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Abstract

In single particle reconstruction (SPR) from cryo-electron microscopy (EM), the 3D structure of a 

molecule needs to be determined from its 2D projection images taken at unknown viewing 

directions. Zvi Kam showed already in 1980 that the autocorrelation function of the 3D molecule 

over the rotation group SO(3) can be estimated from 2D projection images whose viewing 

directions are uniformly distributed over the sphere. The autocorrelation function determines the 

expansion coefficients of the 3D molecule in spherical harmonics up to an orthogonal matrix of 

size (2l + 1) × (2l + 1) for each l = 0,1,2,…. In this paper we show how techniques for solving the 

phase retrieval problem in X-ray crystallography can be modified for the cryo-EM setup for 

retrieving the missing orthogonal matrices. Specifically, we present two new approaches that we 

term Orthogonal Extension and Orthogonal Replacement, in which the main algorithmic 

components are the singular value decomposition and semidefinite programming. We demonstrate 

the utility of these approaches through numerical experiments on simulated data.

Index Terms
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1. Introduction

SPR from cryo-EM is an increasingly popular technique in structural biology for 

determining 3D structures of macro-molecular complexes that resist crystallization [1, 2, 3]. 

In the basic setup of SPR, the data collected are 2D projection images of ideally assumed 

identical, but randomly oriented, copies of a macromolecule. In cryo-EM, the sample of 

molecules is rapidly frozen in a thin layer of vitreous ice, and maintained at liquid nitrogen 

temperature throughout the imaging process [4]. The electron microscope provides a top 

view of the molecules in the form of a large image called a micrograph. The projections of 

the individual particles can be picked out from the micrograph, resulting in a set of 

projection images. Datasets typically range from 104 to 105 projection images whose size is 

roughly 100 × 100 pixels.

Mathematically, ignoring the effects of the microscope's contrast transfer function and noise, 

a 2D projection image I : ℝ2 → ℝ corresponding to rotation R is given by the integral of the 

Coulomb potential ϕ : ℝ3 → ℝ that the molecule induces
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(1)

where r = (x, y, z)T. The 3D reconstruction problem in cryo-EM is a non-linear inverse 

problem in which ϕ needs to be estimated from multiple noisy discretized projection images 

of the form (1) for which the rotations are unknown.

Radiation damage limits the maximum allowed electron dose. As a result, the acquired 2D 

projection images are extremely noisy with poor signal-to-noise ratio (SNR). Estimating ϕ 

and the unknown rotations at very low SNR is a major challenge.

The 3D reconstruction problem is typically solved by guessing an initial structure and then 

performing an iterative refinement procedure, where iterations alternate between estimating 

the rotations given a structure and estimating the structure given rotations [1, 5, 6]. When 

the particles are too small and images too noisy, the final result of the refinement process 

depends heavily on the choice of the initial model, which makes it crucial to have a good 

initial model. If the molecule is known to have a preferred orientation, then it is possible to 

find an ab-initio 3D structure using the random conical tilt method [7, 8]. There are two 

known approaches to ab initio estimation that do not involve tilting: the method of moments 

[9, 10], and common-lines based methods [11, 12, 13].

Using common-lines based approaches, [14] was able to obtain three-dimensional ab-initio 

reconstructions from real microscope images of large complexes that had undergone only 

rudimentary averaging. However, researchers have so far been unsuccessful in obtaining 

meaningful 3D ab-initio models directly from raw images that have not been averaged, 

especially for small complexes.

We present here two new approaches for ab-initio modelling that are based on Kam's theory 

[15] and that can be regarded as a generalization of the molecular replacement method from 

X-ray crystallography to cryo-EM. The only requirement for our methods to succeed is that 

the number of collected images is large enough for accurate estimation of the covariance 

matrix of the 2D projection images.

2. Kam's Theory and the Orthogonal Matrix Retrieval Problem

Kam showed [15] using the Fourier projection slice theorem (see, e.g., [16, p. 11]) that if the 

viewing directions of the projection images are uniformly distributed over the sphere, then 

the autocorrelation function of the 3D volume with itself over the rotation group SO(3) can 

be directly computed from the covariance matrix of the 2D images. Let ϕ̂ : ℝ3 → ℂ be the 

3D Fourier transform of ϕ and consider its expansion in spherical coordinates

(2)

where k is the radial frequency and  are the real spherical harmonics. Kam showed that
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(3)

can be estimated from the covariance matrix of the 2D projection images. For images 

sampled on a Cartesian grid, each matrix Cl is of size K × K, where K is the maximum 

frequency (dictated by the experimental setting). In matrix notation, eq.(3) can be rewritten 

as

(4)

where Al is a matrix size K × (2l + 1) whose m'th column is Alm. The factorization (4) of Cl, 

also known as the Cholesky decomposition, is not unique: If Al satisfies (4), then Al U also 

satisfies (4) for any (2l + 1) × (2l + 1) unitary matrix U (i.e., UU* = U*U = I).

Since ϕ, the electric potential induced by the molecule, is real-valued, its Fourier transform 

ϕ̂ satisfies , or equivalently, . Together with 

properties of the real spherical harmonics, it follows that Alm(k) (and therefore Al) is real for 

even l and purely imaginary for odd l. Then Al is unique up to a (2l + 1) × (2l + 1) 

orthogonal matrix Ol ∈ O(2l + 1), where

(5)

Originally, 2l + 1 functions of the radial frequency are required for each l in order to 

completely characterize ϕ. With the additional knowledge of Cl the parameter space is 

reduced to O(2l + 1). We refer to the problem of recovering the missing orthogonal matrices 

O0, O1, O2,… as the orthogonal matrix retrieval problem in cryo-EM.

2.1. Analogy with X-ray crystallography

The orthogonal matrix retrieval problem is akin to the phase retrieval problem in X-ray 

crystallography. In crystallography, the measured diffraction patterns contain information 

about the modulus of the 3D Fourier transform of the structure but the phase information is 

missing and needs to be obtained by other means. Notice that in crystallography, the 

particle's orientations are known but the phases of the Fourier coefficient are missing, while 

in electron microscopy, the projection images contain phase information but the orientations 

of the particles are missing. Kam's theory converts the cryo-EM problem to one akin to the 

phase retrieval problem in crystallography. From a mathematical standpoint, the phase 

retrieval problem in crystallography is perhaps more challenging than the orthogonal matrix 

retrieval problem in cryo-EM, because in crystallography each Fourier coefficient is missing 

its phase, while in cryo-EM only a single orthogonal matrix is missing per several radial 

components.
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3. Orthogonal Extension (OE)

A classical solution to the missing phase problem in crystallography is molecular 

replacement, which relies upon the existence of a previously solved structure which is 

similar to the unknown structure from which the diffraction data is obtained. The structure is 

then estimated using the Fourier magnitudes from the diffraction data with the phases from 

the homologous structure. We mimic this approach in cryo-EM, by grafting the orthogonal 

matrices of the already resolved similar structure onto the unknown structure.

Let ϕ be the unknown structure, and suppose ψ is a known homologous structure, whose 3D 

Fourier transform ψ̂ has the following expansion in spherical harmonics

(6)

We can obtain the auto-correlation matrices Cl from the cryo-EM images of the unknown 

structure ϕ using Kam's method. Let Fl be any matrix satisfying , determined from 

the Cholesky decomposition of Cl. Then

(7)

where Ol ∈ O(2l + 1). Requiring Al ≈ Bl, in orthogonal extension we determine Ol as the 

solution to the least squares problem

(8)

where ‖·‖F denotes the Frobenius norm.

Although the orthogonal group is non-convex, there is a closed form solution to (8) (see, 

e.g., [17]) given by

(9)

where

(10)

is the singular value decomposition (SVD) of . Thus, we estimate Al by

(11)
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In analogy with crystallography, the phase information  from the resolved 

homologous structure appends the experimentally measured intensity information (Fl). We 

note that other magnitude correction schemes have been used in crystallography. For 

example, setting the magnitude to be twice the magnitude from the desired structure minus 

the magnitude from the known structure, has the desired effect of properly weighting the 

difference between the two structures, but also the undesired effect of doubling the noise 

level. The cryo-EM analog in this case would be estimating Al by

(12)

4. Orthogonal Replacement (OR)

We move on to describe Orthogonal Replacement, our approach for resolving structures for 

which there does not exist a homologous structure. Suppose ϕ(1) and ϕ(2) are two unknown 

structures for which we have cryo-EM images. We assume that their difference Δϕ = ϕ(2) – 

ϕ(1) is known. This can happen, for example, when an antibody fragment of a known 

structure binds to a protein. We have two sets of cryo-EM images, one from the protein 

alone, ϕ(1) and another from the protein plus the antibody, ϕ(2). Let  be the matrices 

computed from the sample covariance matrices of the 2D projection images of ϕ(i), (i = 1, 

2). Let  be any matrix satisfying . We have , where 

. The matrices  need to be determined for i = 1, 2 and l = 0, 1, 2,…. The 

difference  is known from the 3D Fourier transform of the binding structure Δϕ. 

We have

(13)

4.1. Relaxation to a Semidefinite Program

The least squares problem

(14)

is a non-convex optimization problem with no closed form solution. We find 

using convex relaxation in the form of semidefinite programming (SDP). We first 

homogenize (13) by introducing a slack unitary variable  and consider the augmented 

linear system

(15)
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If the triplet  is a solution to (15), then the pair  is a 

solution to the original linear system (13). The corresponding least squares problem

(16)

is still non-convex. But it can be relaxed to an SDP. Let Q ∈ ℝ3(2l+1) × 3(2l+1) be a 

symmetric matrix, which can be expressed as a 3 × 3 block matrix with block size 2l + 1, 

and the ij'th block is given by

(17)

It follows that Q is positive semidefinite (denoted Q ≥ 0). Moreover, the three diagonal 

blocks of Q are Qii = I (i = 1, 2, 3) and rank(Q) = 2l + 1. The cost function in (16) is 

quadratic in , so it is linear in Q. The problem can be equivalently rewritten as

(18)

over Q ∈ ℝ3(2l+1) × 3(2l+1), subject to Qii = I, rank(Q) = 2l + 1 and Q ≥ 0, where the matrix W 

can be written in terms of . Here, we have only one non-convex 

constraint – the rank constraint. Upon dropping the rank constraint we arrive at an SDP that 

can be solved efficiently in polynomial time in l. We extract the orthogonal matrices 

from the decomposition (17) of Q. If the solution matrix Q has rank greater than 2l + 1 

(which is possible since we dropped the rank constraint), then we employ the rounding 

procedure of [18].

4.2. Exact Recovery and Resolution Limit

We have the following theoretical guarantee on recovery of  using the SDP 

relaxation in the noiseless case:

Theorem 1. Assume that  are elementwise sampled from i.i.d. 

Gaussian N(0, 1), and K > 2l + 1, then the SDP method recovers  almost 

surely.

The proof of Theorem 1 is beyond the scope of this paper and is deferred to a separate 

publication. Theorem 1 shows that the SDP method almost achieves the theoretical 

information limit, since by counting the degrees of freedom in (13) it is impossible to 

recover  if K < 2l. Indeed, the number of free parameters associated with an 

orthogonal matrix in O(2l + 1) is l(2l + 1), while the number of equations in (13) is K(2l + 
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1). This introduces a natural resolution limit on structures that can be resolved. Only angular 

frequencies for which  can be determined using OR.

5. Numerical Experiments

We present the results of numerical experiments on simulated images (109 × 109 pixels) of 

the Kv1.2 potassium channel complex (Fig. 1 A and B) with clean and noisy projection 

images. The experiments were performed in MATLAB in UNIX environment on an Intel 

(R) Xeon(R) X7542 with 2 CPUs, having 6 cores each, running at 2.67 GHz, and with 256 

GB RAM in total. To solve the SDP we used the MATLAB package CVX [19], and to 

compute the covariance matrix of the 2D images we used the steerable PCA procedure [20].

Kv1.2 is a dumbbell-shaped particle consisting of two subunits - a small β4 subunit and a 

larger α4 subunit, connected by a central connector. We performed experiments using OE 

and OR, assuming one of the subunits (e.g., α4) is known, while the other is unknown. In the 

case of OR, we additionally used projection images of the unknown subunit.

5.1. Clean and Noisy Projections

We reconstruct the structure from both clean and noisy projection images. The 

reconstruction of Kv1.2 obtained from clean images using OE and OR is shown in Fig. 1 C 

through F. We used the true Cl matrices for the known subunit, and a maximum l of 30. We 

tested OR to reconstruct Kv1.2 from noisy projections at various values of SNR. A sample 

projection image at different values of SNR is shown in Fig. 2.

The Cl matrices were estimated from the noisy projection images. In Fig. 1 G through J we 

show the reconstructions obtained from 10000 projections using OR at SNR=0.7, and from 

40000 projections using OR at SNR=0.35. In our simulations with 10000 images, it takes 

416 seconds to perform steerable PCA, 194 seconds to calculate the Cl matrices using the 

maximum l as 30, and the time to solve the SDP as a function of l ranges from 5 seconds for 

l = 5 to 194 seconds for l = 30.

5.2. Comparison between OE and OR

We quantify the ‘goodness’ of the reconstruction using the Fourier Cross Resolution (FCR) 

[22]. In Fig. 3 we show the FCR curves for the reconstruction from the β4 complex using OE 

and OR. The additional information in OR, from the projection images of α4, results in a 

better reconstruction, as seen from the FCR curve. The Kv1.2 complex has C4 symmetry, 

which reduces the rank of the Cl matrices. Our experiment thus benefits from the reduced 

size of the orthogonal matrices to be recovered.

6. Summary

We presented two new approaches based on Kam's theory for ab-initio modelling of 

macromolecules for SPR from cryo-EM. Ab-initio modelling of small complexes is a 

challenging problem in cryo-EM because it is difficult to detect common lines between 

noisy projection images at low SNR. Our methods only require reliable estimation of the 
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covariance matrix of the projection images which can be met even at low SNR if the number 

of images is sufficiently large. In future work we plan to estimate the covariance matrix 

when images are not centered, and to apply our methods to experimental datasets.
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Fig. 1. 
Kv1.2 potassium channel: A) Volume visualization in UCSF Chimera [21]. B) Image from 

Protein Data Bank Japan (PDBj). C through F show reconstructions from clean images - C) 

OE with α4 known, D) OE with β4 known, E) OR with α4 known, and F) OE with β4 known. 

G through J show reconstructions from noisy images using OR - G) SNR=0.7 with α4 

known, H) SNR=0.7 with β4 known, I) SNR=0.35 with α4 known, and J) SNR=0.35 with β4 

known.
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Fig. 2. 
Projection images at different values of SNR: A) Clean image, B) SNR=0.7, and C) 

SNR=0.35.
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Fig. 3. FCR curve for reconstruction from β4 (clean images)
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