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Insulin sensitivity of muscle protein metabolism is
altered in patients with chronic kidney disease and
metabolic acidosis
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An emergent hypothesis is that a resistance to the anabolic
drive by insulin may contribute to loss of strength and
muscle mass in patients with chronic kidney disease (CKD).
We tested whether insulin resistance extends to protein
metabolism using the forearm perfusion method with arterial
insulin infusion in 7 patients with CKD and metabolic acidosis
(bicarbonate 19mmol/l) and 7 control individuals. Forearm
glucose balance and protein turnover (2H-phenylalanine
kinetics) were measured basally and in response to insulin
infused at different rates for 2 h to increase local forearm
plasma insulin concentration by approximately 20 and
50 μU/ml. In response to insulin, forearm glucose uptake was
significantly increased to a lesser extent (−40%) in patients
with CKD than controls. In addition, whereas in the controls
net muscle protein balance and protein degradation were
decreased by both insulin infusion rates, in patients with
CKD net protein balance and protein degradation were
sensitive to the high (0.035mU/kg per min) but not the low
(0.01mU/kg per min) insulin infusion. Besides blunting
muscle glucose uptake, CKD and acidosis interfere with the
normal suppression of protein degradation in response to a
moderate rise in plasma insulin. Thus, alteration of protein
metabolism by insulin may lead to changes in body tissue
composition which may become clinically evident in
conditions characterized by low insulinemia.
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Insulin resistance is a well-known complication of chronic
kidney diseases (CKD).1–7 Although not clinically remarkable,
insulin resistance appears to be strongly implicated in the
pathogenesis of hypertension, accelerated atherosclerosis,
and cardiovascular events.8–10 Besides its effects on glucose
and lipid metabolism, insulin also influences a number of
metabolic pathways related to protein metabolism that lead to
anabolic or anticatabolic effects.11 Particularly, even small
increases in blood insulin levels, well within the physiological
range, are associated with pronounced inhibition of protein
breakdown.11 An emergent hypothesis is that a resistance to
the anabolic drive by insulin may contribute to loss of
strength and muscle mass that are observed with the
progression of CKD.12,13 This hypothesis is supported by
studies obtained in animal models of CKD. Bailey et al.14 have
recently identified a series of abnormal postreceptor signaling
changes in the insulin/insulin-like growth factor-1 pathway in
the muscle of rats with CKD. These include the occurrence of
functional abnormalities in the insulin receptor substrate/
phosphatidylinositol 3-kinase (PI3K) cascade that decrease
the phosphorylation of the downstream effector Akt. The low
phosphorylated Akt activity has been shown to stimulate the
expression of specific E3 ubiquitin conjugating enzymes,
atrogin-1/MAFbx and MuRF1, to accelerate muscle protein
degradation. Furthermore, a decrease in muscle PI3K activity
per se activates Bax, leading to the stimulation of caspase-3
activity and increase protein degradation.12,14,15 It is interest-
ing that metabolic acidosis, a common complication observed
in patients with CKD, also interferes with insulin-induced
intracellular signaling by suppressing PI3K activity in muscle,
and thus increases protein degradation through an upregula-
tion of the ubiquitin-requiring pathway.16,17

Despite initial controversial results obtained in human
insulin-resistant states (see Tessari et al.11 for review), a recent
clinical study has shown that the anticatabolic response to
insulin is blunted in obese insulin-resistant women.18

Interestingly, patients with end-stage renal disease due to
diabetic nephropathy have an accelerated loss of lean body
mass as compared with nondiabetic patients,19 suggesting that
insulin resistance accelerates net catabolism. The evidence
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that insulin resistance also extends to protein metabolism in
CKD is suggested by cross-sectional studies in which protein
turnover was compared with basal insulin levels or with
‘static’ indexes of insulin resistance. Siew et al.20 observed
that even lesser degrees of glucose intolerance in the absence
of overt diabetes mellitus are associated with both increased
whole-body and muscle protein breakdown, suggesting that
protein metabolism is scarcely sensitive to basal insulin levels
in uremia. In addition, when we studied muscle protein
turnover in patients with CKD and metabolic acidosis, we
observed that the inverse association between protein
degradation and plasma insulin occurring in healthy subjects
was lost in CKD patients.21 However, in the few studies22,23

in which amino acid or protein metabolism was evaluated
during the euglycemic hyperinsulinemic clamp (a ‘gold
standard’ for the detection of insulin resistance), a normal
antiproteolytic response to insulin was observed, even in the
presence of metabolic acidosis with mean bicarbonate of
17 mmol/l.24 It is interesting that in these studies the effects
of insulin were tested in the high (~60–100 μU/ml) insulin
physiological range that is needed to test insulin sensitivity
regarding glucose. However, protein metabolism appears
to be maximally sensitive at only modestly increased
(up to 30 μU/ml) insulin concentrations.25 Therefore, the
occurrence of defects in muscle insulin’s response in uremia
could be offset by the high insulin levels attained in previous
studies.

Testing different insulin levels allows to take advantage of
the different sensitivity to insulin of protein and glucose
metabolism. The present clinical investigation explores the
effects of two different insulin levels on two selected end
points of its action, such as glucose and protein metabolism,
in the muscle of patients with nondiabetic CKD. We
hypothesized that the insulin response regarding both protein
and glucose metabolism is blunted in the skeletal muscle of

CKD patients with metabolic acidosis. We tested this
postulate via an interventional design in which insulin levels
were raised at two different levels to mimic a local state of low
or moderate hyperinsulinemia. Net exchange of glucose and
protein turnover across forearm muscle were measured in the
basal, postabsorptive state, as well as in the hyperinsulinemic
state. Our results show that in patients with CKD the
exquisite ability of skeletal muscle protein metabolism to
respond to modestly increased insulin levels is blunted,
whereas the response to high insulin is preserved.

RESULTS
Serum insulin and forearm blood flow
By the infusion of low-dose insulin (0.01 mU/kg per min), ve-
nous insulin was increased on the average from 6 to 29 μU/ml
and from 8 to 30 μU/ml in controls and CKD patients,
respectively (Table 1). The administration of a higher insulin
dose (0.035 mU/kg per min) increased insulin levels
by ~ 50 μU/ml (on the average from 7 to 62 μU/ml and from
10 to 59 μU/ml in controls and patients, respectively). These
insulin levels are similar to the postprandial concentrations.
Insulin levels measured in the contralateral arm vein were not
changed during the study (data not shown).

Forearm blood flow was not significantly changed by the
0.01 mU/kg per min insulin infusion rates (Table 2). At the
highest insulin dose (0.035 mU/kg per min), a 30% increase
in forearm blood flow was observed in both controls and
CKD subjects.

Effects of local hyperinsulinemia on the forearm uptake of
glucose
The 0.01mU/kg per min insulin infusion did not cause any
significant change in muscle glucose uptake in both patients and
controls (data not shown). The 0.035mU/kg per min insulin
infusion rate resulted in significant increases of glucose

Table 1 |Arterial insulin concentrations (μU/ml) in patients with chronic kidney disease (CKD) and in controls in the baseline
and during insulin infusion

Insulin infusion rate (mU/kg per min)

0.01 0.035

0 80 100 120 0 80 100 120min

Controls (n=5) 6±1 22±4a 28±3a 30± 1a Controls (n=7) 7±1 47±4a 60±4a 62±3a

CKD (n=5) 8±1 26±2a 26±2a 29± 2a CKD (n=7) 10±2 44±3a 56±3a 59±3a

aPp 0.05 basal versus insulin-infused period.

Table 2 | Forearm blood flow (ml/min per 100ml) in patients with chronic kidney disease (CKD) and in controls in the baseline
and during insulin infusion

Insulin infusion rate (mU/kg per min)

0.01 0.035

0 80 100 120 0 80 100 120min

Controls (n= 5) 3.5± 0.2 3.7± 0.1 3.6± 0.2 3.7± 0.2 Controls (n=7) 3.7± 0.1 4.2± 0.3 4.6± 0.1a 4.7± 0.2a

CKD (n= 5) 4.1± 0.2 4.0± 0.2 3.8± 0.26 4.0± 0.3 CKD (n=7) 4.2± 0.4 4.9± 0.6 4.9± 0.4a 5.1± 0.4a

aPp 0.05 basal versus insulin-infused period.
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uptake of ~ 3–4-fold in control subjects (Figure 1).
In contrast, the insulin-induced increase in forearm glucose
uptake was impaired by ~ 35% in patients with CKD (Figure 1).

Insulin sensitivity of protein metabolism in patients with CKD
In the basal, postabsorptive state, rates of protein degradation
and net protein balance were, as a trend, higher (by ~ 7 and
9–13%, Po0.08–0.06, respectively) in patients than controls.
However, all phenylalanine kinetic parameters were not
statistically different between groups. The net protein
balances for phenylalanine are shown in Figure 2. In control
subjects, the negative net protein balance observed in the
postabsorptive state was markedly decreased by
insulin infusion at both 0.01 and 0.035 mU/kg per min
(Figure 2a and b). Contrariwise, no effect of low-dose
(0.01 mU/kg per min) insulin infusion was observed in
patients with CKD (Figure 2a). At higher insulin infusion
(0.035 mU/kg per min), net protein balance declined in
patients similar to control subjects (Figure 2b).

Figure 3 shows the effects of insulin on protein
degradation. The 0.01 mU/kg per min insulin infusion
produced a significant decrease (~31–34%) of protein
degradation in control subjects (Figure 3a). A similar high
suppression (~31–37%) of protein degradation was observed
in response to the higher insulin infusion rates (Figure 3b).
Protein degradation was not affected by low-dose insulin
(Figure 3a), whereas a normal suppression was observed in
response to the higher insulin infusion rates (Figure 3b) in
CKD patients.

Similar to what was previously observed,25 no change in
muscle protein synthesis was observed at both insulin
infusion rates in controls and CKD patients (Figure 4a and b).

Figure 5 depicts the dose–response relationships between
net protein balance across the forearm and insulin levels.

To determine the dose–response characteristics for the effect
of insulin on muscle protein metabolism, the net balance of
phenylalanine across the forearm was plotted versus the
corresponding steady-state plasma insulin concentrations
(only the 100 and 120 min infusion data point considered)
during insulin infusion. The fitted curve is a nonlinear least
squares best fit to a logarithmic function. In control subjects
net protein balance decreased steeply from basal, postabsorp-
tive insulin concentrations of ~ 8 μU/ml until insulin
concentrations of ~ 30 μU/ml, declining more modestly
thereafter. Thus, the maximal effect of insulin occurred at
concentrations of ~ 30 μU/ml. A similar trend was observed
for CKD patients, but for each insulin level between basal and
30 μU/ml the insulin response was shifted to the right. The
curve of insulin sensitivity in patients with CKD tended to
overlap with the curve obtained in controls in the high insulin
physiological range.

DISCUSSION
Three major observations are made from this study. First, in
accordance with early studies4–6,26 the muscle response of
glucose metabolism to insulin is blunted in CKD patients.
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Figure 1 | The effect of insulin on forearm skeletal muscle glucose
uptake in patients with chronic kidney disease (CKD) (n=7) and
controls (n=7). The 0.035 mU/kg per min insulin infusion rate
resulted in significant increases of glucose uptake of ∼ 3–4-fold in
control subjects. The effect of local insulin was reduced by ~ 40% in
patients with CKD. Values are mean ± s.e.m. aStatistically significant
differences (Pp 0.02) between basal and insulin-infused periods.
bStatistically significant differences (Pp 0.03) between patients with
CKD and controls.
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Figure 2 | Effect of insulin at 0.01 and 0.035mU/kg per min on
forearm muscle net protein balance. (a, b) In control subjects, the
negative net protein balance observed in the basal, postabsorptive
state was markedly decreased by insulin at both 0.01 (n= 5) and
0.035 mU/kg per min (n=7). (a) Contrariwise, no effect of low-dose
(0.01 mU/kg per min) insulin infusion was observed in patients with
chronic kidney disease (CKD) (n=5). (b) At higher insulin infusion
rates (0.035 mU/kg per min) net protein balance declined in patients
(n=7) similarly to control subjects. Values are mean± s.e.m.
aStatistically significant differences (Pp 0.01 or less) between basal
and insulin-infused periods. bStatistically significant differences
(Pp 0.03 or less) between patients with CKD and controls.
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Second, as a new finding, insulin sensitivity of muscle
protein metabolism is overall preserved at insulin levels in
the high (~8–9-fold higher than basal) physiological
range. This observation is in keeping with studies on
whole-body protein metabolism during euglycemic
hyperinsulinemic clamp.24–26 Third, the muscle response of
protein metabolism to insulin in the low (~3-fold higher than
basal) physiological range is markedly impaired in patients
with CKD. Therefore, the results of this study indicate that in
patients with CKD skeletal muscle protein metabolism is
truly insulin resistant at low hormone levels, whereas the
sensitivity of muscle protein metabolism to high insulin levels
is preserved.

Early studies have suggested that insulin resistance of
glucose metabolism in uremia is not because of impaired
insulin binding to its receptor but rather due to defects in
intracellular signaling processes.27,28 Insulin enhances glucose
uptake in skeletal muscle through the activation of the
PI3K–Akt signaling pathway, a pathway that is inhibited in
skeletal muscle in uremia.12,29 In our study the response to
insulin of glucose metabolism in the muscle of CKD patients
was impaired at insulin levels of ~ 60 μU/ml, levels that are

physiologically observed after a mixed meal. Therefore, our
findings are in accordance with what was shown several years
ago by Alvestrand et al.5 who observed a marked impairement
of glucose uptake by peripheral tissues at systemic high
insulin levels in chronically uremic subjects. Our results are
also in keeping with what was shown recently by Miyamoto
et al.30 who observed that, despite a markedly elevated insulin
response (~50 μU/ml), hemodialysis patients are unable to
maintain normal postprandial blood glucose levels after a
carbohydrate-rich meal. Meal consumption-induced hyper-
glycemia has been associated with an inflammatory response
predicting cardiovascular disease and mortality in patients
with diabetes mellitus and is putatively an important factor in
uremic oxidative stress.30

In vivo, insulin has both anabolic (in the presence of amino
acid availability) and anticatabolic (during fasting) effects.11

Using tracers, several laboratories reported that in the basal,
postabsorptive state, physiological doses of insulin inhibit
whole-body protein and muscle degradation.31–33 However,
the molecular mechanisms by which insulin reduces muscle
protein degradation are only in part known. In myotubes,
insulin decreases the activity of the ubiquitin–proteasome
pathway through changes in the phosphorylation status of
members of the Akt-dependent signaling pathway.34 In rats
there is evidence that insulin-stimulated Akt activity induces
phosphorylation of the FOXO family of transcription
factors.35,36 FOXO-1 and -3 regulate the transcription of
components of the ubiquitin–proteasome system, including
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0.01 mU/kg per min insulin infusion produced a significant ~ 31–34%
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the ubiquitin ligases muscle atrophy F-box (MAFbx) and
muscle-specific RING finger-1 (MuRF-1), that are central to
the control of muscle protein breakdown.37 In humans, when
muscle protein kinetics in association with intracellular
signaling were studied in response to insulin, decreases in
the amounts of MAFbx protein and the C2 proteasome unit
(but not of MuRF-1) were observed. Certainly, these findings
provide a mechanistic explanation for the fall in
insulin-induced muscle proteolysis.38 It is interesting that
metabolic acidosis stimulates the activity of different proteases
including caspase-3 and the ubiquitin–proteasome system
that increase muscle protein degradation.12 Therefore, insulin
and acidosis appear to target in an opposite way the same
signaling pathway in muscle, as also shown in a cultured
muscle cell model.39

In our work we set out to study insulin sensitivity of
protein metabolism in CKD patients with untreated acidosis
because, in previous studies, acidosis has been shown to
increase protein degradation,16–17 an effect that is reversed by
bicarbonate supplementation.40 In addition, acidosis de-
creases insulin sensitivity of glucose metabolism.24 Besides
acidosis, different complications of CKD such as
inflammation15 and elevated angiotensin II15 interfere with

insulin- and insulin-like growth factor-1-induced intracellular
signaling to promote muscle catabolism.

The first effect of insulin is a fast, nitric oxide-dependent
microvascular recruitment that precedes increases in blood
flow.41 Both muscle structure and blood flow are altered in
CKD patients because of dissociation between capillary supply
and muscle cell requirements, presumably secondary to
decreased capillary density.42 Although the measure of
capillary recruitment was not feasible in this study, it is
possible that the different effects of the two insulin doses in
CKD patients were caused by differential effects on muscle
perfusion, with the higher dose being the only one able to
stimulate microvascular recruitment.

What is the full meaning of our work? In humans, insulin
plays a pivotal role in maintaining muscle protein mass during
fasting, during which proteins are lost, and in the fed state,
during which protein gains take place. We show here that
acidemic CKD patients need higher than normal levels of
insulin to inhibit proteolysis. The degree of insulinemia
achieved when a low dose of insulin was administered in this
study (~28–30 μU/ml) is comparable with that expected after a
low glycemic index meal, such as breakfast, and thus it turns
from these results that the normal suppression of proteolysis by
insulin at this concentration is impaired in CKD. In contrast,
the sensitivity to insulin at higher insulin concentrations, as may
occur with meals containing refined carbohydrates, appears to
be preserved. Defects in the regulation by insulin of protein
metabolism in uremia on one hand may lead to changes in
body tissue composition, metabolic rates, and individual
amino acid metabolic steps that may become clinically
evident in conditions characterized by low insulinemia, such
as during fasting and/or low energy intakes. On the other
hand, defects in the regulation in protein metabolism
described here could overlap with alterations in insulin
sensitivity occurring in normal aging43 and also interact with
other factors such as dietary and lifestyle habits (physical
activity) to boost protein catabolism. Therefore, preventing
or treating muscle catabolism favored by insulin resistance
may potentially prove to be a new target for the nutritional
treatment of patients with CKD.

MATERIALS AND METHODS
Study participants
Seven patients with CKD and seven control subjects were studied
(Table 3). The causes of renal disease were: chronic glomerulone-
phritis (three patients), interstitial nephritis (two patients),
and hypertensive nephrosclerosis (two patients). None of the
patients had any history of diabetes or major organ disease with
the exception of CKD. There were no differences between groups as
for age, gender, body mass index, fat-free and fat mass, normalized
protein nitrogen appearance, estimated calorie intake, Subjective
Global Assessment score, C-reactive protein, and serum albumin.
Estimated glomerular filtration rate44 and hemoglobin levels
were lower in patients. The average forearm volume was
927± 55 and 901± 48 ml, respectively, in patients and controls
(P= nonsignificant).
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Figure 5 |Dose–response relationships between net protein
balance across the forearm and insulin levels. To determine the
dose–response characteristics for the effect of insulin on muscle
protein metabolism, the net balance of phenylalanine across the
forearm was plotted versus the corresponding steady-state plasma
insulin concentrations (only the 100 and 120 min infusion data point
considered) during insulin infusion. The fitted curve is a nonlinear
least squares best fit to a logarithmic function. In control subjects, net
protein balance decreased steeply from − 17 nmol/min per 100 ml in
the basal, postabsorptive state to − 8 nmol/min per 100ml when
insulin concentrations were raised to 30 μU/ml. With further increases
in insulin concentrations to ~ 100 μU/ml, net protein balance
decreased only to − 5 nmol/min per 100ml. Thus, the maximal
effect of insulin occurred at insulin concentrations between 15 and
30 μU/ml. In CKD patients the insulin response was shifted downward
with higher net protein balance at moderate hyperinsulinemia. The
curve of insulin sensitivity of protein balance in patients with chronic
kidney disease (CKD) overlapped with the same curve obtained in
controls in the high insulin physiological range.

Kidney International (2015) 88, 1419–1426 1423

G Garibotto et al.: Insulin sensitivity of protein metabolism in CKD patients c l i n i ca l inves t iga t ion



The protocol described here was approved by the Ethics
Committee of the Department of Internal Medicine of the University
of Genoa. All subjects were informed about the nature, purposes,
procedures, and possible risks of the study before their informed
consents were obtained. The procedures were in accordance with the
Declaration of Helsinki Principles regarding ethics of human
research.

Experimental protocol
The methods for the measurement of muscle protein turnover
are reported extensively elsewhere.21,45 Briefly, muscle protein
metabolism was estimated by the forearm perfusion technique
associated with 2H-phenylalanine kinetics.21,25 The study was
performed in the postabsorptive, overnight fasted state (Figure 6).
At 0700 h, a forearm vein was cannulated with a 18-gauge catheter
to receive a continuous infusion of L-(ring-2H5)-phenylalanine
(D5-Phe) (0.035 μmol/kg per min). Catheters were inserted into a
brachial artery and in a retrograde manner into the ipsilateral, deep
forearm vein. After a 150-min tracer equilibration period, insulin
(Humulin R, Eli Lilly, Indianapolis, IN) (diluted in a solution of
normal saline and albumin) was infused for 120 min into
the brachial artery at 0.010 and, on a separate day, at 0.035 mU/kg

per min. Five patients and five control subjects performed both the
0.010 and the 0.035 mU/kg per min insulin infusion studies,
whereas all the subjects performed the 0.035 mU/kg per min insulin
infusion study. Arterial and deep venous blood samples were
obtained at 20-min intervals during the last hour of both the basal
and the insulin infusion periods. Blood flow across the forearm was
determined after each arteriovenous sampling.21 Body composition
was estimated by anthropometry46 and energy intake by dietetic
diaries.

Assays
Blood samples were deproteinized with perchloric acid (20% wt/vol).
Phenylalanine concentrations were measured by ion-exchange
chromatography.21 The D5-Phenylalanine mole percentage enrich-
ments in the supernatant of deproteinized blood were determined as
previously described.45 Isotope concentrations were calculated by
multiplying E times substrate concentrations. All other serum
chemical measurements were determined by routine clinical
chemistry laboratory procedures.

Calculations
Arterial concentrations and enrichments (Figure 7) of phenylalanine
remained stable between the basal and insulin-infused periods,
indicating that the amino acid tracers were at steady state throughout
the study.

Muscle phenylalanine rate of appearance (protein breakdown)
and disposal (protein synthesis) were calculated as previously
described21,45 using the A-V model.21 The net forearm balance
(NB) for phenylalanine was calculated as follows:

NB ¼ A½ � � V½ �f g � blood flow

where [A] and [V] are the phenylalanine arterial and venous concen-
trations, respectively. The forearm protein breakdown represented by
phenylalanine rate of appearance (Raphe) was calculated as it follows:

Raphe ¼ Phea � PheEa=PheEvð Þ � 1½ � � blood flow

in which PheEa and PheEv represent phenylalanine isotopic
enrichment in arterial and venous blood, respectively. The local rate
of disappearance (Rdphe) of phenylalanine, which represents the
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Figure 6 | The design of the study.
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Figure 7 |Plasma mass percent enrichment (MPE) of
phenylalanine at study time points. CKD, chronic kidney disease.

Table 3 |Clinical characteristics of controls and chronic kidney
disease (CKD) subjects

Controls CKD subjects

Number of subjects 7 7
Age (years) 50±3 55±2
Gender (M/F) 4/3 4/3
BMI (kg/m2) 24± 2 23± 1
FFM (kg) 51±2 49±3
Fat mass (kg) 24±1 23±2
nPNA (g/kg) 1.1± 0.1 1.2± 0.1
Energy intake (kcal/kg) 31±1 32±1
SGA score 7 (6–7) 7 (6–7)
CRP (mg/l) 3 (2–3) 3 (2–5)
Estimated GFR (ml/min per 1.73m2) 109± 6 17± 1b

Blood glucose (mmol/l) 4.0± 0.1 4.3± 0.1
(HCO3) (mmol/l) 24± 1 19± 1
Albumin (g/dl) 4.2± 0.1 4.1± 0.1
Hemoglobin (g/dl) 13.5± 1 11.5± 0.5a

BUN (mg/dl) 20±2 88±4b

Abbreviations: BMI, body mass index; BUN, blood urea nitrogen; CRP, C-reactive
protein; F, female; FFM, fat-free mass; GFR, glomerular filtration rate; M, male; nPNA,
normalized protein nitrogen appearance; SGA, Subjective Global Assessment.
Data are mean± s.e.m. or median (range). Significance of difference versus control
subjects: aPo0.05; bPo0.01.
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muscle protein synthesis rate, was calculated as:

Rdphe ¼ Raphe � NB

Statistical analyses
All data are presented as the mean± s.e. of the mean or median
(range). To establish the differences in substrate concentrations
between patients and controls, the unpaired t-test and analysis of
variance were used. To compare arterial with venous data, statistical
analysis was performed using the two-tailed t-test. The effect of
insulin on the response variables was analyzed using analysis of
variance for repeated measures, the main effects being group (low vs.
high insulin) and time (basal, insulin infusion). Linear and nonlinear
regression and correlation were used to evaluate the relationship
between two variables. Statistical analysis was performed with the
Statview Statistical Package (Abacus, Berkeley, CA).
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