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Adaptive choice behavior depends critically on identifying and learn-
ing from outcome-predicting cues. We hypothesized that attention
may be preferentially directed toward certain outcome-predicting
cues. We studied this possibility by analyzing event-related potential
(ERP) responses in humans during a probabilistic decision-making
task. Participants viewed pairs of outcome-predicting visual cues
and then chose to wager either a small (i.e., loss-minimizing) or large
(i.e., gain-maximizing) amount of money. The cues were bilaterally
presented, which allowed us to extract the relative neural responses
to each cue by using a contralateral-versus-ipsilateral ERP contrast.
We found an early lateralized ERP response, whose features
matched the attention-shift-related N2pc component and whose
amplitude scaled with the learned reward-predicting value of the
cues as predicted by an attention-for-reward model. Consistently, we
found a double dissociation involving the N2pc. Across participants,
gain-maximization positively correlated with the N2pc amplitude to
the most reliable gain-predicting cue, suggesting an attentional bias
toward such cues. Conversely, loss-minimization was negatively cor-
related with the N2pc amplitude to the most reliable loss-predicting
cue, suggesting an attentional avoidance toward such stimuli. These
results indicate that learned stimulus–reward associations can influ-
ence rapid attention allocation, and that differences in this process
are associated with individual differences in economic decision-
making performance.
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Introduction

Maximizing gains and minimizing losses are hallmarks of suc-
cessful economic decision-making. Behavioral studies have
found that individuals’ ability to make decisions that maximize
gains and minimize losses can affect life outcomes. For
example, previous behavioral studies have found that deficits
in gain-maximization and loss-minimization are associated
with negative life outcomes in gamblers (Siler 2010), in de-
pressed patients (Maddox et al. 2012), and across the overall
population (Knutson et al. 2011). Accordingly, understanding
the brain mechanisms underlying gain-maximization and loss-
minimization is an important pursuit in decision neuroscience.
We recently reported that individuals’ tendencies to maximize
gains and minimize losses were associated with their
event-related potential (ERP) responses to feedback concern-
ing those gains and losses (San Martín et al. 2013), adding to a
rapidly developing human electrophysiological literature dem-
onstrating the role of feedback-related brain activity in shaping
choice behavior (Frank et al. 2005; Cohen and Ranganath

2007; Hewig et al. 2007; Goyer et al. 2008; San Martín et al.
2010; Billeke et al. 2012; for a review, see San Martín 2012).

Rapid attentional biases toward sensory cues that provide in-
formation about potential outcomes for different courses of
action are another important, but much less-studied, neurocog-
nitive mechanism that may underlie differences in choice be-
havior. Attentional biasing may play a key role when several
simultaneously available cues provide either complementary
or contradictory information about the best course of action.
Here, we studied this possibility by analyzing ERP responses
in humans during a probabilistic decision-making task, in
which participants chose between a large and a small wager
after observing a pair of probabilistic cues that defined the like-
lihood of positive or negative outcomes. Critically, these 2 cues
were presented bilaterally, allowing us to compute the relative
attentional allocation toward each cue by using a contralateral-
versus-ipsilateral ERP contrast.

Several lines of research have suggested that the deployment
of attention toward a stimulus is modulated by the stimulus’s
reinforcement history. For example, reward-associated targets
are less likely to be missed in the attentional blink (Raymond
and Brien 2009), and visual search can be both facilitated
(Hickey et al. 2010a) or disrupted (Anderson et al. 2011;
Hickey and van Zoest 2012) depending on whether targets or
distractors have been associated with rewards. Recent studies
have also shown amplified brain responses to reward-predicting
visual stimuli by measuring the attentional-shift-related N2pc
ERP component (Kiss et al. 2009; Hickey et al. 2010b). This
component is an enhanced negative-polarity response over
parietal–occipital scalp sites contralateral to the hemifield of a
lateralized visual target stimulus; it typically emerges around
200–300 ms poststimulus and is thought to reflect attentional
focusing processes toward that target (Luck and Hillyard 1994;
Woodman and Luck 1999; Hopf et al. 2000). In multidistractor
visual search tasks, the N2pc has been shown to be larger for
targets that are associated with high, versus low, reward (Kiss
et al. 2009). Moreover, if a distractor in the array has recently
been associated with reward, a larger N2pc is elicited by that
distractor than by the target, suggesting enhanced attentional
capture (Hickey et al. 2010b). Interestingly, the N2pc has also
been shown to be modulated by emotional valence in a
2-stimulus (single target and single-distractor) visual detection
task (Kiss et al. 2007), as well as by contextual, task-irrelevant,
emotional stimuli in a luminance-change detection task
(Buodo et al. 2010). These studies suggest the strong, but as
yet untested, prediction that the attentional-orienting pro-
cesses indexed by the N2pc may shape visually-cued economic
choices. Here, we evaluated whether the N2pc activity may
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reflect the attention drawn toward visual cues by virtue of their
association with reward—such that individual differences in
cued economic choices may be associated with individual dif-
ferences in the N2pc responses to those cues.

That reinforcement history can alter the degree to which a
particular stimulus attracts attention (i.e., salience) has exten-
sively been demonstrated in the context of animal conditioning
(Gottlieb 2012). This literature describes 3 possible mechan-
isms by which stimuli might change in salience as a conse-
quence of learning. According to the proposal of an “attention
for action” mechanism (Mackintosh 1975), organisms will
attend more to stimuli that are reliable predictors of subse-
quent positive or negative events—and thus that provide infor-
mation that can help inform actions (i.e., thus a useful
alternative name would be “attention for information”). A
second “attention for learning” model (Pearce and Hall 1980)
suggests the reverse, namely that animals will attend more to
cues that have been associated with uncertainty in order to
learn more about stimuli for which the animal does not yet
possess an adequate predictive mental model (i.e., thus a
useful alternative name being “attention for uncertainty”).
Finally, a more recently proposed “attention for liking” model
(Hogarth et al. 2010) suggests that attention will be captured
by stimuli that predict positive outcomes and will be shifted
away from aversive cues (i.e., an alternative name thus being
“attention for reward”). We hypothesized that the reinforce-
ment history may influence stimulus salience, and thus cued
economic choices, through any of these 3 mechanisms (i.e., at-
tention for information, uncertainty, or reward, using the alter-
native names proposed above). Here, we evaluated which one

of these models provides a better characterization of the atten-
tional responses to outcome-predicting visual cues in an eco-
nomic decision-making task.

Materials and Methods

Participants
Forty-five healthy, right-handed, adult volunteers (22 males) partici-
pated in this study (aged 18–31 years; mean = 23.0). Participants gave
written informed consent and were financially compensated at $15 per
hour, with an extra bonus (mean = $12.20, standard deviation [SD] =
$7.75) based on their performance during the experimental session.
All procedures were approved by the Duke University Health System
Institutional Review Board. We excluded 4 participants from further
data analysis due to technical difficulties during their experimental ses-
sions, leaving a final sample of 41 participants (20 males). A different
subset of the electroencephalogram (EEG) data of this subject sample,
collected under the same experimental sessions, was already reported
in San Martín et al. (2013). That earlier published work presented
analyses on the feedback-locked ERP, while here we report on the
stimulus-locked ERP activity elicited by the outcome-predicting cues
(Fig. 1A).

Stimuli and Task
We designed a probabilistic decision-making task in which partici-
pants made betting decisions aimed to maximize the magnitude of
gains and minimize the magnitude of losses (San Martín et al. 2013).
Participants sat in front of a 19-inch CRT monitor located 60 cm from
their eyes. They performed 800 trials over the course of a single experi-
mental session that was divided into 40 blocks. Subjects were told that
each trial would start with the presentation of 2 symbols, and that
some symbols would tend to be followed by losses and some symbols

Figure 1. Experimental design. (A) In each trial, participants covertly attended to a bilaterally presented cue stimulus pair providing information about the probability of winning on
that trial. They then chose between making a large bet (8 points) and a small bet (2 points) by pressing a button corresponding to the side of the screen containing their preference.
Feedback was provided as a green box surrounding the wager amount if the participants won the bet and as a red box if the participant lost. (B) The stimulus pair to be presented on
each trial was randomly selected from a set of 20 possible pairs that were formed from 5 different novel symbols. These cue symbols, labeled A, B, M, Y, and Z here, were each
associated with a relative likelihood of gain versus loss. Each stimulus pair was thus associated with a total probability of winning [P(win)] for that trial, derived from the combination
of the gain/loss probabilities of each of the individual cues, as annotated and color-coded in the figure [ranging from blue to red as P(win) decreases]. ERP responses and
participants’ behavior were independently evaluated for the most reliable gain-predicting cue (i.e., A), the neutral cue (i.e., M), and the most reliable loss-predicting cue (i.e., Z),
based on trial-types circled in blue, gray and red, respectively, inside the matrix figure. This blue-gray-red color code is consistently used throughout the figures.
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by gains across trials. Participants were instructed to try to learn the as-
sociation between symbols and outcomes and to use that information
to bet either 2 points or 8 points on each trial. Participants were also in-
formed that they would receive a monetary bonus proportional to the
total points earned during the session. They completed a brief 20-trial
practice session before data collection, using a set of symbols different
from those used during the experiment.

The temporal sequence of the task as it unfolded over a single trial
is shown in Figure 1A. All stimuli appeared on a dark gray background.
Each trial started with the simultaneous presentation of a centralized
fixation cross (1° × 1°) and the bilateral presentation of a pair of cues
(Hiragana characters) that were displayed for 1500 ms. Participants
were instructed to maintain fixation on the fixation cross throughout
the experimental runs. The cues were presented laterally equidistant
(3°) from the center of the fixation cross, with the size of each cue such
that it fits into a square frame subtending 2.5° × 2.5° of visual angle.
The 2 cues presented on each trial were randomly selected, without re-
placement, from a set of 20 possible pairings of 5 unique symbols
(Fig. 1B), which for referencing purposes are tagged as A, B, M, Y, and
Z. No cue was ever paired with itself, and all the cues were paired with
each one of the other cues the same number of times within each block
of trial and throughout the experiment. As a result, each cue was pre-
sented 8 times per block: 4 times in the left hemifield and 4 times in
the right hemifield.

After a within-trial inter-stimulus interval (ISI) jittered between 100
and 300 ms following the offset of the cue pair, 2 white squares with
the numerals “8” and “2” that depicted the wager amount choices ap-
peared randomly in the right and left hemifield, equidistant from the
fixation cross. Participants chose their wager amount for the trial by
pressing a button with the hand corresponding to the side of the
screen containing their wager preference. Note that because the bet
values 8 and 2 were presented randomly in the right or left hemifield,
there was no relationship between the sidedness of the wager amount
choice and the sidedness of the previously presented outcome-
predicting cues, and thus there could be no planning of choosing the
numeral to the right versus left of fixation until they appeared on the
screen. The outcome of the trial (duration 800 ms) was subsequently
presented after another within-trial ISI jittered between 600 and 1000
ms after the choice response, appearing as a centrally presented green
box around the chosen number if the participant gained the points bet
on that trial or as a red box around the chosen number if the partici-
pant lost such points. If no response was made within 1200 ms follow-
ing the onset of the wager screen, the words “no response” were
presented, along with a red box corresponding to losing 8 points. The
next trial started after an intertrial interval jittered between 800 and
1200 ms.

Each pair of cues had a prediction probability of winning versus
losing [P(win)] associated with it, which was calculated as an adjust-
ment from 50% determined by each of the 2 cues: P(win) = 0.5 + PL +
PR, where PL and PR are the winning probability adjustments asso-
ciated with the cue presented on the left and right hemifield, respect-
ively (+0.3, +0.15, 0, −0.15, and −0.3; for cues labeled A, B, M, Y, and
Z, respectively, in Fig. 1B). The assignment between labels (and thus
the probabilities) and the actual symbols was randomized across parti-
cipants. A key feature of the paradigm was that, although participants
had no control over the probably of winning versus losing on a trial (i.
e., the valence of the outcome), they could make a choice that would
influence the “magnitude” of the outcome. In order to optimize their
choices (i.e., maximizing gains and minimizing losses), the partici-
pants had to learn, by trial-and-error, the reward-predicting value of
the different cues, thereby enabling them to choose the large wager on
trials likely to lead to winning outcomes and to choose the small wager
on trials likely to lead to losing outcomes.

We structured the stimulus set so that outcome probability and un-
certainty were orthogonally related. The probability of a positive
outcome was mapped linearly across the cues: A = 0.725, B = 0.6125,
M = 0.5, Y = 0.3875, and Z = 0.275. Uncertainty varied with a different
structure, however, being lowest for the extreme cues (i.e., A predict-
ing a gain with 72.5% of certainty and Z predicting a loss with 72.5% of
certainty) and highest for the middle cue (i.e., M being equally likely to
predict a gain or a loss).

EEG Recording and Preprocessing
The EEG was recorded continuously from 64 channels mounted in a
customized extended-coverage elastic cap (Duke64 design, Electro-
Cap International, www.electro-cap.com) using a recording bandpass
of 0.01–100 Hz at a sampling rate of 500 Hz (SynAmps, Neuroscan). All
channels were referenced to the right mastoid during recording. The
positions of all 64 channels were equally spaced across the customized
cap and covered the whole head from slightly above the eyebrows in
front to below the inion posteriorly (Woldorff et al. 2002). Impedances
of all channels were kept below 5 kΩ, and fixation was monitored with
electrooculogram recordings. Recordings took place in an electrically
shielded, sound-attenuated, dimly lit, experimental chamber.

Offline, EEG data were exported to MATLAB (MathWorks) and pro-
cessed using custom scripts and the EEGLAB software suite (Delorme
and Makeig 2004). The data were then low-pass filtered below 40 Hz
and re-referenced to the algebraic average of the left and right mastoid
electrodes. Artifacts caused by eye movements and muscular activity
were removed using independent component analysis (a similar ap-
proach can be found in Debener et al. 2005; Eichele et al. 2005;
Scheibe et al. 2010; San Martín et al. 2013). To analyze cue-locked ERP
responses, the continuous EEG data were divided into 900-ms epochs,
spanning from 400 ms before to 500 ms after the onset of the cue-pair
stimulus. Voltages were calculated relative to a 200-ms prestimulus
baseline period.

ERP Extraction Procedure
Through our analyses, we wished to characterize the neural activity
associated with the processing of the visual cues by virtue of their
reward-predicting value. Specifically, we were interested in the possi-
bility that the different outcome-predicting visual cues would elicit
differential early lateralized ERP responses over posterior scalp sites
(i.e., N2pc activity) that would reflect relative levels of attentional or-
ienting toward those cues. To identify such effects of attention, while
controlling for all other aspects of the task, we extracted the contralat-
eral and ipsilateral cue-triggered ERP activity for the presentation of 3
of the 5 cues: A (the most reliable gain-predicting cue), M (the neutral
cue, with no relative contribution of gain-versus-loss prediction), and
Z (the most reliable loss-predicting cue), using exclusively the trials
in which B or Y was presented in the opposite hemifield. We made
this choice in order to compute behavioral performance and ERPs for
cues A, M, and Z independently of each other (Fig. 1B). Therefore,
the ERP extracted for each A cue, for example, was not conflated with
any of responses associated with the other 2 cues being analyzed
(i.e., M and Z), so that we could obtain a more selective measure of
these value-based responses with no overlapping assignment of trials.
Corresponding behavioral data were analyzed according to the same
scheme.

ERPs were calculated using standard signal-averaging procedures
for extracting contralateralized attentional effects (Luck 2005). First, for
each subject, EEG waveforms for all the electrode sites were averaged
separately for each combination of cue (A, M, and Z) and cue position
(left hemifield vs. right hemifield). Then we identified all the pairs of
corresponding left and right electrodes of equal distance from the
scalp midline (e.g., P3/P4 and O1/O2) and extracted the contralateral
and ipsilateral ERP activity for each cue for each of these pairs of elec-
trodes. More specifically, the contralateral ERP for each cue was ex-
tracted from the left electrode sites when the cue was presented in the
right hemifield, and averaged with the activity at the corresponding
right electrode sites when the cue was presented in the left hemifield.
Similarly, the ipsilateral ERP for each cue was calculated by averaging
the signal recorded at the left electrode sites when the cue was pre-
sented on the left hemifield with the signal at the equivalent right elec-
trode sites when the cue was presented on the right hemifield.

On the basis of previous studies (e.g., Kiss et al. 2009; Hickey et al.
2010b) and in line with visual inspection of grand average ERP wave-
forms, the elicited N2pc brain activity was quantified for statistical pur-
poses as the average potential from a 200- to 400-ms window in the
contralateral-minus-ipsilateral difference wave at electrode sites PO7/
PO8. For topographic maps, the relative lateralized activity for each of
the relevant conditions is plotted across the scalp.
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Behavioral Data Analysis
Our main behavioral and ERP data analyses assumed that the partici-
pants were aware of the differences between the probabilities of
winning associated with the visual cues. Thus, we wanted to exclude
from analysis blocks of trials in which the participants, on average, may
have not yet learned the probability of winning for the different cues. In
order to detect those blocks, we ran an ANOVA on the probability of
high bets per cue on each experimental block up to the block in which
participants’ choices significatively distinguished between A and Z cues.
(Tukey’s range test was used for these within-blocks post hoc compari-
sons.) In particular, wewanted to determine the first block in which par-
ticipants’ behavior indicated that they were aware of the differences
between the cues, so that we could exclude from analysis any possible
early blocks in which they were not yet aware of those differences.

Subsequently, we defined a gain-maximization score for each
subject as his/her observed probability to bet the larger amount on
trials presenting cue A [P(high bet)A]. Conversely, a loss-minimization
score was determined for each subject as his/her observed probability
to bet the smaller amount on trials presenting cue Z [1− P(high bet)Z].
As explained above, the trials presenting both A and Z together in the
same trial were excluded from this and all our other data analyses (i.e.,
because only trials with cues B or Y on the other side were included in
the analyses). We also defined a metric of overall decision performance
as the ability to behaviorally distinguish between cues A and Z [i.e.,
P(high bet)A− P(high bet)Z].

ERP Data Analysis
In our main ERP data analysis, we evaluated differences between the
N2pc responses to the different outcome-predicting visual cues. We
computed 3 contralateral-minus-ipsilateral responses for each partici-
pant, corresponding to the averaged EEG activity time locked to the
presentation of each of the 3 cue types included in this analysis (A, M,
and Z). These 3 cues are color-coded blue, gray, and red, respectively,
throughout the presented figures. On average across the participants,
151 trials went into the contralateral-minus-ipsilateral ERP wave for
cue A (SD, 8.45), 152 into the ERP for M (SD, 8.54) and 151 trials into
the ERP for Z (SD, 8.08). Repeated-measures ANOVAs were performed
on the N2pc amplitude with “cues” as the explanatory factor. Tukey’s
range test was used for post hoc comparisons.

Secondly, we directly tested whether the N2pc amplitude fits the “at-
tention for information”, “attention for uncertainty”, or “attention for
reward” models (Fig. 2). The amplitude of the N2pc component to A,
M, and Z for each participant was used as a dependent measure to fit a
multiple linear model according to the following equation:

N2pc amplitude¼ constantþb1ðLinfo=uncertaintyÞ þ b2ðLrewardÞ
þ b3P þ b4PðLinfo=uncertaintyÞ þ b5PðLrewardÞ þ 1; ð1Þ

where Linfo/uncertainty was a categorical variable representing both the
attention for information and the attention for uncertainty models,
with levels equal to −1, 0, and −1 for cues A, M, and Z, respectively.
Note that the same regressor variable was used to represent these 2
models since they were exact opposites of each other (Fig. 2A,B), with
their distinction being the sign of the derived β1. A positive β1 estimate
would support the attention for information model (i.e., enhanced
negativity contralateral versus ipsilateral to cues A and Z compared
with M) and a negative β1 estimate would support the attention for un-
certainty model (i.e., a larger N2pc response to M compared with both
A and Z). In contrast, Lreward was a categorical variable with levels
equal to −1, 0, and +1 for A, M, and Z, respectively, such that a positive
β2 estimate would support the attention-for-reward model (Fig. 2C; a
larger N2pc for A, followed by M, followed by Z). Given that the fit of
the different models might vary between participants depending on
how well they learned the cue/p(win) contingencies, we included the
covariate P representing the overall decision-performance score for
each participant [P(high bet)A− P(high bet)Z]. The ε parameter was a
vector of error terms. These parameters were determined using the
MATLAB function “glmfit” after demeaning the regressors.

Finally, we explored participant-wise correlations between individ-
ual differences in gain-maximization and loss-minimization behavioral
scores and the amplitude of the N2pc response to the gain-predicting
and loss-predicting cues (i.e., for A and Z, respectively). As such, we
performed a multiple linear regression using the amplitude of the
N2pc response to the A and Z cues as explanatory variables for the
gain-maximization and loss-minimization behavioral scores across par-
ticipants, according to the following equations:

Gain-maximization score = constant + bA-gain-maxðN2pcAÞ
þ bZ-gain-maxðN2pcZÞ þ 1; ð2Þ

where the βA-gain-max and βZ-gain-max estimates indicate the participant-
wise correlation between gain-maximization behavioral scores and the
amplitude of the N2pc to the A cue and the N2pc to the Z cue, respect-
ively. For example, a negative βA-gain-max estimate would indicate that
the greater (i.e., the more negative) the N2pc response to the A cue,
the better the participant’s gain-maximization score.

Loss-minimization score ¼ constantþ bA-loss-minðN2pcAÞ
þ bZ-loss-minðN2pcZÞ þ 1; ð3Þ

where the βA-loss-min and βZ-loss-min estimates indicate the participant-
wise correlation between loss-minimization behavioral scores and the
amplitude of the N2pc to the A cue and the N2pc to the Z cue, respect-
ively. For example, a positive βZ-loss-min estimate would indicate that the
smaller (i.e., the less negative) the N2pc response to the Z cue, the

Figure 2. Models of attention toward outcome-predicting cues. Three proposed mechanisms by which stimuli might change in attentional salience as a consequence of their
associated reward probability (modified from Gottlieb 2012). In this figure, the values on the x-axis (labeled “reward prediction”) correspond to the mean win-probability associated
with cues A, M, and Z throughout the experimental session (represented by blue, gray and red dots, respectively). The y-axis represents predictions about the salience of A, M, and
Z derived from each of these attentional models. (A) According to the attention for information model, attention would be prioritized toward stimuli that reliably predict upcoming
outcomes, regardless of whether that outcome was likely to be positive or negative (i.e., cues A and Z). (B) According to the attention for uncertainty model, attention would be
prioritized toward stimuli that are associated with high uncertainty about the upcoming outcomes (i.e., cue M). (C) According to the attention-for-reward model, attention would be
prioritized towards stimuli that predict positive outcomes (i.e., A) and relatively shifted away from stimuli predicting negative outcomes (i.e., Z).
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better the participant’s loss-minimization score. Again, we performed
this analysis using the MATLAB function glmfit.

Results

Behavioral Results: Initial Learning of Symbols
Since we were interested in characterizing neural activity asso-
ciated with the processing of visual cues by virtue of their
learned associations with reward, we wished to analyze only
trials in which the participants had already learned the cue/P
(win) contingencies. As illustrated in Figure 3, participants
quickly learned the contingencies of the task. Indeed, an
ANOVA on the probability of high bets per cue on the first
block revealed that, on average, participants’ choices already
distinguished between cues within this block (F2,80 = 3.3061,
P < 0.05), with a greater proportion of high bets on trials pre-
senting the gain-predicting cue A, compared with trials pre-
senting the loss-predicting cue Z (P < 0.05, Tukey’s range post
hoc tests). Given this result we decided to include all the trials
of the session in our behavioral and ERP data analyses.

Behavioral Results: Gain-Maximization
and Loss-Minimization
In order to evaluate the relationship between individual differ-
ences in choice behavior and ERP responses, we extracted a
gain-maximization score and a loss-minimization score for
each participant defined, respectively, as the observed prob-
ability across the experimental session to bet the larger amount
on trials with an A cue and the observed probability to bet the
smaller amount on trials with a Z cue. Overall, participants’
were better at minimizing their losses (mean = 0.81, SD = 0.16)
than maximizing their gains (mean = 0.68, SD = 0.16) [t(80) = 3.76,
P < 0.0005]. We did not find a significant correlation between
the bias towards loss-minimization (i.e., the difference between

loss-minimization and gain-maximization scores for each par-
ticipant) with respect to either age (r = 0.13, P = 0.43) or
gender (t =−0.45, P = 0.66). The average decision-performance
score was 0.48 (SD = 0.26).

ERP Results

The Attention-Reflecting N2pc Is Selectively Elicited by the
Gain-Predicting Cue
Figure 4 shows ERP waveforms elicited at parietal–occipital
scalp sites PO7/PO8 by the cues A, M, and Z. The attention-
sensitive N2pc component (enhanced negativity contralateral
vs. ipsilateral to the cue) appeared as a larger for cue A than for
the other 2 cues. Indeed, an ANOVA on the amplitude of the
N2pc revealed a significant difference between the 3 cue types
(F2,80 = 6.4311, P < 0.005), with a larger N2pc amplitude for
cue A compared with both M (P < 0.005) and Z (P < 0.05).
Moreover, the amplitude of the N2pc was different from zero
when elicited by the presence of cue A [t(40) =−3.48, P <
0.005], but it was statistically indistinguishable from zero for M
[t(40) = 1.77, P = 0.08] and Z [t(40) = 0.37, P = 0.72)]. In summary,
when collapsed across the 41 participants, the N2pc response
was selectively elicited by the cue that was a positive-reward
predictor.

This result is inconsistent both with the attention-for-
information model (Fig. 2A), which predicts an enhanced N2pc
for both the A and Z cues (given that they were equally inform-
ative), and with the attention-for-uncertainty model (Fig. 2B),
which predicts a maximum N2pc for M (i.e., the cue offering
the least prediction value). Finally, this result is only partially
consistent with the attention-for-reward model (Fig. 2C),
which indeed predicts a maximumN2pc amplitude in response
to A, as was the case, but also predicts a continued decrease in
the N2pc amplitude from A to M to Z, which was not seen in
this grand average over all participants.

N2pc Responses Were Consistent with Attention-for-Reward
Model in High Decision-Performance Participants
A limitation of the ERP data analysis described above is that it
does not take into account differences in reward learning
among the participants. Even though our behavioral analyses
showed that, on average, participants already distinguished
between A and Z during the first block of the task, some may
have not learned this distinction very well even across the
whole session. As a result, it was possible that differences
between the amplitude of the N2pc response to the various
cues may have been diluted, at the group level, by the inclu-
sion of participants that underperformed in learning the con-
tingencies between cues and the probability of winning.

In order to overcome the limitations of the previous ana-
lysis, we used a multiple linear regression procedure that eval-
uated the relationship between the N2pc and the alternative
attentional models described in Figure 2, while taking into
consideration individual differences in learning-guided choice
behavior (see Eq. 1 in the Materials and Methods section). We
found that none of our original attentional models, by them-
selves, predicted the N2pc amplitude for cues A, M, and Z (see
Table 1 for statistics). However, we did find a significant associ-
ation between the N2pc amplitude and the regressor represent-
ing the interaction between the attention-for-reward model
and decision performance (β5 = 0.94, P < 0.01). In particular,
the fit between the attention-for-reward model and the N2pc

Figure 3. Choice behavior across time. Participants’ bet choices distinguished
between cues A, M, and Z early and consistently throughout the experimental session.
Specifically, differences in choice behavior for A and Z were already significant during
the first block of the session (shaded areas indicate SEM for each trace).
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responses increased, across participants, as decision-performance
scores improved.

We also performed additional analyses as a function of deci-
sion performance. In particular, we selected the group of
highest-performing subjects (n = 15, decision-performance
scores at least 0.5 SD above the mean) and the group of lowest-
performing participants (n = 11, decision-performance scores
at least 0.5 SD below the mean), and examined the patterns of
the N2pc activity elicited by the cues. As can be seen in
Figure 5, the high-performing group had an N2pc pattern that
closely followed the attention-for-reward model, whereas the
low-performing group had a much less differentiated pattern.
To analyze these patterns statistically, we tested the fit of the
attention-for-information/uncertainty and the attention-for-
reward models separately in these 2 groups [N2pc amplitude =
Constant + β1(Linfo/uncertainty) + β2(Lreward) + ε]. Consistent with
the result across the whole sample described above, we found:
(1) that the regressor representing the attention-for-information/
uncertainty models showed no significant association with the
N2pc responses in either of these 2 groups (P-values >0.1);
and (2) that the attention-for-reward model significantly pre-
dicted the amplitude of the N2pc responses in high decision-
performance participants (β2 = 0.47, P < 0.005), while showing
no significant association with the N2pc in the low decision-
performance participants (β2 = 0.05, P = 0.71). In summary, the
attention-related N2pc response to the cues linearly increased
with the probability of winning associated with each cue, as
predicted by the attention-for-reward model, but only in parti-
cipants that successfully learned the contingencies between
cues and probability of winning.

Finally, a visual inspection of Figure 5 shows that, on
average, high decision-performance participants presented a
reversed, positive-polarity N2pc for cue Z. However, according
to a two-tailed t-test, this positive-polarity N2pc did not reach
statistical significance [t(14) = 1.71, P = 0.11].

N2pc Responses to Gain-Predicting and Loss-Predicting Cues
Independently Predict Gain-Maximization and
Loss-Minimization Across Participants
If the attention-for-reward model provides a good characteriza-
tion of the amplitude of the N2pc responses in our task, as in-
dicated by the previous analysis, we should also observe a
double dissociation in which the N2pc responses to A and Z in-
dependently predict gain-maximization and loss-minimization
scores across participants. We used a multiple linear regression
procedure to evaluate this possibility (Eqs 2 and 3 in the Mate-
rials and Methods section). As shown in Figure 6, we found
that across participants the larger the N2pc for cue A (i.e., the
larger the relative contralateral parietal–occipital negativity)
the higher the gain-maximization score (βA-gain-max =−0.06,
P < 0.05), independent of the N2pc for Z (βZ-gain-max = 0.01,
P = 0.75). Critically, we also found that the larger the N2pc for
Z, the lower (i.e., the worse) the loss-minimization score
(βZ-loss-min = 0.08, P < 0.05), independent of the N2pc for A
(βA-loss-min =−0.02, P = 0.47). This result thus provides strong
support for the interpretation of the N2pc as reflecting the fo-
cusing on attention toward positive-reward predictors. Indeed,
a large N2pc for A was associated with betting high on trials

Figure 4. N2pc evoked to the 3 cue types A, M, and Z. (A) Visual ERP at channel PO7/PO8 for contralateral (dashed) and ipsilateral (solid) to the gain-predicting cue (A, in blue),
the neutral cue (M, in gray), and the loss-predicting cue (Z, in red). (B) Contralateral minus ipsilateral subtraction, yielding the attention-sensitive N2pc component to the
gain-predicting cue (A, in blue), the neutral cue (M, in gray), and the loss-predicting cue (Z, in red). Mean amplitudes were computed in the latency range shown by the dashed box.
The scalp topography shows the distribution of the N2pc for cue type A in that latency range. Yellow dots show the positions of the PO7/PO8 electrode sites on the scalp.

Table 1
Association between N2pc responses and models of attention toward outcome-predicting cues

Model predictors Model estimates

β P

Constants 0.01 0.93
Information/uncertainty −0.20 0.21
Positive-reward predictors 0.20 0.27
Performance −0.02 0.92
Information/uncertainty × performance 0.02 0.95
Positive-reward predictors × performance 0.94 0.006a

R-squared 0.17

aSignificant with a Bonferroni-corrected alpha level set at 0.05 (for 6 tests).
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presenting A (i.e., a good gain-maximization performance),
and a large N2pc for Z was associated with betting high on
trials presenting Z (i.e., a poor loss-minimization performance).

To further support the existence of a double dissociation,
we performed a stepwise regression procedure (Table 2). First,
in order to evaluate the selective association between the N2pc
elicited by cue A and the gain-maximization scores, we
removed the N2pc to Z as a predictor from our original gain-
maximization model [i.e., βZ-gain-max(N2pcZ) given by Eq. 2 in

the Materials and Methods section]. The performance of this
new model was not statistically different from the performance
of the original one (F1,38 = 0.11, P = 0.74). However, when we
removed the N2pc to cue A as a predictor from the original
gain-maximization model, the new model performed signifi-
cantly worse than the original one (F1,38 = 4.58, P < 0.05). We
then performed an analogous procedure to evaluate the

Figure 5. N2pc responses are consistent with the attention-for-reward model in high decision-performance participants. Displayed are the scalp distribution and mean N2pc
amplitudes for cues A, M, and Z in a group of high decision-performance participants (n= 15, decision-performance scores at least 0.5 SD above the mean) and a group of low
decision-performance participants (n=11, decision-performance scores at least 0.5 SD below the mean). In high performers, but not in low performers, the N2pc responses were
consistent with the attention-for-reward model. (Error bars indicate SEM.)

Figure 6. Double dissociation between gain-maximization and loss-minimization.
Across participants, gain-maximization scores correlated with the N2pc amplitude for
cue A (the larger the N2pc for A, the better the gain-maximizing performance), but
showed no significant association with the N2pc amplitude for cue Z. In contrast,
loss-minimization scores were negatively correlated with the N2pc amplitude for cue Z
(the larger the N2pc for Z, the worst the loss-minimizing performance), but showed no
significant association with the N2pc amplitude for cue A. (Error bars indicate SEM.)

Table 2
Gain-maximization and loss-minimization are, respectively, associated with N2pc responses to
gain-predicting and loss-predicting cues

Model predictors R-squared Model estimates

β P

Predicting gain-maximization
Original model 0.12
Constant 0.65 <0.001
N2pc A −0.06 0.03
N2pc Z 0.01 0.75

Constant + N2pc A 0.11
Constants 0.65 <0.001
N2pc A −0.07 0.03

Constant + N2pc Z 0.01
Constants 0.68 <0.001
N2pc Z 0.02 0.55

Predicting loss-minimization
Original model 0.17
Constant 0.79 <0.001
N2pc A −0.02 0.47
N2pc Z 0.08 0.02

Constant + N2pc Z 0.16
Constants 0.80 <0.001
N2pc Z 0.08 0.01

Constant + N2pc A 0.03
Constants 0.79 <0.001
N2pc A −0.03 0.31
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selective association between the N2pc to Z and the loss-
minimization scores. As expected, we found exactly the inverse
set of results. The performance of a model that excluded the
N2pc to Awas not statistically different from that of the original
loss-minimization model (F1,38 = 0.54, P = 0.47), but a model
that excluded the N2pc to Z performed significantly worse
than that original model (F1,38= 6.47, P < 0.05).

In summary, we found a double dissociation that was con-
sistent with the interpretation of the N2pc as reflecting an
attention-for-reward mechanism in cued economic choices:
across participants, improvements in gain-maximization scores
were positively correlated with the N2pc amplitude elicited
by the gain-predicting cue (i.e., A), independently of the N2pc
response to the loss-predicting cue (i.e., Z) and, conversely,
improvements in loss-minimization scores were negatively
correlated with the N2pc amplitude elicited by the loss-
predicting cue, independently of the N2pc response to the
gain-predicting cue.

Discussion

To promote survival and well-being, the brain must control be-
havior in a way that maximizes gains and minimizes potential
losses. Previous research has indicated that gain-maximizing
and loss-minimizing choices are associated with the function-
ing of different brain mechanisms (Venkatraman et al. 2009),
and recently we reported that individual differences in gain-
maximizing and loss-minimizing behaviors are associated with
individual differences in the neural responses to feedback
stimuli, indicating the receipt of those gains and losses (San
Martín et al. 2013). Here we expand our understanding of the
neural mechanisms underlying these types of decisions by
analyzing the attention-related brain responses to outcome-
predicting cues. In particular, we show that individual differ-
ences in gain-maximization and loss-minimization covary with
that in cortical brain activity that reflects attentional bias
toward those cues by virtue of their reward-predicting values.

Our design allowed us to differentiate rapid, lateralized, brain
responses to cues representing distinct reward probabilities. In
particular, we found that outcome-predicting cues elicited a con-
tralaterally distributed, negative-polarity, ERP deflection that,
based on its latency and scalp distribution, closely resembled the
N2pc ERP component commonly associated with lateralized
shifting and focusing of visual spatial attention (Luck and
Hillyard 1994; Eimer 1996; Woodman and Luck 1999). The
results indicate that, in the context of cued economic choice
tasks, the N2pc activity reflects lateralized bias in the amount of
attention drawn toward visual cues by virtue of their predictive
association with positive outcomes, and that individual differ-
ences in cued economic choices are associated with that in the
N2pc responses to those cues. Interestingly, and consistent with
the attention-for-reward model, the results further indicate that
efficient loss-minimization is associated with a significant reduc-
tion in the N2pc for the loss-predicting cue Z. Thus, the present
electrophysiological results provide insights into how the brain
allocates attention to environmental cues during the formation of
economic decisions.

Gain-Predicting Cues CommandMore Attentional
Orienting Than Neutral Cues and Loss-Predicting Cues
The current findings fit well with results from studies using
reaction-time visual search tasks that have shown that the

N2pc component is larger for targets (Kiss et al. 2009) or dis-
tractors (Hickey et al. 2010b) that have been associated with a
large-magnitude versus low-magnitude reward. At the same
time, our findings further extend our knowledge of the signifi-
cance of attention-related ERP neural responses to economic
decision-making by showing a modulation of attentional or-
ienting in a task in which participants needed to passively
observe a pair of outcome-predicting cues in order to later,
after the outcome-predicting cues had already been removed
from the screen, make an adaptive economic choice. We found
this effect despite the fact that there was no obvious reason for
the participants to rapidly allocate more attention to one or the
other cue in the screen; participants’ had plenty of time to look
at the cues (1.5 s), and even though A and Z cues where the
most informative ones, other cues (B and Y) were still relevant
to make appropriate decisions throughout the task. Moreover,
we found that the amplitude of the N2pc attentional-orienting
component was larger for a visual cue that predicted the occur-
rence of a monetary gain compared with both a neutral cue
(i.e., associated with a 50% chance of winning vs. losing) and a
loss-predicting cue. Critically, this result indicates that reward
associations modulate the N2pc to environmental cues, even
when the delivery of reward depends on a cue-informed subse-
quent choice, rather than on the detection of the cue stimulus
itself.

A large literature suggests that the N2pc reflects spatial atten-
tional selection and/or the suppression of surrounding dis-
tractor information (Eimer 1996; Woodman and Luck 1999;
Kiss et al. 2007; Buodo et al. 2010; Hickey et al. 2010b) within
extrastriate visual regions in parietal and occipital cortex (Hopf
et al. 2000). Indeed, a series of neuroimaging results has de-
monstrated a relative boosting of the neural representation of
attended stimuli at the expense of competing stimuli within
these and other visual regions (Kastner and Ungerleider 2000;
Driver 2001). In line with this previous literature, we interpret
our results as indicating that reward-prediction value influences
visual processing in extrastriate visual cortex in a spatially
selective fashion within 200–400 ms after the onset of outcome-
predicting visual stimuli, such that gain-predicting cues capture
more attention than neutral and loss-predicting cues. This idea
is also consistent with a series of studies in non-human animals,
showing that cues consistently preceding large quantities of
food command attentional orienting (Morris and Bouton 2006)
and that enforcing deprivation increases the attention
drawn toward food (Mogg et al. 1998) or drugs of abuse (Field
et al. 2004).

Loss-Minimization Is Associated with Decreased
Attentional Allocation for Loss-Predicting Cues
Previous studies on animal conditioning have supported an
early claim (Mackintosh 1975) that organisms learn to attend
to relevant stimuli that predict outcomes and to ignore irrele-
vant stimuli (Pearce and Mackintosh 2010). We used a task in
which participants could not alter the probabilities of out-
comes (i.e., of winning vs. losing), but could maximize their
gains by learning that certain cues (here, in particular, cue A)
predicted the likelihood of gains and could minimize their
losses by learning that other cues (cue Z) predicted the likeli-
hood of losses. From this, we expected to find that improve-
ments in the ability to maximize gains, across participants,
would be associated with an increase in the N2pc amplitude
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for A cues, reflecting an increase of the attention drawn toward
cues predicting a positive-reward likelihood and thus indicat-
ing that a high bet would be appropriate. This prediction was
also motivated by results from a previous behavioral study
showing an association between reward-seeking personality
traits and the allocation of attention toward objects character-
ized by reward-associated features (Hickey et al. 2010a).

Conversely, we further hypothesized that improvements in
the ability to minimize losses might also be associated with an
increase in the N2pc amplitude for Z cues, reflecting more at-
tention drawn toward cues predicting a loss likelihood and
thus that a low bet was appropriate. We did indeed find a
double dissociation according to which gain-maximization
scaled with the N2pc amplitude for A cues independently of
the N2pc for Z and loss-minimization covaried with the N2pc
for Z independently of the N2pc for A. For loss-minimization,
however, we found that the directionality of the results was the
opposite of what we hypothesized. Rather than loss-
minimization improving with the increase in the N2pc ampli-
tude for Z, it was negatively correlated with the N2pc ampli-
tude to Z.

This intriguing result thus suggests that the effective mini-
mization of economic losses in our task may be associated
either with an active attentional aversion away from the cue
that informed the participant that a loss-minimizing decision
was warranted, or with a relative decrease in the attention allo-
cated toward Z as result of more attention being deployed
toward the cue on the other side of the screen (B or Y). This
second possible interpretation is consistent with the data re-
flecting relative attentional responses between whatever 2 cues
are present at a time. Alternatively, another possible interpret-
ation of the results derives from the N2pc being mainly elicited
by the A cues, with much less differentiation between the
N2pc’s for the other cues. This could imply that the attentional
responses are dominated by fairly selective biasing for the
clearly reward-predicting A’s, an explanation that would be
consistent with previous evidence suggesting a dichotomous
way of categorizing visual stimuli in economic decision-
making tasks (Hajcak et al. 2006).

To our knowledge, this is the first study reporting effects on
the attention-sensitive N2pc for stimuli predicting monetary
losses in the context of a cued economic choice task, and
future studies may help clarify the observed N2pc effects for
loss-predicting stimuli. Some initial constraints for such an
explanation can be found in studies linking attention and
emotion. Specifically, by analyzing eye movements, some
studies have reported that aversive cues (e.g., spiders) can
induce attentional avoidance (Pflugshaupt et al. 2005; Weierich
et al. 2008). Moreover, the attentional avoidance of aversive
cues has been observed to scale with individual differences in
negative mood (Beevers and Carver 2003; Calvo and Eysenck
2010). It could be the case that our results reflect a general
property of emotional attention in which attention is shifted
away from threatening or loss-predicting stimuli. Future
studies will be required, however, to more fully support or
refute this interpretation. Such studies could, for example,
evaluate the participant-wise association between this N2pc re-
versal for cues predicting monetary losses and self-reported or
physiologically measured negative mood or association.

These results also raise the question of whether the ob-
served N2pc reversal for loss-predicting cues reflects the focus-
ing of attention toward the stimuli in the hemifield opposite to

the loss-predicting stimuli, the active suppression of attention-
al priority at the location of the loss-predicting stimuli, or a
combination of these 2 mechanisms. Interestingly, recent
studies indicate that activity during the N2pc latency may actu-
ally reflect not just an attentional focusing process toward a
target stimulus, but also an active process of attentional sup-
pression of the processing of the concurrent distractors that is
indexed by a “distractor positivity” (Pd) effect (Hickey et al.
2009; Sawaki and Luck 2010; Sawaki et al. 2012). Although our
experimental design does not allow isolation of the relative
contribution of these 2 possible effects, follow-up studies
could shed light into this issue by manipulating physical para-
meters of the stimuli (Hickey et al. 2009), or by affecting the
relative latency between the 2 effects (Sawaki et al. 2012). Re-
gardless, however, the present results indicate that effective
learning about environmental cue stimuli predicting likely
losses is associated with a decrease in attention allocation
toward such cue stimuli.

The N2pc Reflects the Functioning of an
Attention-for-Reward Mechanism in Cued-Choice
Behavior
The results discussed so far characterize the attention-sensitive
N2pc activity in the current context as reflecting an
attention-for-reward mechanism [akin to what has also been
called attention for liking (Vuilleumier 2005; Hogarth et al.
2010)], whereby subjects preferentially direct attention toward
reward-predicting cues and shift their attention away from
aversive or loss-predicting cues. This observed N2pc effect par-
allels reward prediction error responses that have been ob-
served in the brain as phasic increases in the activity of
midbrain dopamine (DA) for positive-reward-predicting cues
and phasic decreases for negative-reward-predicting cues
(Schultz et al. 1997; Schultz 2002). Indeed, several lines of evi-
dence suggest that value-driven attentional orienting may arise
through a modulation of visual activity triggered by such dopa-
minergic responses. First, a recent study in the rat has shown
that the presence of DA-encoded prediction-error signals in
the nucleus accumbens is necessary to orient behavior towards
reward-predicting cues (Flagel et al. 2011). Secondly, it has
also been shown in the rat that reward expectations modulate
the activity of individual cells in the visual cortex (Shuler and
Bear 2006). In humans, reward-dependent improvements in
the allocation of attention have been found to be associated
with increased neural activity both within the nucleus accum-
bens and within visual object-representation areas (Krebs et al.
2011). Finally, and also in humans, the facilitatory effect that
reward has on the detection of visual targets has been shown
to scale, across subjects, with measures of the feedback-related
negativity (Hickey et al. 2010b), a midline ERP component that
is thought to be generated when a reward prediction error
signal is conveyed to the anterior cingulate cortex via the mes-
encephalic DA system (Holroyd and Coles 2002).

Within economic decision-making, our current electro-
physiological results indicate that attention is drawn toward
probabilistic outcome-predicting visual cues by virtue of their
learned reward-predicting value. Moreover, they show that
individual differences in this rapid attentional-orienting brain
activity are associated with that in gain-maximizing and loss-
minimizing economic choices: the stronger the attentional bias
toward gain-predicting cues, the better the participants’ ability
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to maximize those gains, and the stronger the attentional
avoidance of loss-predicting cues, the better the participants’
ability to minimize those losses. Although the correlational
nature of this evidence does not allow us to claim a causal role
of the reported ERP effects in the participants’ decision-
making, an attentional bias toward reward-predicting stimuli
may have benefits when foraging for rewards, as suggested
previously (Hickey et al. 2010b). It seems quite plausible that
our N2pc results may reflect the functioning of an evolutionar-
ily conserved mechanism to approach rewards and avoid
threats, but implemented as attentional biasing toward envir-
onmental cues that predict positive or negative upcoming out-
comes.

Although future studies are required in order to extract spe-
cific conclusions about the causal role of the processes re-
flected by the N2pc in cued-choice behavior, previous
literature suggests that once established, preferential-coding
mechanisms trigger processing cascades that ultimately orient
or modulate behavior (Small et al. 2005; Engelmann et al.
2009) by interacting with higher-order cognitive functions
(Locke and Braver 2008). Indeed, our results suggest that the
role of visual processing in decision-making is not just to re-
present the visual features of the objects in the environment,
but also to weigh their sensory representations according to
the reward-predicting value of the represented objects and to
orient attention accordingly.
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