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Abstract
Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation
disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence
spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well
characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal
neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1
pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistentwith a
critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic
synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-termpotentiation (LTP): The potentiation
requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic
mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly
increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive
effects of cholinergic transmission in rodents and humans.

Key words: CA1, hippocampus, long-term potentiation, muscarinic m1 receptor, synaptic plasticity

Introduction
Cholinergic projections from themedial septumplay an important
role in the function of the hippocampus. The release of acetylcho-
line in the hippocampus during exploration as well as REM sleep
activates muscarinic and nicotinic receptors that regulate the pro-
cessing of information by hippocampal circuits (Hasselmo 2006;
Teles-Grilo Ruivo and Mellor 2013). Hippocampus-dependent
memory is disrupted by pharmacological inhibition or genetic ab-
lation of muscarinic receptors (Blokland et al. 1992; Anagnostaras
et al. 2003; Atri et al. 2004; Wess 2004; Green et al. 2005) and,

conversely, enhancing endogenous acetylcholine with acetyl-
cholinesterase inhibitors in Alzheimer’s disease (McGleenon
et al. 1999) or activation of M1 muscarinic receptors (M1Rs) in
cognitively impaired humans (Nathan et al. 2013) can improve
memory. Because of the hypothesized importance of synaptic
plasticity to memory processes, it is proposed that acetylcholine
release enhances learning by modulating the induction and ex-
pression of synaptic plasticity (Hasselmo 2006). Indeed, the in-
duction of hippocampal synaptic plasticity during learning
requires muscarinic receptor activation (Mitsushima et al. 2013).
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M1Rs are proposed to mediate many of the actions of acetyl-
choline in the hippocampus, where they are expressed predom-
inantly in excitatory neurons on both somatic and dendritic
compartments (Levey et al. 1995; Yamasaki et al. 2010), as well
as some expression in inhibitory interneurons (Cea-del Rio
et al. 2010; Yi et al. 2014). However, the precise roles of M1Rs
have been difficult to define due to the lack, until recently, of li-
gands with sufficient selectivity to unambiguously identify the
roles of M1Rs in brain slices or in vivo. The recently developed li-
gands, in combination with the availability of M1R knock-out
(M1R KO)mice, now enable such studies to be performed. Indeed,
recent work shows that M1Rs play an important role in hippo-
campus-dependent learning and memory through their ability
to strongly depolarize hippocampal pyramidal neurons and
by facilitating the induction of long-term synaptic plasticity
(Anagnostaras et al. 2003; Wess 2004; Shinoe et al. 2005;
Dickinson et al. 2009; Bradley et al. 2010; Buchanan et al. 2010;
Dasari and Gulledge 2011; Digby et al. 2012). M1Rs depolarize hip-
pocampal pyramidal neurons by inhibiting voltage-dependent
Kv7 potassium channels that mediate the “M-current” (Dasari
and Gulledge 2011) and likely promote back propagation of action
potentials into the dendrites to promote long-term potentiation
(LTP) induction (Tsubokawa and Ross 1997; Petrovic et al. 2012).
However, M1Rs have also recently been shown to enhance
NMDA receptor (NMDAR) activity in CA1 pyramidal neurons by
inhibiting SK potassium channels located on postsynaptic spines
that negatively regulate NMDAR function (Buchanan et al. 2010;
Giessel and Sabatini 2010). This second mechanism also plays
an important role in promoting NMDAR-dependent synaptic
plasticity.

Here, we have further investigated the roles of M1Rs in hippo-
campus using recently developed M1R-selective agonists: 77-LH-
28-1 and GSK-5 (Langmead et al. 2008; Budzik et al. 2010). We use
them in combination with M1R KOmice to show that application
of M1R agonist to adult hippocampal slices produces a robust po-
tentiation of glutamatergic synaptic transmission onCA1 pyram-
idal neurons that is NMDAR-dependent and bi-directionally
occludes with synaptically induced LTP.

Materials and Methods
Ethical Approval

All animal procedures and experiments were conducted in
accordance with the United Kingdom Animals (Scientific Proce-
dures) Act 1986 and EU Directive 2010/63/EU 2010. All experimen-
tal protocols were approved by the British National Committee
for Ethics in Animal Research.

Native Mouse Membrane Preparation

All procedures were performed at 4°C. Tissue samples were
homogenized in sucrose buffer (10 m HEPES, 1 m EGTA,
1 mDTT, 10% sucrose and 1 tablet/50 mL Complete Protease In-
hibitor Cocktail; pH 7.4) using an electric IKA RW20 (800 rpm)
with glass/teflon homogenizer. Homogenate was centrifuged
at 1000×g for 10 min and supernatant collected, the pellet was re-
homogenized and centrifuged again, as above, and supernatant
pooled and centrifuged at 11 000×g for 20 min. The resulting pel-
let was suspended in a final storage buffer (10 m HEPES, 1 m

EGTA, 1 m MgCl2, 1 m DTT; pH 7.4) and centrifuged at
27 000×g for 20 min. Supernatant was removed and the final pel-
let suspended in 2 mL of final storage buffer. Protein concentra-
tion was measured using the Bradford method (Bradford 1976)

(Coomassie Plus, Bio-Rad protein assay kit) with bovine gamma
globulin standards. Samples were then aliquoted and stored
at −80°C.

Native Mouse GTPɣ[35S] Binding Assays

GTPɣ[35S] binding in mouse WT and M1 KO hippocampal mem-
branes were determined in triplicate using an antibody capture
technique in 96-well plate format (DeLapp et al. 1999). Membrane
aliquots (15 µg/well) from WT or M1 KO C57BL6/NTac mice were
incubated with test compound and GTPɣ[35S] (500 pM/well) for
30 min. Labeled membranes were then solubilized with 0.27%
Nonidet P-40 plus Gqα antibody (E17, Santa Cruz) at a final dilu-
tion of 1:200 and 1.25 mg/well of anti-rabbit scintillation proxim-
ity beads. Plateswere left to incubate for 3 h and then centrifuged
for 10 min at 2000 rpm. Plates were counted for 1 min/well using
a Wallac MicroBeta Trilux scintillation counter (PerkinElmer). All
incubations took place at room temperature in GTP-binding
assay buffer (In m, 20 HEPES, 100 NaCl, 5 MgCl2; pH 7.4).

FLIPR-Based Human and Rat mAChR Assays

CHO cells stably expressing recombinant humanM1, M3, and M5
Rs and AV12 cells stably expressing Gα15 and recombinant
human M2 or M4 Rs were cultured in DMEM with high glucose
and pyridoxine hydrochloride supplemented with 5–10% heat-
inactivated fetal bovine serum, 10–20 mHEPES, 1 m -glutam-
ine, 1% penicillin/streptomycin solution and selection agents,
0.5 mg/mL geneticin, or 0.3 µg/mL puromycin. Confluent cultures
were passaged weekly and cells harvested 24 h prior to assay
using 0.25% trypsin–EDTA and plated at a density of 40 000–
50 000 cells per well in tissue culture treated, poly--lysine-
coated 96-well black-walled, clear bottom plates (Corning or
Becton-Dickinson). For FLIPR (FLIPR-tetra, Molecular Devices) as-
says, media was removed and cells were incubated with 5 µ
Fluo-4-AM/0.05% pluronic F-127 (Invitrogen) in a HEPES-buffered
salt solution (HEPES-HBSS; composition, in m; 135 NaCl, 5 KCl,
1.3 CaCl2, 0.5 MgCl2, 0.4 MgSO4, 0.4 KH2PO4, 4.2 NaHCO3, 0.3 Na2-
HPO4, 5.6 glucose, 20 HEPES, +2.5 m probenecid for CHO cell
lines, pH 7.5 adjusted with 5  NaOH) for 1 h at room tempera-
ture, in the dark, before the media was removed and replaced
with HEPES-buffered salt solution in the absence of Fluo-4. Pro-
benecid was included to optimize dye loading in CHO cell lines.
Although probenecid has been reported to interact and activate
some TRP channels {McClenaghan, 2012 #2996}, there are no re-
ports of interactions with mAChRs or nontransfected CHO cells.
Plates were then transferred to FLIPR for experiments, which
were also conducted at room temperature.

For data analysis, relative EC50 and IC50 valueswere calculated
using a 4-parameter logistic curve (GraphPad Prism v6).

Electrophysiology

Slice Preparation
Transverse hippocampal slices were prepared from adult (6–9
weeks old) male C57/BL6J, wild-type (WT), or M1R KO mice
(Fisahn et al. 2002) (Line 1784, Taconic), or Lister hooded rats
(Charles River). Slices from mice were used for the data shown
in Figures 2, 4, 5 and 6 and slices from rats used in Figure 3. Brains
were immediately removed following cervical dislocation (mice)
or isoflurane anesthetization and decapitation (rats) and im-
mersed in ice-cold cutting artificial cerebral spinal fluid (aCSF)
containing (in m): 119 NaCl, 10 glucose, 26 NaHCO3, 2.5 KCl, 1
NaH2PO4, 0.65 CaCl2, and 3 MgSO4 (mice) or 87 NaCl, 75 sucrose,
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25 -glucose, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2, and 7
MgCl2 (rats). Individual hippocampi were mounted on agar and
350-μm (mice) or 400-µm (rats)-thick slices were cut using a mi-
croslicer (VT1200S, Leica Microsystems). Following preparation,
slices were transferred to aCSF containing (in m): 119 NaCl,
10 -glucose, 26 NaHCO3, 2.5 KCl, 1 NaH2PO4, 1.3 MgSO4, and 2.5
CaCl2 (mice) or 124 NaCl, 3 KCl, 26 NaHCO3, 1.25 NaH2PO4, 3 ascor-
bic acid, 1 MgSO4, 10 -glucose and 2 CaCl2 (rats), maintained at
35°C for 30 min and then stored at room temperature for a further
30min before recording. All solutions were saturatedwith 95%O2

and 5% CO2 and had osmolarity of 300–310 mOsm.

Recording
Slices were placed in a submerged recording chamber perfused
with aCSF at 33°C at 4–6 mL/min. CA1 pyramidal cells were visua-
lized using IR-DIC optics. Patch electrodes with a resistance of
4–5 MΩwere pulled from borosilicate filamented glass capillaries
and filled with intracellular solution containing (in m) 120
KMeSO3, 10 HEPES, 0.2 EGTA, 4 Mg-ATP, 0.3 Na-GTP, 8 NaCl, and
10 KCl, pH 7.4, 280–285 mOsm. Extracellular recording electrodes
were filledwith aCSF (resistance 1–3 MΩ). Bridge balancewas em-
ployed for all whole-cell current clamp recordings, and access
and input resistances were monitored throughout experiments
from 500 ms, 20 pA current injections. Excitatory postsynaptic
potentials (EPSPs) were recorded in the presence of picrotoxin
(50 µ) and CGP55845 hydrochloride (1 µ) to block GABAA and
GABAB receptors, respectively, with cells maintained in current
clamp at −70 mV. Inhibitory postsynaptic potentials (IPSPs)
were recorded in the presence of NBQX (3 µ) and L, 689–560
(5 µ) to block AMPA and NMDARs, respectively, with cells held
at −55 mV. No junction potential correction was applied (calcu-
lated at −9.1 mV). Intracellular recordings were digitized at
80 kHz and filtered at 20 kHz. Extracellular recordings were digi-
tized at 10 kHz and filtered at 3 kHz. All recordings were made
using Molecular Devices 700B amplifiers. Synaptic responses
were evoked using bipolar stimulating electrodes placed in stra-
tum radiatum. For two pathway experiments, stimulating elec-
trodes were placed either side of the recording electrode. Theta
burst stimulation to induce LTP consisted of 10 bursts at 5 Hz
where each burst consisted of 5 stimuli at 100 Hz. All experiments
within groups were interleaved and performed with experiment-
er blind to the animal genotype.

Data Analysis
All data are expressed asmean ± s.e.m. Example traces shownare
averages of 10–20 consecutive sweeps. Statistical significance
was assessed using paired or unpaired t-tests as appropriate
and the level of significance set at P < 0.05. Synaptic strength for
extracellular recordings was measured as the initial slope of the
field potential response. The independence of synaptic pathways
was determined after LTP experiments by combinatorial paired-
pulse experiments (interstimulus interval 40 ms) and data omit-
ted from analysis if significant cross-pathway facilitation was
observed.

Drugs

L-689,560, Picrotoxin, NBQX, D-AP5, and CGP55845 hydrochloride
were purchased from Tocris, UK. Compounds were dissolved in
DMSO, except picrotoxin and D-AP5, which were dissolved in
water. Compounds were separated into appropriate aliquots
and stored at −20°C.

GTPɣ[35S] and Anti-rabbit SPA beads were purchased from
PerkinElmer, UK, Gqα antibody (E17) was from Santa Cruz

Biotechnology, Nonidet P-40 10% solution from Roche Applied
Sciences, Dithiothreitol (DTT) from Sigma, UK, and Complete
protease inhibitor cocktail purchased from Roche Applied
Sciences

GSK-5 (Compound 5 from [Budzik et al. 2010]) and 77-LH-28-1
(1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2[1H]-quinolinone)
were synthesized in-house at Eli Lilly and Company Ltd.

Results
M1R Selectivity of Allosteric Agonists 77-LH-28-1
and GSK-5

To study the role of M1Rs in the hippocampus, we used 2 recently
described M1R agonists 77-LH-28-1 (Langmead et al. 2008) and
GSK compound 5 (GSK-5, [Budzik et al. 2010]). We sought to con-
firm the selectivity, potency, and efficacy of these 2 compounds
on muscarinic receptors. Using recombinant cells expressing
the 5 muscarinic receptor subtypes, we found that GSK-5 acti-
vated humanM1Rs with potency (EC50) and efficacy (Emax) values
of 19.6 n and 89 ± 3%, respectively, and displayed some weak
agonist activity at M2 and M4 receptors at higher concentrations
(EC50 and Emax values of 6346 n and 39 ± 2% and 8702 n and
24 ± 8%, respectively; Fig. 1A). No agonism of M3 or M5 receptors
was observed over the concentration range tested. 77-LH-28-1 ac-
tivated human M1Rs with EC50 and Emax values of 22.2 n and
98 ± 2%, respectively (Fig. 1B). No agonism of M2–M5 receptors
was observed over the concentration range tested. To test antag-
onist properties of GSK-5 and 77-LH-28-1, the broad-spectrum
agonist, acetylcholine, was applied after preincubation with
GSK-5 or 77-LH-28-1. In line with its agonist activities, GSK-5
also displayed antagonism at M2 and M4 receptors with IC50

5733 and 3621 n, respectively (Fig. 1C). 77-LH-28-1 displayed an-
tagonism at M2, M4, and M5 receptors with IC50 1188, 2025, and
2220 n, respectively (Fig. 1D). Therefore, GSK-5 and 77-LH-28-1
both are efficacious and potent M1R agonists that display >50-
fold selectivity for M1R over the other muscarinic receptor
subtypes.

To confirm the potency and efficacy profiles of GSK-5 and 77-
LH-28-1 at native rodent M1Rs, GTPɣ[35S] binding studies were
performed using hippocampal membrane preparations from
WT and M1R KO mice (Fig. 1E). Concentration response curves
for the broad-spectrum muscarinic receptor agonist oxotremor-
ine M (oxo-m) for Gαq activation in WT hippocampus yielded
EC50 = 171 n and Emax = 99 ± 5% in line with previous findings
(Watt et al. 2011). No response was observed in tissue from M1R
KOmice demonstrating that M1Rs mediate all muscarinic Gq-re-
lated activity in hippocampus in this assay. Similarly, concentra-
tion response curves for GSK-5- and 77-LH-28-1-mediated Gαq
activation in WT hippocampus displayed EC50 values of 90 and
156 n, respectively, and Emax values of 79 ± 4% and 92 ± 2%, re-
spectively, with no response in M1R KO mice. These results con-
firm 77-LH-28-1 and GSK-5 as selective M1R agonists and are
active at mouse native M1Rs.

M1R Activation Depolarises Hippocampal CA1 Pyramidal
Neurons and Increases E–S Coupling

There is good evidence thatM1R activation underlies themuscar-
inic receptor-dependent depolarization and increase in input re-
sistance in hippocampal pyramidal neurons (Buchanan et al.
2010; Dasari and Gulledge 2011). We tested this by studying the
effects of 77-LH-28-1 or GSK-5 in slices from 6- to 9-week-old
mice. CA1 pyramidal cell resting membrane potential and input
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resistance for our recordings were −65.2 ± 0.8 mV and 71 ± 7 MΩ,
respectively, and were consistent across data sets. 77-LH-28-1
(7 µ) depolarized CA1 pyramidal neurons by 10.4 ± 3.9 mV
(Fig. 2A; n = 8, P = 0.015) and increased input resistance by 86 ± 51
MΩ (Fig. 2B; n = 8, P = 0.044), consistent with previous data in
slices from 2-week-old rats (Buchanan et al. 2010). Similarly,
application of GSK-5 (500 n) depolarized CA1 pyramidal cells
by 3.3 ± 1.1 mV (Fig. 2C; n = 8, P = 0.030) and increased input
resistance by 63 ± 16 MΩ (Fig. 2D; n = 8, P = 0.0095). The increase
in input resistance was indistinguishable, but 77-LH-28-1
caused a greater depolarization than GSK-5 (P = 0.039). Import-
antly, GSK-5 had no effect on these parameters in interleaved
slice experiments from M1R KO mice performed blind to

genotype (Fig 2C,D; −0.5 ± 0.9 mV, −3 ± 23 MΩ, n = 7). These
findings confirm that selective activation of M1Rs causes an in-
crease in input resistance and a depolarization of CA1 pyramidal
neurons.

AnM1R-dependent increase in input resistance and depolar-
ization is predicted to increase cellular excitability and thus
increase the spike output of CA1 pyramidal neurons in response
to excitatory synaptic input, also termed EPSP-spike (E–S) coup-
ling. To test this idea, extracellular field potential recordings
were made simultaneously from stratum radiatum and stratum
pyramidale in the CA1 region of hippocampal slices from 6- to 9-
week-old rats to record the synaptic input and spike output, re-
spectively, in the same experiment. GSK-5 (300 n) caused a

Figure 1. Selectivity of M1R agonists 77-LH-28-1 and GSK-5. (A–D) Intracellular calcium responses in CHO cells expressing recombinant human M1–M5 muscarinic

receptors in response to application of GSK-5 (A) or 77-LH-28-1 (B) compared with a maximal response to 10 µ acetylcholine. Intracellular Ca2+ responses to 10 µ

acetylcholine in the presence of GSK-5 (C) or 77-LH-28-1 (D) illustrate antagonism at muscarinic receptors. Data are plotted as mean ± s.e.m, n = 3 independent

experiments. (E) GTPɣ [35S] binding to Gαq in membranes prepared from WT (closed symbols) or M1R KO (open symbols) mouse hippocampi was measured after

application of oxotremorine M (oxo-m), 77-LH-28-1 or GSK-5. Data are shown as a percentage of the maximal signal observed in WT membrane using 100 µ oxo-M.

Data are mean ± SD from n = 2 independent experiments.
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small depression of the fEPSP slope recorded in stratum radia-
tum (Fig. 3A; 86.5 ± 1.0%, n = 6, P = 0.0014), but a large increase
in the population spike area recorded in stratum pyramidale
(Fig. 3B; 391.9 ± 89.9%, n = 6, P = 0.0033). These M1R-mediated
effects are unlikely to be due to changes in presynaptic func-
tion since paired-pulse ratio was unaltered following applica-
tion of GSK-5 (Fig. 3C; n = 4, P = 0.14, average paired-pulse ratio
1.66 ± 0.04). These data therefore show that the increase in
CA1 pyramidal cell excitability caused by M1R activation

results in a robust increase in spike output of CA1 pyramidal
neurons.

M1R Activation Potentiates CA1 Synaptic
Transmission in anNMDAR-DependentMechanismThat
Bi-directionally Occludes LTP

We next further investigated the role of M1Rs in regulating syn-
aptic transmission using whole-cell patch-clamp recordings

Figure 2. M1R activation enhances CA1 pyramidal cell excitability. (A) The M1R agonist 77-LH-28-1 (7 µ) depolarized CA1 pyramidal cells (top) and increased input

resistance (bottom) in whole-cell current clamp recordings. (B) The M1R agonist GSK-5 (500 n) depolarized CA1 pyramidal cells (top) and increased input resistance

(bottom) in WT but not M1R KO mice. Data are plotted as mean ± s.e.m. Example traces taken from Points 1 and 2 show response to hyperpolarizing current injection

(20 pA, 500 ms). Dashed line shows baseline membrane potential. Traces overlaid below for comparison. Scale bars: 2 mV and 200 ms.
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from CA1 pyramidal neurons from 6- to 9-week-old mice. Both
77-LH-28-1 (7 µ) and GSK-5 (500 n) increased the amplitude
of pharmacologically isolated EPSPs in CA1 pyramidal neurons
(Fig. 4A,B; GSK-5, P = 0.00025; 77-LH-28-1, P = 0.028). This was
due to M1R activation since no increase was seen in slices from
M1R KOmice (77-LH-28-1:WT 194.2 ± 42.0%, n = 6;M1R KO 118.5 ±
24.7%, n = 6, P < 0.028; GSK-5: WT 170.4 ± 21.2%, n = 7; M1R KO 95.0

± 11.9%, n = 6, P < 0.00057). In these experiments, membrane
potential was maintained constant with current injection of
∼50–100 pA during the application of M1R agonist, which limits
the increase in input resistance (Buchanan et al. 2010; Petrovic
et al. 2012). Therefore, it is unlikely that the increase in EPSP amp-
litude could be caused by an increase in input resistance.We also
tested the effects of M1R activation on inhibitory synaptic

Figure 3. M1R activation increases EPSP-spike coupling. (A) GSK-5 (300 n) caused a small depression in fEPSP slope in extracellular field potential recordings in stratum

radiatum. (B) GSK-5 (300 n) increased population spike area recorded in stratum pyramidale. (C) 100 n or 300 n GSK-5 did not alter paired-pulse ratio. Data are plotted

as mean ± s.e.m. Example field potential traces taken from Points 1, 2, and 3 as indicated. Scale bars: 0.5 mV and 10 ms.
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transmission onto CA1 pyramidal neurons. 77-LH-28-1 (7 µ) de-
pressed pharmacologically isolated IPSPs in slices fromWTmice
(Fig. 4C; 39.1 ± 9.2%, n = 6, P = 0.0013) whereas GSK-5 did not have
any effect (Fig. 4D; 124.4 ± 17.2%, n = 7, P = 0.57). Experiments on
slices from M1R KO mice showed that 77-LH-28-1 still decreased
IPSP amplitude in the absence of M1Rs (Fig. 4C; 64.0 ± 13.3%, n = 6,
P = 0.018) demonstrating that this effect on inhibitory transmis-
sion was due to an off-target action of 77-LH-28-1. Taken

together, these data show that M1R activation increases the
strength of excitatory input onto CA1 pyramidal neurons but
has no effect on inhibitory transmission. It is important to note
that the lackof potentiation of fEPSPs byM1R agonist in the extra-
cellular recordings is not inconsistent with the observed EPSP po-
tentiation in the patch-clamp recordings. The lack of ability to
control membrane potential during extracellular recordings,
combined with the large increase in excitability caused by M1R

Figure 4. M1R activation increases EPSP, but not IPSP amplitude. (A) 77-LH-28-1 (7 µ) increased EPSP peak in WT but not M1R KO mice in whole-cell current clamp

recordings in the presence of GABAA and GABAB receptor antagonists. (B) GSK-5 (500 n) increased EPSP peak in WT but not M1R KO mice. (C) 77-LH-28-1 (7 µ)

decreased IPSP peak in WT and M1R KO mice recorded in the presence of AMPA and NMDAR antagonists. (D) GSK-5 (500 n) did not change IPSP peak in WT mice.

Data plotted as mean ± s.e.m. Example voltage traces in response to synaptic stimulation taken from Points 1 and 2 as indicated. Scale bars: 2 mV (A–C) or 4 mV (D)

and 100 ms (A,B) or 200 ms (C,D).
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activation, suppresses the ability to detect the increase in EPSP
amplitude in extracellular recordings.

Activation of muscarinic receptors facilitates LTP or, at
high agonist concentrations, can induce long-term depression
(Boddeke et al. 1992; Ovsepian et al. 2004; Shinoe et al. 2005;
Scheiderer et al. 2006; Seol et al. 2007; Dickinson et al. 2009; Bu-
chanan et al. 2010; Gu and Yakel 2011; Connor et al. 2012; Digby
et al. 2012; Navakkode and Korte 2012), likely through the activity
at a number of muscarinic receptor subtypes (Teles-Grilo Ruivo
andMellor 2013). The selective activation ofM1Rs is shown to en-
hance NMDAR activity, which facilitates the induction of LTP
(Marino et al. 1998; Sur et al. 2003; Shinoe et al. 2005; Buchanan
et al. 2010). Therefore, we hypothesized that the long-lasting
M1R-induced increase in EPSP amplitude may share certain
mechanisms with LTP. We first tested whether the M1R-induced
increase in EPSPamplitudewas dependent onNMDARactivation.
Recordings of excitatory synaptic transmission were made
from CA1 pyramidal cells held at −70 mV in current clamp in
the presence or absence of the NMDAR antagonist D-AP5
(50 µ). In the absence of D-AP5, GSK-5 (500 n) caused an in-
crease in EPSP amplitude; however, in interleaved experiments,
co-application of D-AP5 starting at least 10 min before GSK-5
prevented the potentiation (Fig. 5A; GSK-5 alone: 196.3 ± 41.6%,
n = 10; GSK-5 + D-AP5: 101.2 ± 10.3%, n = 9, P = 0.030). Similar
to 77-LH-28-1 (Buchanan et al. 2010), GSK-5 also prolonged the
duration of EPSPs (EPSP half-width 141.2 ± 25.3%, P = 0.025).
We next tested whether the potentiation was due to an increase
in the NMDAR-mediated component of the EPSP. However,
the GSK-5-induced increase in EPSP amplitude was not reversed
when D-AP5 was applied after the GSK-5-induced potentia-
tion had been established (Fig. 5B). These results demonstrate
that M1R activation triggers an NMDAR-dependent increase in
EPSP amplitude that is expressed as an increase in the AMPAR-
mediated EPSP.

Since M1R activation produces an NMDAR-dependent in-
crease in synaptic transmission, we next tested whether the

potentiation occludes LTP. To measure Schaffer collateral LTP,
we made extracellular field potential recordings in the stratum
radiatum and stimulated 2 independent synaptic pathways
with LTP being induced in the test pathway using a theta burst
protocol. In interleaved experiments, vehicle (DMSO) or GSK-5
(500 n) was applied to the slice for 20 min prior to LTP induction.
After application of vehicle, theta burst stimulation induced ro-
bust LTP in the test pathway (Fig. 6A; test pathway 206.9 ± 18.9%
vs. control pathway 128.4 ± 12.7%, n = 8, P = 0.00035). However,
after application of 500 n GSK-5, theta burst stimulation failed
to induce LTP in the test pathway (Fig. 6B; test pathway 124.1 ±
10.4%, n = 8 vs. control pathway 103.5 ± 5.3%, n = 8, P = 0.074). Simi-
larly, application of 100 nGSK-5 also prevented the induction of
LTP by theta burst stimulation (data not shown; test pathway
101.0 ± 4.6%, n = 3 vs. control pathway 110.8 ± 7.5%, n = 3, P = 0.59).
Therefore, prior activation of M1Rs prevents subsequent induc-
tion of LTP. Finally, we tested whether prior induction of LTP oc-
cludes with the M1R-induced potentiation. In two-pathway
experiments, we first induced LTP using extracellular recording
and then subsequently monitored effects of GSK-5 on the same
synaptic pathways in individual CA1 pyramidal neurons using
whole-cell patch-clamp recording. Theta burst stimulation in
the test pathway induced a pathway-specific LTP (Fig. 6C; test
pathway 146.7 ± 7.4% vs. control pathway 95.1 ± 9.4%, n = 8,
P = 0.00059). GABAA and GABAB receptor antagonists picrotoxin
(50 µ) and CGP55845 (1 µ) were then applied and a whole-cell
recording made from a CA1 pyramidal cells in current clamp in
the same region of the slice within 40 min of the application of
theta burst stimulation. The effect of GSK-5 addition on synaptic
transmission on the 2 pathwayswas thenmonitored. Application
of GSK-5 (500 n) caused an increase in EPSP amplitude in the
control pathway (that had not undergone LTP induction), but im-
portantly no potentiation was observed in the test pathway
at which LTP had been induced (Fig. 6D; GSK-5 potentiation:
control pathway 142.2 ± 18.9% vs. test pathway 70.8 ± 10.4%,
n = 8, P = 0.0012). Taken together, these findings show that the

Figure 5. M1R-induced EPSP enhancement is NMDAR dependent. (A) The NMDAR antagonist D-AP5 (50 µ) prevented the increase in EPSP amplitude induced by

application of GSK-5 (500 n) in whole-cell current clamp recordings. (B) Application of D-AP5 (50 µ) after GSK-5 (500 n) failed to reverse the increase in EPSP

amplitude induced by GSK-5. Data plotted as mean ± s.e.m. Example voltage traces in response to synaptic stimulation taken from Points 1 or 2 as indicated. Scale

bars: 2 mV and 50 ms (A,B).
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M1R-dependent potentiation of synaptic transmission bi-direc-
tionally occludes with LTP.

Discussion
In this study, we demonstrate that activation of M1Rs in adult
hippocampus causes a long-lasting enhancement of excitatory
synaptic transmission that bears the hallmarks of LTP: It is ex-
pressed as an increase in AMPAR-mediated transmission, it is
NMDAR dependent, and it bi-directionally occludes with LTP.
This novel mechanism for synaptic potentiation occurs in add-
ition to the more well-described action of M1Rs to increase the

excitability of CA1 pyramidal neurons, which we also confirm
in the present study.

One important issue that has dogged our understanding of
the specific roles of the different muscarinic receptors in the
CNS has been the lack of well-characterized subtype selective li-
gands. In the present study,we confirm that GSK-5 and 77-LH-28-1
are potent M1R agonists with sufficient selectivity over the other
muscarinic receptor subtypes to be useful tools both in vitro and
potentially in vivo. The availability of muscarinic receptor KO
mice has additionally been very important in the present study
to confirm the on-target actions of thesemolecules. Thus, we de-
finitively ascribe the following actions in adult hippocampal CA1

Figure 6.M1R-induced EPSP enhancement bi-directionally occludes with LTP. (A) Theta burst stimulation (arrow) induced pathway-specific LTP after a 20-min application

of vehicle (DMSO) in extracellular field potential recordings from stratum radiatum. (B) Theta burst stimulation (arrow) failed to induce LTP after a 20-min application of

GSK-5 (500 n). (C) Extracellular recording demonstrated pathway-specific LTP induction by theta burst stimulation (arrow) in the test pathway. (D) In the same slices

as (C), subsequent whole-cell recording from CA1 pyramidal cells showed that GSK-5 (500 n) caused an increase in EPSP amplitude only in the control synaptic

pathway that did not receive theta burst stimulation. Data plotted as mean ± s.e.m. Example field potential and voltage traces in response to synaptic stimulation

taken from Points 1 or 2 as indicated. Scale bars: 0.2 mV and 10 ms (A, B), 0.5 mV and 10 ms (C), 2 mV and 50 ms (D).
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pyramidal neurons to M1R agonism: depolarization, increase in
input resistance, increase in E–S coupling, potentiation of
AMPAR-mediated synaptic transmission requiringNMDAR activ-
ity. We note that one observed action of 77-LH-28-1, that of de-
pressing inhibitory synaptic transmission, is not related to its
activity at M1Rs, and we do not know the mechanism for this
effect.

The orthosteric binding site is highly conserved across mus-
carinic receptors (Haga et al. 2012); hence, the search for subtype
selective agonists has recently shifted toward agonists binding to
allosteric sites, of which AC-42 was the first characterized for the
M1 receptor (Spalding et al. 2002). The 2 M1R-selective allosteric
agonists used in this study, GSK-5 and 77-LH-28-1, are derivatives
of AC-42, have similar structures, and are presumed to bind to the
same extracellular region of the receptor although the mechan-
ism of binding is yet to be defined (Langmead et al. 2008; Budzik
et al. 2010). GSK-5 and 77-LH-28-1 both exhibit >102-fold selectiv-
ity for M1Rs over other muscarinic receptor subtypes (Fig. 1), and
their effects on cellular excitability and synaptic transmission
are almost entirely absent in M1R KO mice (Figs 2 and 4 and
[Buchanan et al. 2010]). The only exception is the depression of
IPSPs by 77-LH-28-1. It is not clear what this off-target action is
but activation ofmuscarinic M2 receptors is known to depress in-
hibitory synaptic transmission (Szabo et al. 2010) so it is possible
that 77-LH-28-1 has some activity atM2 receptors although this is
not suggested by the data in Figure 1. In addition, we note that
GSK-5 is reported to have a good overall general selectivity profile
as assessed in the CEREP panel (Budzik et al. 2010) and 77-LH-28-1
is reported to possess some cross-reactivity at dopamine D2 and
5-HT2B receptors (Melancon et al. 2013).

The effects of M1R agonism on CA1 pyramidal cell excitability
we observe are consistent with several previous studies (Lang-
mead et al. 2008; Buchanan et al. 2010; Dasari and Gulledge
2011) and are confirmed by showing the effects are lost in slices
from M1R KO mice. M1Rs cause a depolarization by inhibiting
Kv7 potassium channels, which also produces an increase in
input resistance (Dutar and Nicoll 1988). We now show that this
has the effect of dramatically increasing E–S coupling and
hence spike output of CA1 pyramidal neurons. Furthermore, it
is likely that the potentiation of excitatory synaptic transmission
in adult slices that we observe also contributes to this increase in
spike output observed in our extracellular recordings.

The potentiation of AMPAR-mediated EPSPs by M1Rs that we
describe is a novel and interesting phenomenon. A number of
previous studies have shown that muscarinic agonism, for ex-
ample using carbachol, causes a depression in excitatory synap-
tic transmission onto CA1 pyramidal neurons, including work
from some of the present authors (Isaac et al. 2009). However,
our results and those from recent studies strongly indicate that
the depression in transmission is independent of M1 and is
mediated by M4muscarinic receptors via a presynaptic mechan-
ism (Buchanan et al. 2010; Dasari and Gulledge 2011). The M1R-
dependent potentiation we observe appears to be distinct from
the short-term M4-dependent regulation of transmission; it is
postsynaptic and uses induction and expression mechanisms
in common with CA1 LTP.

Previous work shows that M1R activation leads to an increase
in NMDAR function by inhibiting SK potassium channels that
negatively regulate NMDAR activity (Ngo-Anh et al. 2005; Blood-
good and Sabatini 2007; Buchanan et al. 2010; Giessel and Sabati-
ni 2010). The SK channel inhibition by M1Rs removes this
negative regulation promoting NMDAR activity. This model is
supported by the requirement for NMDAR activation in studies
where M1Rs facilitate LTP induction (Anagnostaras et al. 2003;

Shinoe et al. 2005; Buchanan et al. 2010) and fits more broadly
with the actions ofmuscarinic receptors in facilitating the induc-
tion of spike timing-dependent LTP (Adams et al. 2004; Sugisaki
et al. 2011). We now show that M1R agonist application to slices
causes a potentiation of AMPAR-mediated EPSPs that depends
on NMDAR activity. Thus, our findings suggest that the M1R-de-
pendent increase in NMDAR activation due to suppression of SK
causes a potentiation of AMPAR-mediated synaptic transmission
onto CA1 pyramidal neurons. Further, this process shares its
mechanism of expressionwith LTP because it bi-directionally oc-
cludes with LTP. It is possible that the M1R-dependent potenti-
ation also shares other mechanisms with LTP; future work will
be needed to explore this possibility.

Activation of M1Rs has also been shown to cause a potenti-
ation of glutamatergic synaptic transmission onto CA1 pyram-
idal neurons via activation of IP3 receptors leading to insertion
of AMPARs into spines (Markram and Segal 1992; Fernandez de
Sevilla et al. 2008; Fernandez de Sevilla and Buno 2010). This
model is supported by the observed muscarinic receptor-
mediated increase in dendritic Ca2+ and subsequent activation
of CAMKII (Muller and Connor 1991; Muller et al. 1992). Although
superficially similar to the potentiation we describe, the potenti-
ation described by Fernandez de Sevilla and coworkers has 2 im-
portant differences: Its induction doesnot requireNMDARs and it
does not occlude with LTP. Moreover, it is observed in slices from
2-week-old rats, an agewhichwe find no potentiation of synaptic
transmission by M1R agonist (Buchanan et al. 2010). Thus, at
present, the relationship between these 2 forms of muscarinic
receptor-dependent plasticity is unclear.

In experimental systems where muscarinic receptor acti-
vation is required for induction of spike timing-dependent
LTP, it is also shown that prolonged exposure to muscarinic re-
ceptor agonists may desensitize receptors thereby preventing
subsequent facilitation of LTP (Muller et al. 1988; Adams et al.
2004). This mechanism is unlikely to explain the lack of LTP
found after application of GSK-5 (Fig. 6) since the increase in syn-
aptic strength produced by GSK-5 or theta burst stimulation bi-
directionally occludes with one another.

In vivo, the induction of synaptic plasticity in the hippocam-
pus occurs within the context of ongoing network activity, which
is regulated by acetylcholine release. Rhythmic network activity
at theta frequency is strongly associatedwith elevated acetylcho-
line release in both awake behavior and REM sleep (Lee et al. 1994;
Marrosu et al. 1995; Zhang et al. 2010). Gamma frequency oscilla-
tions are often nested within theta activity and can be elicited in
slice preparations by application of muscarinic agonists (Bragin
et al. 1995; Fisahn et al. 1998). Conversely, hippocampal sharp
wave ripple activity that occurs during non-REM sleep and
quiet wakefulness is depressed by acetylcholine release (Vande-
casteele et al. 2014). All 3 of these network oscillations have been
strongly implicated in coordinating neuronal firing within the
timeframes required for the induction of synaptic plasticity
(Huerta and Lisman 1993; Kwag and Paulsen 2009; Sadowski
et al. 2011). Our data do not directly address the role of network
oscillations on synaptic plasticity or the impact of M1R activation
on this interaction since our slices did not exhibit oscillatory ac-
tivity even in the presence ofM1R agonists. However, the potenti-
ation of excitatory synaptic transmission by M1Rs will provide
anothermechanismbywhich acetylcholine regulates hippocam-
pal network dynamics.

Acetylcholinesterase inhibitors are the only major treatment
available for the cognitive deficits associated with Alzheimer’s
disease, but there are significant side effects associated with
their use. The development of muscarinic receptor subtype
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selective agonists or potentiators aims to provide better treat-
ment for the cognitive deficits in diseases such as Alzheimer’s
and schizophrenia, while limiting the side effects (Hasselmo and
Sarter 2011).A clinical studyusingGSK1034702, a closeanalogueof
GSK-5, has recently reported positive effects on cognition (Nathan
et al. 2013). Our study now provides one potential mechanism for
this pro-cognitive effect through lowering the threshold for induc-
tion of hippocampal LTPandan increase in spike output of pyram-
idal neurons. Indeed, an in vivo electrophysiological study shows
that GSK5 produces increased pyramidal cell firing in rat hippo-
campus in anesthetized rats (Budzik et al. 2010). In studies not re-
ported here, we have also found that either GSK5 or GSK1034702
causes an increase in CA1 pyramidal cell firing in vivo and that
this is reversed by the broad-spectrummuscarinic receptor antag-
onist, scopolamine. However, the relationship of theM1R-induced
synaptic enhancement and increase in spike output to hippocam-
pal network function and cognition are likely complex. Across a
circadian cycle, the hippocampal states and therefore neuromo-
dulatory input necessary for optimal memory encoding vary
such that M1R agonism may prove more beneficial under certain
behavioral states. This complex issue requires considerable fur-
ther work to address and will be of great interest to understand.
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