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The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have
revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which
ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still
to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms
by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-
wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening.
Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and
emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic
regulation and ethylene during fruit ripening.

As a developmental process, fruit ripening is coor-
dinated by a complex network of endogenous and ex-
ogenous cues. Indeed, the making of a fruit is a
genetically regulated process unique to plants involv-
ing three distinct stages: fruit set, development, and
ripening. Fruit development is characterized by a series
of developmental transitions tightly coordinated by a
network of interacting genes and signaling pathways.
Among these, ripening has received the greatest at-
tention from both geneticists and breeders. From the
scientific point of view, fruit ripening is seen as a pro-
cess in which the biochemistry and physiology of the
organ are developmentally altered to influence the
appearance, texture, flavor, and aroma (Giovannoni,
2004). Since most of the fruit sensory and nutritional
quality traits are elaborated at the ripening stage,
deciphering the key genetic and molecular factors reg-
ulating ripening becomes a major task toward im-
proving overall fruit quality (Carrari and Fernie, 2006).
In addition, the control of fruit ripening is also instru-
mental to maintain the quality attributes of the fruit
during the postharvest shelf life.

Based on their mode of ripening, fleshy fruits are di-
vided into two categories, climacteric and nonclimacteric,

depending on the presence or absence of the climacteric
rise in respiration and of autocatalytic ethylene pro-
duction (Lelièvre et al., 1997). In climacteric fruit, the
plant hormone ethylene is the major cue that controls
most aspects of ripening. By contrast, the ripening of
nonclimacteric fruit does not strictly depend on ethyl-
ene, and the nature of the triggers of ripening in this
type of fruit remains yet to be elucidated. Since the
upstream components of the ethylene transduction
pathway are common to all ethylene responses, the
apparent simplicity of the ethylene signaling pathway
cannot account for the wide diversity of ethylene re-
sponses. A plausible hypothesis is that differential re-
sponses to ethylene are directed at the level of ethylene
response factor (ERF) transcription factors, which are
encoded by one of the largest families of plant tran-
scription factors, and therefore, are most suited to con-
ferring such a large diversity and specificity of ethylene
responses.

A rich literature indicates that the alteration of most
components of ethylene signaling and responses has an
impact on the course of maturation (Grierson, 2013).
Nevertheless, the understanding of the control mecha-
nisms underlying the specificity of ethylene action re-
quires the uncovering of the components mediating
ethylene responses that are specific to each develop-
mental process. For instance, the identification of
ripening-associated transcriptional regulators acting
upstream or in concert with ethylene has brought new
insights into understanding the ripening control mech-
anisms. Functional characterization of key ripening-related

1 This work was supported by the “Laboratoire d’Excellence” en-
titled TULIP (grant no. ANR–10–LABX–41 to M.B.) and the network-
ing activities within the European Cooperation In Science and
Technology Action FA1106.

* Address correspondence to bouzayen@ensat.fr.
www.plantphysiol.org/cgi/doi/10.1104/pp.15.01361

2380 Plant Physiology�, December 2015, Vol. 169, pp. 2380–2390, www.plantphysiol.org � 2015 American Society of Plant Biologists. All Rights Reserved.

http://orcid.org/0000-0001-8004-1758
http://orcid.org/0000-0002-5725-885X
http://orcid.org/0000-0001-7707-7776
mailto:bouzayen@ensat.fr
http://www.plantphysiol.org/cgi/doi/10.1104/pp.15.01361


transcriptional regulators, such as RIPENING-INHIBITOR
(RIN; Vrebalov et al., 2002; Ito et al., 2008), COLORLESS
NONRIPENING (CNR; Manning et al., 2006), NON-
RIPENING (NOR; Giovannoni, 2004), TOMATO
AGAMOUS-LIKE1 (TAGL1; Itkin et al., 2009; Vrebalov
et al., 2009; Giménez et al., 2010), Homeodomain-leucine
zipper homeobox protein (LeHB-1; Lin et al., 2008c),
MADS-boxS1 (MADS1; Dong et al., 2013), APETALA2a
(AP2a; Karlova et al., 2011), SlERF6 (Lee et al., 2012),
and SlERF.B3 (Liu et al., 2014), indicates that tran-
scription factors play key roles in relaying ripening-
inducing signals and controlling ethylene biosynthesis
and signaling. Taking advantage of the newly gener-
ated tools and resources on the tomato species, the
present review aims to revisit the role of ethylene in
fruit ripening by integrating the latest advances on the
transcriptional network by which this hormone or-
chestrates the ripening process. Because most of our
knowledge on the role of ethylene in fleshy fruit ripening
has been achieved using tomato (Solanum lycopersicum),
we will mainly focus on this reference species. In addi-
tion, several publicly accessible databases, such as the
Tomato Expression Database (Fei et al., 2006) and the
TomExpress online tool (http://gbf.toulouse.inra.fr/
tomexpress), are used to explore the expression of rel-
evant ripening-related genes.

ETHYLENE BIOSYNTHESIS AND PERCEPTION IN
TOMATO FRUIT RIPENING

The involvement of ethylene in fruit ripening was ini-
tially reported a long time ago (Burg and Burg, 1962), and
since then, direct evidences have accumulated to dem-
onstrate that ethylene mediates fruit ripening at the
physiological, biochemical, andmolecular levels. Altering
ethylene at the level of its biosynthesis, perception, signal
transduction, or gene transcription was shown to impact
fruit ripening (Hamilton et al., 1990; Oeller et al., 1991;
Lanahan et al., 1994; Tieman et al., 2001; Lee et al., 2012;
Liu et al., 2014). According to the currently accepted
model (Fig. 1), ethylene signaling relies on a linear trans-
duction pathway where the hormone is perceived by a
specific receptor, which initiates a signaling cascade by
releasing the block exerted by CTR1 on EIN2. This acti-
vates a transcriptional cascade, involving EIN3/EIL1 as
the primary transcription factor and then ERFs, which in
turn regulate genes underlying ripening-related traits,
such as color, firmness, aroma, taste, and postharvest
shelf life (Solano and Ecker, 1998; Ju et al., 2012; Chang
et al., 2013).

Ethylene Biosynthesis Is Instrumental to Climacteric
Fruit Ripening

In higher plants, ethylene biosynthesis (Fig. 1) origi-
nates from S-adenosyl-Met and comprises two steps
catalyzed by ACS and ACO, the latter converting ACC
into ethylene (Yang and Hoffman, 1984). The genome-
wide search for ACS and ACO genes performed using
tBLASTn as the program and SlACS1A and SlACO1 as

query identified 14 sequences corresponding to puta-
tive ACS and 6 to ACO in the most recent tomato ge-
nome sequence (Tomato Genome Consortium, 2012).
For the ACS and ACO described here, InterProScan
analysis confirmed the presence of specific domains
characteristic of these proteins, and the Kyoto Ency-
clopedia of Genes and Genomes orthology analysis
validated the presence of the enzymatic domains,
EC:4.4.1.14 and EC:1.14.17.4, characteristic of ACS and
ACO, respectively. Even though the ACS proteins have
not been biochemically characterized, phylogenetic
analysis clustered the 14 putative ACS proteins in the
same branch as Arabidopsis (Arabidopsis thaliana) ACSs

Figure 1. Simplified scheme showing ethylene synthesis and response
in tomato. Ethylene synthesis results from the activity of 1-amino-
cyclopropane-1-carboxylic acid (ACC) synthase (ACS) and 1-amino-
cyclopropane-1-carboxylic acid oxidase (ACO), which transform
S-adenosyl-L-Met (SAM) into ACC and convert ACC into ethylene, re-
spectively. Ethylene is perceived by the receptor proteins (ETR), located
in the endoplasmic reticulum (ER). RAN1 delivers the copper cofactor
required for ethylene binding. GR is probably associated with the re-
ceptor and mediates the receptor signal output. It is suggested that TPR
binds to ethylene receptors and leads to receptor degradation. The re-
ceptors are negative regulators of ethylene signaling, and in the absence
of ethylene, the receptors activate Constitutive Triple-Response1 (CTR1),
which suppresses the ethylene response via inactivation of Ethylene
Insensitive2 (EIN2). The transcription factors EIN3/Ethylene Insensitive3-
Like1 (EIL1) undergo a degradation process mediated by the Ethylene
Insensitive3-binding F-box (EBF) proteins. In the absence of EIL, tran-
scription of ethylene response genes is shut off. Ethylene binding to the
receptors induces their inactivation, and by consequence, switches off
CTR1 phosphorylation activity. Active EIN2 stabilizes EIL transcription
factors, which can activate the expression of target genes, including those
encoding the ERF transcription factors via binding to primary ethylene
response elements (PEREs; Solano et al., 1998). ERFs, in turn,modulate the
transcription of ethylene-regulated genes through binding to GCC-box
type cis-elements present in their target promoters. Arrowheads represent
positive regulatory interactions, and bar heads represent negative regulation.
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(Fig. 2). Moreover, the putative tomato ACS genes were
further checked for the presence of the pyridoxal 59-
phosphate-binding site, a necessary feature of ACS
enzymes (Jakubowicz, 2002), showing that this domain
is well conserved in the five new ACS genes identified
(ACS9–13), allowing them to be assigned to the ACS
group. All genes related to ethylene biosynthesis, per-
ception, or signaling are listed in Supplemental Table
S1, providing the correspondence between gene names,
Solyc numbers, and, when relevant, other names cited
in the literature. The implementation of the newly
available TomExpress pipeline (http://gbf.toulouse.
inra.fr/tomexpress) allowed in silico mining of the ex-
pression pattern of all ACS genes in the tomato based
on the publicly available RNA-seq data sets (Fig. 3A).
While confirming that ACS2 and ACS4 are the main
family members expressed during ripening (Oeller
et al., 1991; Theologis et al., 1992), the new expression
study also confirmed that ACS1A transcript accumu-
lation peaks at the breaker stage (Barry et al., 2000),

suggesting its potential contribution to the climacteric
ethylene production, although its expression level is
quantitatively lower than ACS2 and ACS4. Moreover,
among the newACS genes,ACS11 and 12 also display a
significant up-regulation during fruit ripening, whereas
ACS1B, 5, 7, 8, 9, 10, and 13 transcripts are almost un-
detectable in tomato fruit (Fig. 3A).

Genome-wide analysis confirmed the presence of six
ACO genes in the tomato genome (Seymour et al.,
2013), and mining their expression with TomExpress
pipeline (Fig. 3B) indicated that ACO1 and ACO2
(Supplemental Table S1) display the most striking
ripening-regulated pattern of expression peaking at the
breaker stage, whereas ACO4 expression undergoes a
steady but slight increase throughout ripening (Barry
et al., 1996; Nakatsuka et al., 1998; Van de Poel et al.,
2012). The present expression analysis confirms previ-
ous studies pointing to ACO1 and ACO4 as the main
ACO genes supporting ripening-associated ethylene
production (Nakatsuka et al., 1998). The transcript level
of ACO3, ACO5, and ACO6 remains very low, sug-
gesting that their contribution to climacteric ethylene
production is negligible. Two systems of ethylene bio-
synthesis have been proposed in climacteric fruits
(McMurchie et al., 1972). System 1 is responsible for
producing basal ethylene levels that are detected in all
tissues, including those of nonclimacteric fruit (Fig. 4).
System 1 is known to be ethylene autoinhibitory and is
reported to function during fruit growth, whereas sys-
tem 2 operates during the climacteric ripening and is
autocatalytic (Fig. 4). System 1 relies on ACS1A and
ACS6, both being negatively regulated by ethylene,
whereas the up-regulation ofACS2 andACS4 through a
positive feedback by ethylene is responsible for the
activation of system 2 (Nakatsuka et al., 1998; Barry
et al., 2000). ACO1 and ACO4 are both expressed at low
levels in immature green fruit where system 1 is oper-
ating, but their transcripts accumulate with the cli-
macteric rise of ethylene production and are therefore
responsible for the transition to system 2 (Fig. 4).
Moreover, ACO4 maintains a sustained expression
during fruit ripening (Nakatsuka et al., 1998). The ex-
pression of ethylene biosynthesis genes was shown to
be regulated by developmental regulators, such as RIN
and LeHB-1, which modulate the expression of ACS2
and ACO1 through direct binding to their promoter
(Lin et al., 2008c; Fujisawa et al., 2013). It is therefore
possible that system 2 ethylene production is not the
only mechanism contributing to the autocatalytic reg-
ulation of climacteric ethylene. Recent data showed that
ethylene biosynthesis displays a tissue-specific and
developmental differentiation throughout tomato fruit
growth, indicating that it is organized and regulated in a
well-defined tissue-specific way (Van de Poel et al., 2014).

Altered Ethylene Perception Impairs Fruit Ripening

The ethylene receptors have been studied in detail in
tomato, where six genes have been initially described,

Figure 2. Phylogenetic tree of tomato and Arabidopsis ACS. The phy-
logenetic tree was inferred using the neighbor-joining method. The
optimal tree with the sum of branch length = 3.82205137 is shown. The
percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1,000 replicates) is shown next to the
branches. The evolutionary distances were computed using the Poisson
correction method and are the number of amino acid substitutions per
site. The analysis involved 25 amino acid sequences. All positions
containing gaps andmissing data were eliminated. There were a total of
138 positions in the final data set. Phylogenetic trees were conducted in
MEGA7. *, New tomato ACS genes identified in the current study.
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named LeETR1 to LeETR6 (Wilkinson et al., 1995;
Lashbrook et al., 1998; Tieman and Klee, 1999; Klee
and Tieman, 2002; Gapper et al., 2013). The genome-
wide search identified LeETR7 as a new member of
the tomato ethylene receptor family. Phylogenetic
analysis validated its similarity with other receptors,
and its expression pattern was established using the
TomExpress pipeline (Fig. 3C; Supplemental Figs. S1
and S2). Like in other plant species, two subfamilies
of ethylene receptors are present in tomato. LeETR1,
LeETR2, and LeETR3 (also named NR for never ripe)
belong to subfamily I, and harbor three transmem-
brane domains (Supplemental Fig. S1) and His kinase
and Histidine kinase-like ATPase (HATPase_c) domains
predicted by the SMART online tool (http://smart.
embl-heidelberg.de/). LeETR1 and LeETR2, but not
LeETR3, have a receiver domain at the C-terminal

position containing a phosphoacceptor described as
important in eukaryotic two-component systems
(Schaller et al., 2011). Subfamily II gathers four re-
ceptors, LeETR4 to LeETR7, containing four trans-
membrane domains as confirmed by the TMpred
online tool (http://www.ch.embnet.org/software/
TMPRED_form.html). In the Nr mutant, a point mu-
tation, leading to a substitution of Pro to Leu in the
N-terminal ethylene binding pocket, results in im-
paired fruit ripening (Lanahan et al., 1994; Wilkinson
et al., 1995). While confirming LeETR3 and LeETR4 as
the main receptor genes expressed at the inception of
tomato fruit ripening (Kevany et al., 2007; Klee and
Giovannoni, 2011), the TomExpress tool revealed that
LeETR7 also displays a ripening-regulated expression,
being the third most highly abundant receptor tran-
script during ripening (Fig. 3C).

Figure 3. Expression data of ethylene
biosynthesis and signaling genes during
fruit ripening extracted from public
databases and processed using the
TomExpress platform. Five fruit devel-
opmental stages have been studied:
immature green (IMG), mature green
(MG), breaker (B), 5 d after breaker
(B+5), and 10 d after breaker (B+10).
Expression patterns for the following
gene families are presented: ACS (A),
ACO (B), ETR (C), CTR (D), ETR partners
(E), EIL (F), EBF (G), and ERF (H). For
each gene, the plot represents normal-
ized counts per base for RNA-seq data
released from transcriptome analyses in
multiple tomato cultivars.
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It has been reported that receptor proteins are regu-
lated by GREEN-RIPE (GR), a small protein made of
around 240 amino acids, and the Gr mutant was de-
scribed to display impaired fruit ripening (Barry and
Giovannoni, 2006). A genome-wide search identified
threeGR genes in the tomato (GR, Green-Ripe Like1 [GRL1],
and GRL2). GRL1 is the closest ortholog of the Arabidopsis
REVERSION TO ENTHYLENE SENSITIVITY1 (RTE1)
gene (Resnick et al., 2006). The rte1 mutants were able to
restore ethylene sensitivity in the etr1-2 mutant, suggest-
ing that RTE1 and GR homologs may act at the receptor
levels (Resnick et al., 2006). GRL1 is the most expressed
homolog during fruit development, and its transcript
levels peak at the breaker stage (Fig. 3E). This is consistent
with the work by Ma et al. (2012) who were the first to
report the expression of GR/GRL1/GRL2 in fruit devel-
opment, showing that GRL1 displays ripening-related
expression. It was also suggested that GR and GRL1
may confer a subfunctionalization of the receptors by
mediating different responses to ethylene (Ma et al., 2012).
Nevertheless, overexpression of GRL1 or GRL2 does not
seem to impact fruit ripening (Klee and Giovannoni, 2011).

Two other proteins, Response toAntagonist1 (RAN1)
and tetratricopeptide repeat1 (TRP1), play important
roles at the receptor levels. SlRAN1 is the ortholog to
the Arabidopsis AtRAN1 that delivers the copper ion,
essential for ethylene binding activity (Binder et al.,
2010). SlRAN1 shows continuous low expression levels
with a slight rise at late ripening stages (Fig. 3E).
SlTPR1, known to bind the ethylene receptors, has been
suggested to lead to receptor degradation (Lin et al.,
2008b). Interestingly, SlTPR1 expression is high in the
late ripening stages (Fig. 3E) when LeETR3 and
LeETR4, its potential targets, are also highly expressed
(Fig. 3C).

CTR1 and Fruit Ripening

TheMitogene-activated protein kinase kinase kinase,
known as CTR1, acts directly downstream of the eth-
ylene receptors. The ctr1 loss-of-function mutations
result in the constitutive activation of ethylene response
in seedlings and adult plants, indicating that the enco-
ded protein acts as a negative regulator of ethylene
signaling (Lin et al., 2008a; Klee and Giovannoni, 2011).
So far, four CTR1 homologs (SlCTR1, SlCTR2, SlCTR3,
and SlCTR4) have been identified in the tomato, three
of which can completely (SlCTR3) or partially (SlCTR1
and SlCTR4) complement the Arabidopsis ctr1-8 mu-
tation (Leclercq et al., 2002; Adams-Phillips et al., 2004;
Lin et al., 2008a), suggesting a conserved function for
tomato CTR proteins. All tomato CTRs display ability
to interact with one or more ethylene receptors in yeast
two-hybrid systems (Zhong et al., 2008). Tomato and
CTR1, 2, 3, and 4 show differential expressions in var-
ious plant tissues (Adams-Phillips et al., 2004; Lin et al.,
2008a), and the ethylene-responsive CTR1 (Zegzouti
et al., 1999; Leclercq et al., 2002) displays a ripening-
related expression pattern. Our present study indi-
cates that SlCTR1 displays a typical ripening-regulated
expression, whereas SlCTR2 shows a steady increase in
its expression during ripening (Fig. 3D) and was up-
regulated in ripening-impaired mutants Nr and rin
(Lin et al., 2008a), suggesting its putative role in the
ripening process. The suppression of SlCTR1 via Virus-
induced gene silencing (VIGS) strategy was reported
to promote tomato fruit ripening, consistent with CTR
being a negative regulator of climacteric ripening (Fu
et al., 2005).

EIN2, Another Component of Ethylene Signaling
Influencing Ripening

In Arabidopsis, EIN2 is required for all ethylene re-
sponses, and based on genetic analyses, EIN2 acts
downstream of the receptor/CTR1 complex to posi-
tively regulate ethylene responses. It constitutes a crit-
ical step in the signal transduction pathway and acts
between CTR1 and the EIN3/EIL transcription factors
(Alonso et al., 1999; Guo and Ecker, 2003). Although the
expression of EIN2 in tomato is ethylene independent

Figure 4. Two different systems of ethylene production operate during
fruit development and ripening. At immature stages, ethylene biosyn-
thesis is mediated by system 1, whereas system 2 takes over during
ripening and is characterized by autocatalytic ethylene production. The
main genes involved in system 1 are ACS6 and ACS1A, both genes
being down-regulated by ethylene. From mature green stage onward,
system 2 ethylene production is driven mainly by ACS2 and ACS4, the
expression of which is stimulated by ethylene.ACS1A transcripts show a
transient increase at the onset of ripening, suggesting that this gene may
be important in regulating the transition from system 1 to system 2.
ACO1 andACO4 transcript levels are low in immature green stages, but
undergo sharp increase at the climacteric peak when system 2 ethylene
production is operating. IMG, Immature green; MG, mature green; B,
breaker; OR, orange; R, red. Arrowheads represent positive regulatory
interactions, and bar heads represent negative regulation.
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and does not exhibit substantial changes during fruit
growth and ripening (Fig. 3E), its down-regulation by a
cosuppression mechanism or via VIGS strategy resul-
ted in ethylene insensitivity and ripening inhibition
associated with reduced expression of ethylene- and
ripening-related genes (Fu et al., 2005; Hu et al., 2010),
suggesting that LeEIN2 is a positive regulator of
ethylene-mediated responses during fruit ripening.

Posttranslational Regulation of Ethylene Perception
Proteins and Fruit Ripening

Ethylene receptors are negative regulators of ethyl-
ene signaling, and it is therefore rather intriguing that
the corresponding genes undergo dramatic up-
regulation during fruit ripening (Fig. 3C). Pioneering
studies addressing the evolution of ethylene receptor
proteins during tomato fruit ripening showed that the
levels of receptor transcripts are not correlated with the
amount of receptor proteins, thus suggesting that
the posttranslational regulation of ethylene perception is
an essential mechanism (Kevany et al., 2007). Indeed, ex-
ogenous ethylene treatment of immature fruits results
in enhanced accumulation of ETR transcripts concom-
itant with a decrease in the corresponding encoded
proteins, and the use of the MG132, an inhibitor of
proteasome, suggested that ETR protein degradation
was mediated by the proteasome (Kevany et al., 2007).
Moreover, these authors developed the hypothesis of a
relationship between the phosphorylation status of the
receptor proteins and their degradation. In support of
this hypothesis, it was reported that the amount of
LeETR3 and LeETR4 receptor proteins increases at the
onset of ripening, and that the phosphorylation level
of some N-terminal residues plays a critical role in
switching on or off the downstream ethylene signal
transduction (Kamiyoshihara et al., 2012). The phos-
phorylation status of LeETR4 was shown to decrease
over the transition from immature green to breaker
stage, and exogenous ethylene induces dephosphoryl-
ation of the receptor protein. Taken together, these
studies (Kevany et al., 2007; Kamiyoshihara et al., 2012)
suggest that, during fruit ripening, ethylene signaling is
modulated at the level of the receptor proteins either
quantitatively by tuning their amount or by adjusting
their phosphorylation status.

TRANSCRIPTIONAL CASCADE LEADING TO THE
ACTIVATION OF ETHYLENE-RESPONSIVE GENES

EIL Proteins in Fruit Ripening

Ethylene regulates ripening-related genes through a
transcriptional cascade that comprises primary (EIL)
and secondary response factors (ERFs). Four tomato
EIL genes (SlEIL1, SlEIL2, SlEIL3, and SlEIL4) were
initially described (Tieman et al., 2001; Yokotani et al.,
2003), and mining the most updated tomato genome
sequence identified two additional genes (named here

as SlEIL5 and SlEIL6) based on the presence of the
typical domains characteristic of Arabidopsis EIL pro-
teins, including the acidic and basic domains as well as
the Pro-rich domain. Tomato SlEIL1, SlEIL2, SlEIL3,
and SlEIL4 genes exhibit a ripening-associated pattern
of expression, with SlEIL1 and SlEIL2 transcripts accu-
mulating at the onset of ripening and declining at later
stages, whereas those corresponding to SlEIL3 and
SlEIL4 show a steady increase throughout ripening
(Fig. 3F). Notably, the expression of SlEIL5 and SlEIL6 is
not regulated during fruit ripening, which may suggest
distinct roles among EILs. Down-regulation of SlEIL
genes in transgenic tomato plants altered fruit ripening
(Tieman et al., 2001), and overexpression of SlEIL1 in
the tomato Nr mutant partially restored normal fruit
ripening and stimulated the expression of some
ethylene-responsive genes, supporting the role of EILs
in ethylene-mediated fruit ripening (Chen et al., 2004).
Moreover, down-regulation of SlEIL genes resulted in
limited increase in SlACS2 and SlACS4 expression
(Yokotani et al., 2009), suggesting that EILs might be
essential for the activation of genes involved in auto-
catalytic ethylene production. A new phosphorylation
region, named EIN3/EIL phosphorylation region1, has
been shown to be essential for the transcriptional ac-
tivity of tomato SlEIL1 and dimerization of SlEIL1
proteins (Li et al., 2012). In Arabidopsis, EIL proteins
are known to be regulated by EBFs at the posttransla-
tional level (Guo and Ecker, 2003). Two tomato homo-
logs of these F-box proteins, EBF1 and EBF2, have been
shown to regulate ethylene signaling and fruit ripening
through mediating the degradation of EIN3/EIL pro-
teins (Yang et al., 2010). Mining the annotated tomato
genome sequence identified two new EBF proteins
(SlEBF3 and SlEBF4) based on the presence of con-
served F-box domains and Leu-rich repeats. SlEBF1,
SlEBF2, and SlEBF3 exhibit a typical ripening-
associated expression pattern with a peak of transcript
accumulation at the onset of ripening (Fig. 3G), sug-
gesting that EBFs may actively contribute to the control
of ripening-associated ethylene signaling.

ERFs and the Regulation of Fruit Ripening

The ethylene signaling cascade ends with transcrip-
tional activation of the transcription factors termed
ERFs. ERFs belong to the AP2/ERF superfamily shown
to regulate the expression of ethylene-responsive genes
through direct binding to their promoter regions
(Ohme-Takagi and Shinshi, 1995; Pirrello et al., 2012).
ERFs represent one of the largest plant multigene
families of transcription factors, which makes these
components suited to channel the ethylene signaling
toward specific responses through recruiting the ap-
propriate ethylene-responsive genes. Taking advantage
of the recently released annotated tomato genome se-
quence (Tomato Genome Consortium, 2012), 146 genes
were postulated to encode proteins containing the
AP2/ERF domain, of which 77 belong to the ERF

Plant Physiol. Vol. 169, 2015 2385

Ethylene Control of Fruit Ripening



subfamily (Pirrello et al., 2012). Although our knowl-
edge of the specific functions assigned to tomato ERFs
is still scarce, in recent years, an increasing number of
studies showed that ERF proteins play an important
role in fruit ripening. Most of the tomato ERF genes
identified so far are ethylene inducible and show
ripening-related expression (Pirrello et al., 2012; Liu
et al., 2014). Comprehensive expression analysis using
the TomExpress online tool revealed that 55 out of 77
ERF family genes exhibit a ripening-associated pattern
of expression, with 27 being up-regulated during rip-
ening, whereas the remaining 28 are down-regulated,
which suggests that different ERFs may have con-
trasting roles during fruit ripening (M. Liu, B. Lima
Gomes, E. Purgatto, L.E.P. Peres, E. Maza, M. Zouine,
J.P. Roustan, M. Bouzayen, and J. Pirrello, unpublished
data). SlERF.E1, SlERF.E2, and SlERF.E4 exhibit the
highest level of expression during ripening (Fig. 3H)
and show dramatic down-regulation in rin, nor, and Nr
tomato ripening mutants (M. Liu, B. Lima Gomes,
E. Purgatto, L.E.P. Peres, E. Maza, M. Zouine, J.P.
Roustan,M. Bouzayen, and J. Pirrello, unpublished data),
suggesting that members of subclass E may have the
most prominent role in regulating the ripening process.
Interestingly, these three ERFs are among the 23 ERFs
identified by chromatin immunoprecipitation on chip
(ChIP-chip) and chromatin immunoprecipitation cou-
pled to sequencing (ChIP-seq) approaches as poten-
tial direct targets of the RIN key ripening regulator
(Fujisawa et al., 2013; Zhong et al., 2013). Altogether, these
data are consistent with the assumption that ERF genes
are important components of ethylene- and RIN/NOR-
dependent ripening and suggest that ERFs may represent
the link between ethylene signaling and develop-
mental regulation of fruit ripening. Further supporting
the active role of ERFs in fruit ripening, overexpressing
SlERF.H1 (Supplemental Table S1) resulted in consti-
tutive ethylene response and accelerated tomato fruit
ripening (Li et al., 2007). A ripening-related pattern of
expression has also been shown for SlERF.E1 (LeERF2)
and SlERF.A3 in tomato fruit (Tournier et al., 2003;
Chen et al., 2008; Supplemental Table S1). Moreover, a
systems biology approach identified SlERF.E4 as a neg-
ative regulator of ethylene and carotenoid biosynthesis
in fruit ripening (Lee et al., 2012). More recently, the use
of a dominant repression strategy revealed that SlERF.B3
is involved in the control of fruit ripening by regulation
of climacteric ethylene production and carotenoid ac-
cumulation (Liu et al., 2013, 2014). In other climacteric
fruits, such as apple (Malus domestica), banana (Musa
spp.), plum (Prunus salicina), and papaya (Carica papaya),
although direct evidence showing the involvement of
ERF family genes in fruit ripening is lacking, some ERFs
were reported to exhibit a ripening-associated expres-
sion pattern (Wang et al., 2007; El-Sharkawy et al., 2009;
Li et al., 2013). In concert with the master regulator RIN,
ERFs regulate autocatalytic ethylene biosynthesis in cli-
macteric fruit ripening, and can directly modulate the
expression of ripening-related genes involved in various
metabolic pathways activated during fruit ripening.

TRANSCRIPTION FACTORS REGULATING FRUIT
RIPENING IN CONCERT WITH ETHYLENE

It is widely accepted that climacteric fruit ripening
involves a complex interplay between ethylene and
ripening-associated developmental regulators (Fig. 5).
Indeed, the cloning of genes responsible for impaired-
ripening mutations in the tomato, including RIN,NOR,
and CNR, represents a major breakthrough in deci-
phering the transcriptional control underlying fruit
ripening. Fruits produced by rin, nor, and Cnr mutants
exhibit inhibited ripening that cannot be rescued by
exogenous ethylene treatment (Klee and Giovannoni,
2011; Karlova et al., 2014). The RIN gene encodes a

Figure 5. Schematic overview of the multifactor regulatory network
involved in ethylene biosynthesis and signaling during fruit develop-
ment and ripening. RIN, TAGL1, and FUL1/2 are linked since they
probably function as complexes of varying composition. The ripening
master regulator NOR is placed in the same box. Along with CNR, these
factors are master regulators of climacteric ripening. CNR affects the
expression of RIN, LeHB1, SlAP2a, and SlTAGL1. FUL1 and FUL2 can
potentially regulate ethylene biosynthesis, perception, and signaling
genes. RIN promotes ripening via direct regulation of some transcrip-
tion factors, such as ERFs. SlERF.B1 and SlERF.E1 are hypermethylated
in cnr and rinmutants. ERFs regulate ethylene production in tomato by
interaction with the promoters of ACO. Another transcription factor,
LeHB-1, can bind in vivo to the promoter of ACO. The putative tran-
scription factor Sl-AP2a was described as a negative regulator of fruit
ripening and ethylene production. In addition, the control of ethylene
biosynthesis can be regulated by RIN through direct interactionwith the
promoters of ACS2, ACS4, and ACO1. The ethylene biosynthesis
pathway is controlled by a feedback mechanism, where ethylene reg-
ulates the expression of RIN. Moreover, there is evidence that ARFs also
contribute to this complex feedbackmechanism. ERF-type transcription
factors are involved in fruit ripening through the control of ethylene and
carotenoid biosynthesis pathways in tomato. Other hormones, such as
Auxin and abscisic acid (ABA), also play a role in tuning fruit ripening.
In particular, ARF2 was reported to be an essential component of the
regulatory network controlling fruit ripening in tomato. Arrowheads
represent positive regulatory interactions, and bar heads represent
negative regulation. SAM, S-adenosyl-L-Met.
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MADS-box transcription factor, and molecular studies
showed that RIN protein can directly bind to the pro-
moters ofACS2,ACS4, andACO1 ethylene biosynthesis
genes, NR and ETR4 ethylene receptor genes, and ERF
genes (Fujisawa et al., 2013; Zhong et al., 2013; M. Liu,
B. Lima Gomes, E. Purgatto, L.E.P. Peres, E. Maza,
M. Zouine, J.P. Roustan, M. Bouzayen, and J. Pirrello,
unpublished data). These data provide convincing evi-
dence for a link between the RIN-mediated transcrip-
tional regulation and ethylene during fruit ripening. On
the other hand, ethylene was shown to regulate the
expression of RIN, suggesting an active interplay be-
tween RIN and ethylene signaling (Fujisawa et al.,
2013). The Cnr mutant is due to an epigenetic change
that alters the methylation of a gene encoding a puta-
tive SQUAMOSA promoter-binding (SBP) protein,
which results in pleiotropic ripening inhibition and
inhibited expression of ethylene-associated genes, in-
cludingACO1, E8, andNR (Manning et al., 2006; Osorio
et al., 2011). Ethylene biosynthesis is impaired in the
tomato nor mutant, and it was recently shown that nor
has a more global effect on ethylene-related gene ex-
pression than rin (Osorio et al., 2011). LeHB-1, another
transcription factor, can bind the LeACO1 promoter,
and silencing of LeHB-1 via VIGS strategy results in
down-regulation of LeACO1 expression associatedwith
delayed fruit ripening (Lin et al., 2008c). The TAGL1
gene, which is highly expressed during fruit ripening,
was reported to act as a positive regulator of fruit rip-
ening, and TAGL1 knock-down fruits produce lower
amounts of ethylene with a reduced expression of
LeACS2, suggesting that TAGL1 controls fruit ripening
by regulating ethylene biosynthesis (Itkin et al., 2009;
Vrebalov et al., 2009). The putative transcription factor
SlAP2a, a member of the AP2/ERF superfamily gene,
was described as a negative regulator of fruit ripening
and ethylene production and signaling since its down-
regulation leads to higher levels of ethylene and fast
ripening (Chung et al., 2010; Karlova et al., 2011).
Likewise, SlMADS1 is a negative regulator of fruit
ripening, and its down-regulation via RNA interference
strategy results in early ripening and increased ethylene
production (Dong et al., 2013). More recently, SlNAC1
(for tomatoNAM, ATAF1/2, CUC2), a new tomato NAC
domain protein whose expression increases in ripening
fruit, was described as a negative regulator of ripening.
Its overexpression resulted in altered carotenoid path-
way and decreased ethylene synthesis mainly due to
the reduced expression of system 2 ethylene biosyn-
thetic genes (Ma et al., 2014). These data indicate that
both positive and negative ripening regulators are in-
volved in the control of fruit ripening, at least partially
in an ethylene-dependent pathway. Interestingly, al-
though the transcription factors Fruitfull1 (FUL1) and
FUL2 were initially reported to impact fruit ripening in
an ethylene-independent manner (Bemer et al., 2012),
recent evidences support the involvement of FUL1/
FUL2 in the regulation of ethylene biosynthesis dur-
ing fruit ripening (Fujisawa et al., 2014; Shima et al.,
2014; Wang et al., 2014).

EPIGENETIC REGULATION OF ETHYLENE-
REGULATED FRUIT RIPENING

Deciphering the basis of the tomato Cnr epimutation
provided the initial clue on the epigenetic control of
fruit ripening by demonstrating that the impaired rip-
ening phenotype is due to hypermethylated cytosines
in the promoter of SQUAMOSA Promoter Binding
Protein-like (LeSPL)-CNR, a gene encoding the SBP-box
transcription factor (Manning et al., 2006). Subse-
quently, it was shown that demethylation is essential
for climacteric ethylene production, and that treatment
of immature fruit with an inhibitor of methyltransfer-
ases results in early ripening, indicating that DNA
methylation impacts the transition from system 1 to
system 2 of ethylene production (Zhong et al., 2013).
Demethylation is critical to the binding of RIN protein
to the promoter of ripening genes (Zhong et al., 2013),
and repression of a DEMETER-like DNA demethylase
in tomato results in DNA hypermethylation, ripening
inhibition, and a dramatic decrease in climacteric eth-
ylene production (Liu et al., 2015). Furthermore, the
hypermethylated cnr mutant can be rescued by down-
regulating the tomato Chromomethylase3 gene, a plant-
specific CHROMOMETHYLASE (Chen et al., 2015).

Global methylation level at the 59 end of genes
gradually declines during fruit development while
remaining high in the tomato ripening-deficient Cnr
and rin mutants. The RIN binding sites in ACS4 and
ACO1 genes undergo decreased methylation during
tomato fruit ripening; by contrast, these sites remain
hypermethylated in cnr and rin mutants (Fig. 5). Like-
wise, the ethylene response components, SlERF.B1 and
SlERF.E1, are hypermethylated in cnr and rin mutants
comparedwith the wild type (Zhong et al., 2013). These
data suggest that regulation of the ethylene pathway
through RIN is strongly controlled by the methylation
status of target genes.

ETHYLENE AND OTHER PHYTOHORMONES IN
FRUIT RIPENING

It has long been considered that other plant hor-
mones besides ethylene are likely required for climac-
teric fruit ripening (Dostal and Leopold, 1967; Frenkel
and Dyck, 1973; Mizrahi et al., 1975; Fan et al., 1998).
ABA is known to promote ripening, whereas auxin
seems to have an antagonistic effect (Frenkel and Dyck,
1973; Mizrahi et al., 1975; Zhang et al., 2009; Su et al.,
2015). The expression of ACS2, ACS4, and ACO1 genes
is induced by exogenous ABA, revealing an ABA/
ethylene interplay operating at the level of ethylene
biosynthesis (Chernys and Zeevaart, 2000; Jiang et al.,
2000; Zhang et al., 2009). Down-regulation of the key
ABA biosynthesis enzyme 9-cis-epoxycarotenoid
dioxygenase1 in tomato fruit resulted in altered firmness
and color but surprisingly higher ethylene production,
indicating the complexity of the ABA/ethylene interplay
during ripening (Sun et al., 2012). In tomato, ABAmight
also be perceived through an ethylene-independent
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pathway that is mediated by tomato Zinc Finger Tran-
scription Factor (Weng et al., 2015).

The expression of ethylene biosynthesis and signaling
genes is regulated by auxin in tomato and other fleshy
fruits, such as peach (Prunus persica; Gillaspy et al., 1993;
Jones et al., 2002; Trainotti et al., 2007; Pirrello et al.,
2012). The auxin inhibitor p-Chlorophenoxyisobutyric
acidmimics ACC treatment, confirming the antagonistic
action of the two hormones during fruit ripening, and
auxin delays tomato ripening by affecting a set of key
factors, such as RIN, ethylene, and ABA (Su et al., 2015).
Consistentwith the role of auxin in fruit ripening, tomato
fruit firmness was shown to be partly regulated by
tomato Auxin Response Factor4 (SlARF4), a transcription
factor known to mediate auxin responses (Jones et al.,
2002; Guillon et al., 2008; Sagar et al., 2013). More
recently, SlARF2, a tomato auxin response factor, was
described as an essential component of the regulatory
network controlling fruit ripening. Indeed, tomato fruits
underexpressing SlARF2 exhibited dramatic ripening
defects associated with reduced climacteric ethylene
production and dramatic down-regulation of the key
ripening regulators RIN, CNR, and NOR (Hao et al.,
2015). These data highlight the complex interplay be-
tween ethylene and other hormone-signaling compo-
nents during fruit ripening. Further sustaining the idea
of an interplay between ethylene and auxin during fruit
ripening is the ethylene-induced expression of PIN-
FORMED1 auxin transporter and the requirement of
high auxin levels to produce large amounts of system
2 ethylene in peaches (Trainotti et al., 2007; Tatsuki
et al., 2013).

CONCLUSION

During the last decade, the implementation of ad-
vanced high-throughput technologies in genomics,
metabolomics, and proteomics threw new light on the
mechanisms by which ethylene regulates the ripening
process. Although these studies confirmed ethylene as
the main hormone regulating climacteric ripening, they
provided evidence supporting the intervention of a
complex network of interacting signaling pathways
(Fig. 5). Indeed, it is now clear that hormonal and de-
velopmental factors act in concert to tune the whole set
of ripening-associated pathways. The emerging idea is
that fruit development and ripening are complex mul-
tilevel processes depending on the coordinated action
of master regulators, including multiple hormone sig-
naling, microRNAs, epigenetic maintenance, and epi-
genetic modifying genes. Future challenges will consist
of unraveling the molecular mechanisms underlying
the specificity of ethylene responses during plant de-
velopment and fruit ripening. It is particularly impor-
tant to uncover how the ethylene perception system
evolves at the protein level and to address the func-
tional significance of individual ERF genes. Deciphering
the function of ERF genes in both ethylene-dependent
and ethylene-independent processes during ripening

and identifying the target genes of individual ERFs will
be instrumental to better clarify their specific contri-
bution to fruit ripening. Moreover, deciphering the
ethylene receptor subfunctionalization and assigning
specific roles to ERF members will open new avenues
toward engineering fruit development and ripening via
targeted approaches, especially when aiming to en-
hance some desirable traits and metabolic pathways
and to reduce unwanted ones.
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