same
maximum RGR and follow similar S curves that are
shifted in time and scaled by size. Furthermore, this
approach can be applied to animal tissues in which the
cells do not migrate relative to one another (i.e. the
bending of epithelial sheets during morphogenesis;
Martin et al., 2009). A displacement field could be fitted
to epithelial cells that are tightly bound to their neigh-
bors through junctional complexes; epithelial cell
migration is limited during many developmental
processes, with the notable exceptions of epithelial to
mesenchyme transition and convergent extension (Lim
and Thiery, 2012). In addition, the displacement fields
could directly be used to drive growth in simulation
models or to facilitate the comparison of different
samples.

Our results raise important questions for future in-
vestigations of growth. Is there a link between repro-
ducibility of organ size and the observation that all cells
reach the same maximum RGR? Does this imply that
there is global coordination occurring between the cells,

or that there is intrinsic constraint on the growth of each
cell that leads to this regularity? Isolation of mutants
disrupting the cellular or organ regularity will be key to
uncovering the underlying mechanism.

MATERIALS AND METHODS

Plant Material, Growth Conditions, and Image Acquisition

Growth and imaging of living Arabidopsis (Arabidopsis thaliana) sepals from
the Landsberg erecta accession were conducted as described previously (Roeder
et al., 2010; Cunha et al., 2012; see Supplemental Text S1 for details). Individual
flowers from different plants imaged in the first sessionwere given identifiers A
andD, whereas flowers imaged in a second session were given identifiers B and
C. Flower A was imaged for 72 h, flower B for 90 h, flower C for 102 h, and
flower D for 66 h. The division pattern of the cells for flowers A andD have been
previously analyzed (Roeder et al., 2010). Results for flowers C and D are
presented in Supplemental Figures S1, S3 to S7, S9 to S12, S16, and S17.

To define similar initial time points for the flowers (Fig. 2), we manually
aligned the fluorescent stacks of flowers A and B such that they looked similar
in size and shape (Supplemental Fig. S18). We observed that, 72 h after the
chosen initial time point, the sepals were similar in length, but flower B was
wider. Most likely, this was because we looked at a lateral sepal for flower A,
which was partly being masked by other overlying sepals.

We compared the size of the sepals with the staging of Smyth et al. (1990) by
considering the sepal height. We observed that flower A was in stages 8 and 9,
flower Bwas in stages 7 to 9, flower Cwas in stages 8 and 9, and flower Dwas in
earlier stages 4 to 8. We note that at those stages, guard cells have not fully
developed, but giant cells are forming. We also considered the sepal width and
compared with the data analyzed by Mündermann et al. (2005). We estimated
that their analysis started right after our data sets end for flowers A, B, and C.

Image Processing

We analyzed the growth of the sepals with an extended version of the
MorphoGraphX image analysis software (Supplemental Fig. S2; Supplemental
Videos S1 and S2; Kierzkowski et al., 2012; Barbier de Reuille et al., 2015). We
constructed a curved surface mesh on top of the sepal by extracting an iso-
surface of the propidium iodide-stained stack using a marching-cubes algo-
rithm. The mesh was further smoothened and refined to contain approximately
1,000 vertices per cell. We then projected the intensities of the fluorescent nuclei
and membrane markers from the stack (in a band 1–6 mm away from the sur-
face) onto the surface mesh. The surface mesh was then segmented into cells
using a watershed method. All polygons belonging to a cell were marked with
the same label. The areas of the polygons belonging to the same cell were
summed up to compute the cell area while taking into account the curvature of
the surface. The length of each cell wall segment was estimated by fitting a
quadratic function to the border vertices. This avoided errors due to the zig-zag
shape that would have appeared when following the border vertices (see
Supplemental Text S1 for details). The signal at the border of the sepal was
noisier due to the reduced resolution in the z-direction for confocal microscopy
and the curvature of the sepal. We therefore removed cells and walls next to the
border from the analysis.

To analyze growth, we have developed and used a new tool for tracking cell
lineages in MorphoGraphX (Barbier de Reuille et al., 2015). Each cell was
mapped, if possible, to its equivalent or its parent cell in the segmented mesh of
the previous time point. Due to imaging noise and imperfect microscopy con-
ditions, not all cells were segmented in each time point. Each newly appearing
cell was assigned a unique label, and its area was tracked over several time
points until the cell or one of its daughter cells disappeared from the segmen-
tation. The area of a cell lineage was computed by summing up the daughter
cells’ areas. We also tracked each wall segment by considering the lineage of its
neighboring cells.

To estimate segmentation errors in the image processing, we indepen-
dently reanalyzed three time points of flower D (Supplemental Fig. S19) and
observed that cell areas varied by 20% between independent segmentations.
We therefore expected segmentation errors to be of a similar size, approxi-
mately 20%, for all data sets. We hence assumed that such errors would affect
an analysis of broader spatial growth trends unless a spatial averaging was
performed.
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Continuous Low-Order Displacement Fields

We used the tracking of cells and wall segments to define continuous low-
order displacement fields u(X, tj) between a reference time point tref and any
other time point tj. We considered the centers of each cell and wall segment
shared between the time points tj and tref as landmark points. We did not
consider dividing cells and walls because we had enough shared points
without them. We used the center of each wall segment as opposed to the
junctions between wall segments because segmentation errors were larger for
junctions.

Each landmark point i had a three-dimensional position Xi at time tref and
xij at time tj. We then identified the best-fitting low-order function u(X, tj) by
minimizing the sum of squared errors [xij – Xi – u(Xi, tj)]

2 over all landmark
points i. The reference time tref was the time point that contained the most
shared landmarks between the live-imaging series. Given u(X, tj), we esti-
mated spatially averaged displacements in the sepal as well as the defor-
mation of line elements and area elements (see Supplemental Text S1 for
details).

We fit each dimension of u(X, tj) separately with a robust linear regression
routine in MATLAB (LinearModel.fit; MathWorks) using an iteratively
reweighted least-squares method with a bisquare weighting function. We au-
tomatically selected the best-fitting model among linear, quadratic, and cubic
models using the Akaike information criterion corrected (AICc) for small
sample sizes, which penalizes for overfitting (Burnham and Anderson, 2002).

Growth Rates and Growth Curves

We denote the time evolution of the area of a cell or the length of a wall
segment as f(t), and define the GR(t) as the slope of f(t) [GR(t) = df(t)/dt] and the
RGR as RGR(t) = GR(t)/f(t). If f(t) is only known at discrete time points ti, we can
estimate an average RGR by computing RGRi = ln(fi+1/fi)/(ti+1 2 ti), where fi =
f(ti) (Figs. 3 and 4).

We reported the increase in areas Ai and lengths Li at time ti with respect to
the reference time tref as Ai/Aref and Li/Lref, respectively, as growth curves. To
compare growth curves, we defined statistics based on fitting an S curve (Fig.
8C). We used a shifted logistic function with four parameters (a, b, k, tm) de-
fined as

f ðtÞ ¼ a
1þ exp½kðtm 2 tÞ� þ b:

The function fitting was performed by minimizing the sum of squared errors
within a constrained optimization routine inMATLAB (fmincon) with {a,b,k}$ 0.
We repeated the optimization with an exponential [f(t) = a exp(k t)] and a
linear [f(t) = a t + b] function. Given the results of the optimizations, we com-
puted the AICc for each function (see Supplemental Text S1 for details). The
AICc considers the sum of squared errors as well as the number of parameters
of the fit and hence penalizes for overfitting. The functions were ranked
according to their AICc (AICi), with the best function being the one with the
minimal AICc (AICmin). The relative probabilities of each considered function
were then computed as exp[(AICmin –AICi)/2] and subsequently normalized to
define the probability of each function (Burnham and Anderson, 2002).

The parameters of the S curve f(t) can be interpreted as b being the lower
plateau of the curve, a+b being the upper plateau, k defining the steepness of the
curve, and tm being the time when the GR(t) is maximal (Fig. 8C). Given these
parameters, we can furthermore compute the time tx = tm 2 ln[(a+b)/b]/(2 k),
where the RGR(t) is maximal (see Supplemental Text S1 for details).

We expected our data to have unknown measurement and segmentation
errors, and we did not assume that the S curve was the perfect model for the
growth curves but merely an approximation. These three factors led to uncer-
tainties in the fitting parameters (a, b, k, tm). We used those uncertainties to
distinguish meaningful growth parameters. We furthermore propagated the
uncertainties to derived quantities such as f(t), GR(t), RGR(t), and tx. The un-
certainties were translated to standard deviations and reported either as error
bars or as 95% confidence intervals (see Supplemental Text S1 for details).
MATLAB code and data used for the analysis are in Supplemental Code S1.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Cell lineage tracking in live images of growing
Arabidopsis sepals.

Supplemental Figure S2. Image-processing workflow.

Supplemental Figure S3. The RGR is noisy.

Supplemental Figure S4. A low-order displacement field smoothens
growth.

Supplemental Figure S5. Spatially averaged kinematics fit the real data
well.

Supplemental Figure S6. Uniform growth in space predicts cellular
growth.

Supplemental Figure S7. Tissue growth curves fit S shapes.

Supplemental Figure S8. Individual wall segment growth curves fit S
shapes.

Supplemental Figure S9. Individual cell lineage growth curves fit S
shapes.

Supplemental Figure S10. Cell size variability increases in time.

Supplemental Figure S11. GR and size are linearly correlated at times tm
and tx.

Supplemental Figure S12. Individual growth curves can be collapsed to
similar S curves.

Supplemental Figure S13. GR and size of wall segments are linearly cor-
related at times tm and tx.

Supplemental Figure S14. Individual growth curves of wall segments can
be collapsed to similar S curves.

Supplemental Figure S15. Tm of wall segments does not correlate with
wall orientation, time of last division, or length.

Supplemental Figure S16. Tm does not correlate with cell orientation, time
of last division, or area.

Supplemental Figure S17. We observe spatial trends for the RGR and the
time of maximum growth.

Supplemental Figure S18. Comparison of sepals.

Supplemental Figure S19. Estimation of segmentation error.

Supplemental Text S1. Supplemental materials and methods.

Supplemental Video S1. Cell lineage tracking for flower A (as in
Fig. 2A).

Supplemental Video S2. Cell lineage tracking for flower B (as in Fig. 2B).

Supplemental Video S3. RGR estimated from live-imaging data for flower
A (as in Fig. 3A).

Supplemental Video S4. RGR estimated from live-imaging data for flower
B (as in Fig. 3B).

Supplemental Video S5. RGR estimated from spatially averaged data for
flower A (as in Fig. 4A).

Supplemental Video S6. RGR estimated from spatially averaged data for
flower B (as in Fig. 4B).

Supplemental Video S7. RGR estimated after fitting an S curve to the
spatially averaged data for flower A (as in Fig. 15C).

Supplemental Video S8. RGR estimated after fitting an S curve to the
spatially averaged data for flower B (as in Fig. 15D).

Supplemental Code S1. MATLAB code and data used for the analysis in
this work.
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