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SLC39A8 Deficiency: A Disorder
of Manganese Transport and Glycosylation
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Daniel W. Nebert,8,9 Stephan Rust,1 and Thorsten Marquardt1,*

SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child

that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of trans-

ferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood

manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in

SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and

c.610G>T (p.Gly204Cys) on thematernal allele was identified among a group of unresolved case subjects with CDG. These data demon-

strate that variants in SLC39A8 impair the function ofmanganese-dependent enzymes, most notably b-1,4-galactosyltransferase, a Golgi

enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with

deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is

a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with

inherited glycosylation disorders.
The solute carrier (SLC) gene superfamily comprises a

group of nearly 400 putative transporter proteins.1,2

Among them, the SLC39 family consists of 14 zinc- and

iron-related proteins (ZIPs) functioning as divalent cation

transporters.2

SLC39A8 (MIM: 608732) encodes an electroneutral

Mn2þ/(HCO3�)2 and Zn2þ/(HCO3�)2 influx symporter,

most commonly known as ZIP8. The transmembrane pro-

tein has 462 amino acids and a wide tissue distribution

with highest expression in placenta, lung, and kidney.1,3

ZIP8 plays a role in manganese reabsorption in the prox-

imal tubule of the kidney4 and in manganese uptake into

the brain.5 It localizes mainly to the cell-surface mem-

brane, but also to lysosomal and mitochondrial mem-

branes.3,6 ZIP8 is able to transport a number of other

divalent cations including zinc,7 cadmium,7 iron,8 and co-

balt.8 Although zinc uptake is carried out by other mem-

bers of the ZIP family as well,6 manganese transport might

be a principal endogenous function of ZIP8.7

An Slc39a8 hypomorphic mouse model showed intra-

uterine growth retardation and died either prenatally or

within 48 hr after birth.2 Malformed caved-in skulls,

hypoplastic hind limbs, underdeveloped eyes, hypoplastic

spleen, kidneys, liver, and lung, and anemia were found.
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Although several other divalent cations showed decreased

tissue concentrations, manganese was undetectable.2

Manganese is an essential trace element. In the first

6 months of life, manganese intake is very low because hu-

man milk contains only 15 mg/l.9 Recommended daily

intake for adults is 2 mg.10 The trace element is taken up

from the proximal small gut asMn2þ via the divalentmetal

transporter-1 (DMT1; official name SLC11A2).4 In the

blood, Mn2þ is oxidized to Mn3þ by coeruloplasmin, binds

to transferrin as the major manganese-binding protein,11

and enters the cell via the transferrin receptor into endoso-

mal vesicles where it is reduced to Mn2þ and exported via

DMT1 and perhaps other transporters to the cytoplasm.4

Elimination occurs primarily via the bile, and very little

Mn2þ is found in urine.9,12 Manganese overload causes

psychiatric symptoms that can progress to a Parkinso-

nian-like neurological disorder.10 Mutations in SLC30A10

encoding the manganese exporter SLC30A10 (also called

ZnT10) lead to severe hypermanganesemia with similar

neurological symptoms (MIM: 613280).13,14

Manganese-containing metalloenzymes include pyru-

vate carboxylase, which catalyzes an important anaplerotic

reaction of the citric acid cycle; in manganese-deficient an-

imals, magnesium can be substituted for manganese
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Figure 1. Clinical Phenotype of SLC39A8 Deficiency
(A) Three-dimensional reconstruction of cranial CT images of individual A at age 4 months demonstrates cranial asymmetry due to pre-
mature synostoses of coronary and lambdoid sutures. Note the lacunar skull presenting with regions of apparent thinning on right-hand
side of the cranium. Movie S1 shows skull reconstruction.
(B) Cranial MRI at age 6 months revealed asymmetry of the brain with cerebral atrophy of the left hemisphere. The ventricles are
enlarged, especially on the left side of the brain. A subdural hygroma is also present.
(C) Photographs of individual A at age 9 months demonstrate several dysmorphic features: divergent strabismus, distinct cranial mal-
formation with asymmetry of the skull, flat face, and low-set ears.
(D) Dysproportionate short stature with short limbs, especially of the lower extremities.
without decreasing pyruvate carboxylase activity.12 Super-

oxide dismutase-2, which combats free-radical formation,

is also manganese dependent, as is glutamine synthase,

which converts glutamate to glutamine in astrocytes;10 in

glutamine synthase, magnesium can substitute for manga-

nese.15,16Glycosyltransferases are known to bemanganese-

containing enzymes; an extensive literature describes the

role of manganese in glycosylation.17 Manganese-deficient

animals exhibit skeletal abnormalities with shortened

limbs caused by diminished production of N-acetylgalac-

tosamine containing chondroitin sulfate.17 The Golgi-

localized enzyme b-1,4-galactosyltransferase is manganese

dependent.18

Informed consent from the individuals’ parents was

obtained. Approval for investigations and therapy was ob-

tained from the local Bioethics Committee.

Individual A is the first-born daughter of unrelated

German parents, delivered after 38 weeks of pregnancy,

APGAR scores 9/10/10. Her birth weight was 2,670 g
The American
(10th percentile), body length was 46 cm (<3rd percentile),

and head circumference was 35 cm (68th percentile). Short

limbs and cutaneous syndactylies between the second and

third toes of both feet were present (Figure 1). Examination

of the placenta revealed a single umbilical artery.

At time of initial referral at 4 months of age, she pre-

sented with dysproportionate dwarfism and cranial asym-

metry, as well as malformation of the viscerocranium. CT

and MRI scans verified craniosynostosis of the coronary

and lambdoid sutures with asymmetrical brain atrophy,

but normal cerebellum. Intermittent divergent strabismus

and absence of visual fixation were noted. Fundoscopy

showed no abnormalities. Brain-stem-evoked-response

audiometry (BERA) revealed profound hearing impairment

of the left ear and moderate impairment of the right ear.

Clusters of infantile spasms with hypsarrythmia on elec-

troencephalography recordings occurred up to five times a

day and did not respond to conventional anti-convulsive

treatment.
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Figure 2. Schematic Presentation of Transferrin Glycosylation
and Glycosylation Profile of Individual A
(A) Transferrin is glycosylated at two asparagine (Asn) residues.
The attached glycans consist of N-acetylglucosamine (blue
square), mannose (green circle), galactose (yellow circle), and sialic
acid (purple rhomboid). Terminal sialic acid residues are negatively
charged, so that truncation or loss of a glycan side chain results in
an overall change in charge of the transferrin molecule. The main
transferrin species in healthy individuals is tetrasialo-transferrin,
having four terminal sialic acids.
(B) The glycosylation profile of individual A is a type II CDG
pattern with increased amounts of trisialo-, disialo-, monosialo-,
and asialo-transferrin.
She was started on glucocorticoid therapy,19 but had

only temporary improvement. Episodes of apnoea/hypo-

pnoea required administration of oxygen, but declined in

frequency and finally resolved in the following months.

At age 7 months, an episode of liver disease occurred

with elevated transaminase enzymes (AST: 441 U/l [refer-

ence < 80 U/l], ALT: 102 U/l [reference < 55 U/l]) and

impaired blood coagulation (INR 1.35 s [reference 0.85–

1.15 s], PTT 61 s [reference 28–41 s]). Liver disease resolved

over a period of several weeks. Manganese concentrations

were always below the detection level in plasma and urine.

Serum glutamine (548 mmol/l [reference range 410–760]),

glutamate (108 mmol/l [reference range 70–220 mmol/l]),

and arginine (38 mmol/l [reference range 40–90]) were un-

remarkable and did not indicate glutamine synthase defi-

ciency. Lactate (1.61 mmol/l) and pyruvate (0.13 mmol/l)

and urinary organic acids were normal without any indica-

tion of pyruvate decarboxylase dysfunction. Serum pa-

rameters of iron metabolism were unremarkable, as were

serum zinc levels (1,137–1,190 mg/l [reference range 750–

1,400 mg/l]). Glycosaminoglycan electrophoresis showed

normal amounts of chondroitin sulfate, composed of
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high amounts of N-acetylgalactosamine. Xanthine levels

in the urine were elevated.

Due to the complex clinical phenotype, selective meta-

bolic screening included investigation of glycosylation of

serum transferrin, the common biomarker used to screen

for congenital disorders of glycosylation (CDG).20–22

Glycosylation was investigated by isoelectric focusing

(IEF), immunoprecipitation followed by SDS-PAGE, and

high-performance liquid chromatography (HPLC), as

described previously.23 Serum transferrin has two N-linked

sugar side chains, each bearing two terminal, negatively

charged sialic acid residues (tetrasialo-transferrin)

(Figure 2A). Loss of a side chain leads to the loss of two

sialic acid residues (type I pattern); truncation of the side

chain results in uneven loss of sialic acid residues (type II

pattern). Because loss of sialic acids results in an overall

alteration in the charge of the transferrin molecule,

N-glycosylation abnormalities can be visualized by IEF. In

contrast to control, transferrin in individual A revealed

the loss of one to four sialic acid residues (CDG type II

pattern) (Figure 2B). HPLC analysis was performed to

quantify transferrin isoforms and showed that only

10.2% of transferrin was present as the correctly

glycosylated tetrasialo-transferrin (Figure 3A, day 0).

HPLC reference values for transferrin isoforms are as

follows: asialo-transferrin 0%, monosialo-transferrin

0%, disialo-transferrin 0.38%–1.82%, trisialo-transferrin

1.16%–6.36%, tetrasialo-transferrin 85.7%–94.0%, and

pentasialo-transferrin 2.6%–10.2%.

Detailed N-glycan analysis of serum transferrin by

electrospray ionization time-of-flight mass spectrometry

(ESI-TOF MS) was carried out, as described elsewhere.24

ESI-TOF mass spectrometry of transferrin confirmed the

loss of terminal sialic acids (Figure 3B, day 0). However,

in addition to sialic acid, the majority of abnormal trans-

ferrin isoforms lacked one or more galactose residues, indi-

cating a primary problem in galactosylation rather than

sialylation (Figure 3B, day 0: G > F, E > D, C > B).

DNA was isolated with the PAXGene Blood DNA system

(PreAnalytiX GmbH) and DNA concentration was

measured with the Qubit 2.0 fluorometer (Thermo Fisher

Scientific).Whole-exome sequencing (Illumina 23 100-bp

paired-end reads) was performed on individual A, as

described previously.25 Mapping to hg19 (UCSC Genome

Browser) delivered 305,077 entries for SNPs and 51,022

for indels, in some cases containing multiple entries for

single loci due to multiple transcripts/names. The average

coverage was 2753 and the total number of reads was

271,309,084. There were no variants in the panel of known

CDG subtypes, thus excluding the recognized disorders of

galactosylation, B4GALT1-CDG (MIM: 607091) and

SLC35A2-CDG (MIM: 300896).26–29 Due to clinical similar-

ity to SLC35A2-CDG, SLC35A2 transcripts were analyzed

in cDNA from individual A’s fibroblasts but exhibited

normal size and sequence, thus excluding any intronic

splice variants. After several steps of data reduction (2%

cut-off regarding minor allele frequency, minor allele
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Figure 3. Changes in N-Glycosylation with Galactose Therapy
(A) Transferrin isoforms were quantitated by HPLC from serum samples and expressed as percentage of total; during galactose supple-
mentation, normalization of glycosylation is seen. Galactose was given on day 1–29, interrupted from day 30 to 43, and then reinstated.

(legend continued on next page)
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versus major allele coverage ratio R 15%, minimal

coverage of at least four reads, focusing on variants with

a likely functional effect [including potential splice vari-

ants], and evaluating them with MutationTaster30), we

obtained a list of 141 genes with at least 2 different muta-

tions, 43 genes with mutations that were homozygous or

X-chromosomal, and 39 genes with a single mutation

that were on imprinted genes or had the potential of domi-

nant effects. Using GeneDestiller 2014 to obtain in-depth

information for all genes and reducing them to genes

with a potential effect on galactosylation, SLC39A8 was

identified as the most likely candidate. SLC39A8 variants

(GenBank: NM_022154.5) were c.112G>C (p.Gly38Arg)

in exon 1 with a coverage of 2573 and c.1019T>A

(p.Ile340Asn) in exon 6 with a coverage of 1473 in the

whole exome sequencing data. Both altered amino-acid

residues are highly conserved in the protein (Figure 4C).

The p.Gly38Arg missense variant was identified in 2 out

of 15,930 alleles from non-Finnish European individuals

in the ExAC database. The resulting frequency of

0.0001255 makes this variant very rare among the Euro-

pean population. The p.Ile340Asn variant was not identi-

fied previously. Sanger sequencing confirmed the variants

in SLC39A8. The mother was heterozygous for the

c.1019T>A variant, and the father was heterozygous for

the c.112G>C variant. Based on the deleterious-appearing

nature of the variants, segregation data, and biochemical

evidence of Mn deficiency and the pathological link to

glycosylation abnormalities in the individual, SLC39A8 is

a strong candidate gene for the disorder in individual A.

To identify further evidence that mutations in SLC39A8

cause a disorder of manganese transport and glycosylation,

we screened our group of unsolved cases with impaired

glycosylation to identify additional affected individuals.

We identified a second individual (individual B) with vari-

ants in SLC39A8: c.97G>A (p.Val33Met) and c.1004G>C

(p.Ser335Thr) on the paternal allele and c.610G>T

(p.Gly204Cys) on thematernal allele. Affected amino acids

have been conserved during evolution (Figure 4C). Both

mutations on the paternal allele are possibly causative

although the p.Ser335Thr lies within the transmembrane

domain V of ZIP8, which is part of the ion channel. Tetra-

sialo-transferrin was lowered to 77.74%, trisialo-transferrin

was increased to 19.48%, and monosialo-transferrin was

increased to 1.27% (Figures 4A and 4B). Individual 2,

a girl, is the first child of a non-consanguineous

couple born at term after an uneventful pregnancy with

a birth weight of 2,720 g (3rd percentile), a length of

46 cm (<3rd percentile), and a head circumference of

34 cm (<97th percentile). Global psychomotor retardation
Note the steep decline in tetrasialo-transferrin in the short interval be
ble values within the normal range approximately 2 months after in
(B) ESI-TOF mass spectra, before and after 120 days of therapy, identi
Whereas the mass spectrum before therapy identified mostly transfe
resulted in a normal glycosylation profile with correct galactosylati
(of sometimes several) possible structures is depicted.
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became evident in the first year of life. In early childhood,

epilepsy occurred and she was treated with anticonvul-

sants. MRI revealed cerebellar atrophy. Currently, at 19

years of age, the young woman is hypotonic without spas-

ticity, shows severe scoliosis, and is confined to a wheel-

chair without being able to sit or walk without support.

She no longer has seizures and can form two-word senten-

ces. Head circumference is 54.5 cm (50th percentile), height

is 122 cm (>3rd percentile), and weight is 22 kg (>3rd

percentile). Increased laxity of the wrists and mild con-

tractures of the elbow and knee are present. Previously in-

verted nipples have everted. Ophthalmological signs

include hyperopia, astigmatism, and strabismus.

Nystagmus occurs sporadically after voluntary eye move-

ments. Assessment of manganese in whole blood and

urine revealed manganese concentrations below the detec-

tion level.

At this time we became aware of a second group of indi-

viduals with variants in SLC39A8 and an autosomal-reces-

sive syndrome characterized by intellectual disability and

cerebellar atrophy (described by Boycott et al. in an accom-

panying paper31). Glycosylation studies were then carried

out in persons B2, D4, and D5 from this study. All of

them had abnormal transferrin glycosylation patterns

with decreased tetrasialo-transferrin (81.94%–83.67%

[reference range 85.7%–94.0%]), increased trisialo-trans-

ferrin (11.88%–12.85% [reference range 1.16%–6.36%]),

and increased monosialo-transferrin (0.31%–0.46% [refer-

ence range 0%]) (Figures 4A and 4B).

Given the severe clinical presentation of individual A,

we attempted to improve the impaired galactosylation dur-

ing N-glycan formation by increasing her dietary galactose

intake. Daily galactose intake was raised from 1 g to 2 g/kg

body weight within 2 weeks, given in 5 daily doses. After

4 weeks, galactose was discontinued for 2 weeks. Galactose

therapy was reinitiated and increased to a daily dose of

3.75 g/kg body weight given over 22 hr via gastrointestinal

pump feeding. Uridine (150mg/kg bodyweight) was added

to ensure that sufficient uridine was available for UDP-

galactose formation.32 Stool sampling for reducing sub-

stances was negative––indicating complete galactose

uptake. Galactose and uridine were supplied by Vitaflo

Pharma.

Galactose supplementation resulted in dramatic im-

provements in glycosylation. The amount of normally

glycosylated tetrasialo-transferrin before treatment was

severely decreased to 10.16% (HPLC reference range

85.7%–94.0%) with strong elevations of hypogala-

ctosylated transferrin isoforms. After galactose therapy,

glycosylation became completely normalized with a
tween the two therapy intervals. Tetrasialo-transferrin reached sta-
itiation of the second therapy interval.
fies the partially defective N-glycans attached to serum transferrin.
rrin isoforms with defective galactosylation, 120 days of therapy
on. The different N-glycan species are indicated below; only one

er 3, 2015



Figure 4. Overview of the Identified Variants and Their Effect on Glycosylation
(A) High-performance liquid chromatography (HPLC) spectra of serum transferrin show an increase in trisialo-transferrin for all affected
individuals, when compared to those of a healthy control. The most severe hypoglycosylation is found in the person carrying the
p.[Gly38Arg];[p.Ile340Asn] double variant.
(B) Isolectric focusing (IEF) of serum transferrin from three of the individuals described by Boycott et al. in this issue (B2, D4, D5) car-
rying only the homozygous p.Gly38Arg variant,31 and the two individuals described herein with variants p.[Val33Met;
p.Ser335Thr];[p.Gly204Cys] and p.[Gly38Arg];[p.Ile340Asn], respectively. IEF shows increased trisialo-transferrin in all affected
persons.
(C) Alignment of the five identified variants in SLC39A8 with amino acid exchanges highlighted in yellow. Indicated in red are amino
acids that are conserved throughout all analyzed species. Blue denotes amino acids with inter-species variation. The number indicates
the position of the exchanged amino acid. All identified variants result in an amino-acid exchange in highly conserved regions of the
ZIP8 protein encoded by SLC39A8.
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tetrasialo-transferrin of 87.74% (Figure 3A). Only trisialo-

transferrin was still slightly increased after 4 months of

treatment (7.7% [HPLC reference range 1.16%–6.36%]).

Improvement of galactosylation was instantaneous, appar-

ently dependent only on transferrin biosynthesis, which

has a biological half life of 7–10 days.33 ESI-TOF mass spec-

trometry of transferrin confirmed the complete normaliza-

tion of previously severely hypoglycosylated transferrin

(Figure 3B, day 120).

The underlying pathomechanism of SLC39A8 defi-

ciency links a trace element deficiency to an inherited

glycosylation disorder. Glycosylation is an essential co-

and post-translational modification that occurs in about

half the proteins synthesized in the cell. N-glycosylation

takes place on asparagine residues that acquire a preassem-

bled oligosaccharide side chain in the endoplasmic reticu-

lum, which is subsequently modified extensively in the

Golgi apparatus. Ultimately, the proteins obtain branched

oligosaccharide side chains with terminal galactose and

sialic-acid residues.

Complete inhibition of N-glycosylation is incompatible

with life. Leaky mutations in genes coding for any of the

glycosyltransferases or sugar transporters involved in the

process are responsible for a group of severe inherited

metabolic disorders called congenital disorders of glycosyl-

ation (CDG). Disruption of SLC35A2, which encodes the

UDP-galactose transporter that ensures Golgi import of

UDP-galactose, leads to a particularly severe disorder pre-

senting with severe seizures beginning in infancy, pro-

found statomotor retardation, brain atrophy, impaired

vision and hearing, and severe scoliosis.29 SLC35A2 is

located on the X chromosome; only boys with mosaicism

and girls have been described with this disease. In boys

without mosaicism, the disease is probably lethal during

intrauterine development. Transferrin, a serum protein

often used for selective CDG screening, is hypogalactosy-

lated in SLC35A2 deficiency.29

The fact that complete inhibition of N-glycosylation is

incompatible with life might reflect the finding that the

mouse and human SLC39A8 is expressed as early as the gas-

trula stage,34 and in visceral endoderm at GD7.5,35 and in

fact is used as a potential indicator of cell differentiation

(self-renewal-related signaling) in embryonic stem cells.36

That the loss of this gene is incompatible with life is consis-

tent with mouse embryos having total ablation of Slc39a8:

embryonic lethality of Slc39a8–/– knockout pups takes place

no more than 2–3 days after implantation.37

SLC39A8 deficiency in its severe form has a striking sim-

ilarity to UDP-galactose transporter deficiency. In fact, clin-

ical presentation and transferrin hypogalactosylation led

to the initial suspicion of SLC35A2-CDG in individual A

described herein.

Galactose transfer to a vast number of acceptor proteins is

carried out by the so-called galactosyltransferases (GalT), a

groupof enzymes located in theGolgi apparatus.38Galacto-

sylation is carried out mainly by the enzymes UDP-Gal:N-

acetylglucosamine b-1,4-galactosyltransferase I (B4GALT1;
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EC 2.4.1.22) and UDP-Gal:N-acetylglucosamine b-1,4-gal-

actosyltransferase II (B4GALT2; EC 2.4.1.22).39

Several experimental studies have investigated the

importance of divalent cations for galactosyltransferases.

GalT activation is absolutely metal-ion dependent, with

divalent manganese being the most potent and natural

activator.40,41 Manganese attaches to two different binding

sites. The high-affinity site I binds manganese with a Km

value of 0.4 mM in intact Golgi vesicles; complete absence

of manganese leads to no residual enzyme activity.41 The

low-affinity activator site II binds manganese with a Km

value of 440 mM.41 Site I will accept zinc instead of manga-

nese, resulting in enzyme activity that is decreased bymore

than 60%; it does not bind magnesium or calcium.40,41 In

the absence of manganese, calcium can substitute at site II,

resulting in 25-fold poorer affinity for UDP-galactose.40

There were no detectable serum or urinary manganese

levels in individual A. Due to the manganese dependence

of b-1,4-galactosyltransferase involved in N-glycosylation,

severe transferrin hypogalactosylation occurred. The

enzyme activity curve at low manganese concentrations

has a hyperbolic shape, so that small changes in manga-

nese concentration will have strong effects on the galacto-

sylation activity.41 Accordingly, the case subjects described

by Boycott et al. with diminished (but measurable) man-

ganese concentrations had impaired, but less severe,

hypoglycosylation defects. Whereas the p.Gly38Arg sub-

stitution was found in homozygous form in more mildly

affected individuals,31 the severe phenotype in the subject

described here, and complete absence of manganese in

body fluids, must therefore reflect the p.Ile340Asn substi-

tution, which affects the highly conserved transmembrane

domain V of ZIP8; this domain is part of the ion channel.3

Dietary supplementation of galactose alone, or galactose

in combination with uridine, improves galactosylation by

increasing the intracellular UDP-galactose pool.42 In

SLC39A8 deficiency, low manganese concentrations prob-

ably will decrease the affinity of galactosyltransferase for

UDP-galactose. Increasing the UDP-galactose pool by

galactose and uridine supplementation completely re-

stores galactosylation. The similarities of SLC39A8 and

SLC35A2 deficiencies suggest that the secondary glycosyl-

ation abnormality has a major role in pathogenesis of this

disease, which might become normalized by simple die-

tary changes.

Dietary manganese deficiency leads to bone and connec-

tive tissuedisease in animals.43Althoughskeletal abnormal-

ities were present in individual A, N-acetylgalactosamine

containing chondroitin sulfate was found in normal-

concentrations in the urine. There were no biochemical in-

dications of impairment of other manganese-dependent

metalloenzymes, e.g., arginase,44 glutamine synthase,15,16

or pyruvate carboxylase.45 However, elevated xanthine

excretion in the urine indicated decreased activity of man-

ganese-dependent xanthine oxidase.46

Although the pleiotropic phenotype varies, the known

affected individuals share common features, which might
er 3, 2015



facilitate the diagnosis of SLC39A8 deficiency in further in-

dividuals. The known affected individuals share delayed

milestones, severe psychomotor retardation, seizures, stra-

bismus, and impaired growth in the majority of affected

individuals. Whereas most of the individuals presented

by Boycott et al., as well as individual B of this study,

exhibit severe cerebellar atrophy, this was not detected in

individual A who had generalized brain atrophy with se-

vere hypsarrhythmia. Skeletal abnormalities—although

not detected in every affected individual—might facilitate

recognition of additional cases at an early stage. The

particularly severe phenotype observed in individual A

possibly reflects the impact of the amino acid substitutions

in highly conserved regions of ZIP8, especially within the

transmembrane domain V affecting the ion channel.

Defective glycosylation of serum transferrin is a shared

laboratory parameter and should be tested for in any case

of developmental delay and dysmorphic features of un-

known origin.

In summary, our data show that disruption at highly

conserved sites of the ZIP8 symporter alters function of

the protein, resulting in low serum manganese levels,

probably through insufficient renal reabsorption, intesti-

nal manganese resorption, or both. ZIP8 appears to be

more important for manganese than zinc homeostasis.

Decreased serum manganese concentrations impair the

function of galactosyltransferases, linking for the first

time a trace element deficiency with inherited glycosyla-

tion disorders. Correcting hypogalactosylation by dietary

galactose supplementation might well be the single most

important therapeutic step for individuals with SCL39A8

deficiency. Because transferrin is the major manganese-

binding protein in vascular circulation, correction of trans-

ferrin glycosylation, prior to attempting manganese

supplementation, might also be reasonable,11 especially

because manganese uptake across the blood-brain-barrier

is known to be transferrin dependent.4 Additional benefits

might occur with manganese supplementation. Manga-

nese sulfate is the most soluble salt and the one normally

used in nutritional supplements.47 Given the long-term

consequences of the severe presentations of SLC39A8 defi-

ciency such as seizures on the developing brain, early

galactose and manganese supplementation should be

considered. The promising effects observed from dietary

galactose supplementation on glycosylation by serum

transferrin analysis will require further evaluation, particu-

larly with regard to the clinical course.
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