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Histone Modifier Genes Alter Conotruncal Heart
Phenotypes in 22q11.2 Deletion Syndrome

Tingwei Guo,1 Jonathan H. Chung,1 Tao Wang,2 Donna M. McDonald-McGinn,3 Wendy R. Kates,4

Wanda Hawu1a,5 Karlene Coleman,6 Elaine Zackai,3 Beverly S. Emanuel,3 and Bernice E. Morrow1,*

We performed whole exome sequence (WES) to identify genetic modifiers on 184 individuals with 22q11.2 deletion syndrome

(22q11DS), of whom 89 case subjects had severe congenital heart disease (CHD) and 95 control subjects had normal hearts. Three genes

including JMJD1C (jumonji domain containing 1C), RREB1 (Ras responsive element binding protein 1), and SEC24C (SEC24 family

member C) had rare (MAF < 0.001) predicted deleterious single-nucleotide variations (rdSNVs) in seven case subjects and no control

subjects (p ¼ 0.005; Fisher exact and permutation tests). Because JMJD1C and RREB1 are involved in chromatin modification, we inves-

tigated other histone modification genes. Eighteen case subjects (20%) had rdSNVs in four genes (JMJD1C, RREB1, MINA, KDM7A) all

involved in demethylation of histones (H3K9, H3K27). Overall, rdSNVs were enriched in histone modifier genes that activate transcrip-

tion (Fisher exact p ¼ 0.0004, permutations, p ¼ 0.0003, OR ¼ 5.16); however, rdSNVs in control subjects were not enriched. This im-

plicates histone modification genes as influencing risk for CHD in presence of the deletion.
The 22q11.2 deletion syndrome (22q11DS; DiGeorge

syndrome/velo-cardio-facial syndrome [MIM: 192430,

188400]) is a congenital malformation disorder that occurs

in 1/4,000 live births. The affected individuals have a de

novo, hemizygous 3 million base pair (Mb) deletion on

chromosome 22q11.2. A total of 60%–70% have congen-

ital heart disease (CHD), mostly of the conotruncal type.

Among these, some have severe anomalies, such as tetral-

ogy of Fallot (TOF) or persistent truncus arteriosus (PTA),

while others have mild phenotypes such as isolated ven-

tricular septal defects (VSD) or right-sided aortic arch. Hap-

loinsufficiency of TBX1 (MIM: 602054), encoding a T-box

transcription factor, is believed responsible for the etiology

of CHD in 22q11DS.1–3 A likely explanation for pheno-

typic heterogeneity of CHD would be the presence of mu-

tations in TBX1 on the remaining 22q11.2 allele. However,

causative second-hit mutations in TBX1 among 1,022

22q11DS-positive subjects were not found,4 implicating

other genes as being responsible, perhaps lying elsewhere

in the genome. A common duplication of the glucose

transporter gene SLC2A3 (MIM: 138170) was significantly

enriched in 22q11DS-affected individuals with CHD,

implicating this copy-number variation as a genetic modi-

fier for some subjects.5 However, this cannot explain the

presence or absence of a heart or aortic arch defect in

most other individuals with 22q11DS. Another possibility

is that rare coding predicted deleterious single-nucleotide

variants (rdSNVs) might act as modifiers of phenotype in

22q11DS.

To search for rare coding variants, we ascertained 186

individuals with the typical 3 Mb, 22q11.2 deletion and

extremes of cardiac phenotypes for a whole exome
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sequencing (WES) study. Echocardiography or cardiology

reports were provided on each individual with their

informed consent (Internal Review Board, 1999–2001).

WES was performed with Nimblegen v.3 libraries (NHLBI,

Resequencing Service) on DNA from blood and two sam-

ples were removed because they were duplicates, leaving

184 for the analysis. The average read depth for the tar-

geted exome was 613, with 84% of the target regions

covered at greater than 203. Finally, we compared data

from 89 CHD-affected case subjects (mostly TOF) with

22q11DS and 95 deleted individuals with a normal heart

and aortic arch (control subjects) to identify genes that

harbor rare coding variants that could alter risk for ex-

tremes of heart phenotypes (Figure 1A). In addition, we

evaluated ethnicity of the cohort via principal-component

analysis and found all except two were of European

descent (Figure 1B).

Among all 184 DNA samples, 411,618 variants including

370,551 SNVs and 41,067 indels were identified

(Figure S1). A total of 279,820 SNVs were retained after

filtering on quality controls of genotype and SNVs depend-

ing upon the depth of sequencing reads. Most relevant to

any phenotype are non-synonymous or splicing variants

because they could impact the function of the protein.

Of the total SNVs identified, 74,982 were non-synony-

mous variants including 72,074 non-synonymous SNVs

and 2,908 loss-of-function (LOF) SNVs including stop-

gain or stop-loss variants, frameshift indels, splice donor

or acceptor variants, and initiator codon variants. To iden-

tify putative functional variants, we applied five standard

computational prediction methods applicable to non-

synonymous SNVs (SIFT [RRID: nlx_154618], PolyPhen-2
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Figure 1. Phenotype and Ethnicity of 184
Individuals with 22q11DS
(A) CHD phenotype in the 22q11DS
cohort. Whole exome sequencing was per-
formed on a cohort of 184 individuals
with 22q11DS and the 3 Mb deletion,
including 89 mostly severe CHD-positive
case subjects and 95 with a normal heart
and normal aortic arch (controls). Among
89 CHD-positive case subjects, 72 had te-
tralogy of Fallot (TOF), 10 had a persistent
truncus arteriosus (PTA), 5 had aortic arch
defects, and 1 each had pulmonary stenosis
(PS) or an atrial septal defect (ASD).
(B) Ethnicity of 22q11DS cohort. Principal
components (PCs) were calculated for com-
mon variants in WES data from the 184
study subjects (black dots) and 1000

Genomes Project population dataset to check the ethnicity of the cohort. The majority of the cohort clustered with the European
(EUR, yellow) population, but one had African (AFR, orange) ancestry and one subject had South Asian (SAS, pink) ancestry. Abbrevia-
tions are as follows: AMR, Admixed American; EAS, East Asian.
HVAR [RRID: OMICS_00136], MutationTaster [RRID:

OMICS_00153], MutationAssessor [RRID: nlx_149228],

FATHMM) and CADD (scaled C-scores greater or equal to

10)6 from the dbNSFP database v.2.6.7 Non-synonymous

SNVs predicted to be damaging by at least two of the six

applicable methods were included for further analysis.

Then, LOF variants and putatively functional non-synony-

mous SNVs were combined for a total of 30,532 predicated

deleterious variants. We then further selected variants that

have minor allele frequency (MAF) of %0.1% in the data-

base for the 1000 Genomes Project and National Heart,

Lung, and Blood Institute (NHLBI) Exome Sequencing

Project (ESP) 6500 Exome Project. This filtering resulted

in a total of 20,402 rdSNVs in 10,620 genes (Figure S1).

All 184 individuals have a similar size 3 million base pair

(Mb) 22q11.2 deletion as determined by molecular testing.

We first evaluated the overall genetic architecture of

rdSNVs in the entire cohort of case and control subjects

together. The rdSNVs were distributed among 10,620

genes, in which at least two individuals had rdSNVs in

5,431 genes. To reduce the noise of the enrichment anal-

ysis, we further selected genes based upon the residual vari-

ation intolerance score (RVIS)8 and haploinsufficient

score.9 A total of 671 genes with rdSNVs in at least two

22q11DS-positive individuals were used to investigate

the potential biological relevance of the affected genes

(Functional Annotation Tool in DAVID, The Database for

Annotation, Visualization and Integrated Discovery10).

We used all the genes in the genome as background to

calculate p values via the Fisher exact statistical test.

Gene Ontology (GO) terms were considered significantly

enriched with a Benjamini multiple test correction p value

of < 0.05.

We found significant enrichment in 58 ‘‘biological

process’’ terms, 68 terms in ‘‘cellular component,’’ and

44 terms in ‘‘molecular function’’ (Table S1). The top

three GO terms relate to chromosome organization or

chromatin function (Figure 2A). The GO terms related to

‘‘organ development’’ were also enriched (Figure 2A). To
870 The American Journal of Human Genetics 97, 869–877, Decemb
reduce the redundancy of GO terms from the enrichment

analysis, we used the REVIGO tool, which uses a simple

clustering algorithm to summarize GO terms.11 GO terms

were clustered into ‘‘tissue development,’’ ‘‘chromosome

organization,’’ ‘‘regulation of transcription,’’ and ‘‘RNA

transport’’ (Figure 2B). The genes related to chromosome-

associated GO terms might be involved in the etiology of

the de novo deletion itself, while those involved in organ

development could contribute to the phenotypic hetero-

geneity of 22q11DS.

To determine whether there were genes that could alter

risk for extremes of heart phenotypes in particular, rdSNVs

among 5,431 genes in at least two individuals with

22q11DS were collapsed into a single gene burden score.

Then the Fisher exact test was used to compare the burden

score between 22q11DS-affected subjects with CHD (case

subjects with severe heart defects) and 22q11DS subjects

without CHD (control subjects). Further, single value per-

mutations, in which case versus control status is permuted

10,000 times, were used to perform an association ana-

lysis on the genes. Results were considered statistically

significant with a p value of < 0.05. We did not identify

any genes on the remaining allele with rdSNVs in two

or more case or control subjects (data not shown).

Three genes—JMJD1C (jumonji domain containing 1C

[MIM: 604503]), RREB1 (Ras responsive element binding

protein 1 [MIM: 602209]), and SEC24C (SEC24 family

member C [MIM: 607185])—were significant in both tests.

All three genes had rdSNVs in seven different case subjects

but none in control subjects (Figure 3A; Table S2). Among

JMJD1C, RREB1, and SEC24C, 17 rdSNVs have been identi-

fied and affected 20 case subjects (Figure 3B; Table S2). One

case subject has rdSNVs in both JMJD1C and RREB1 (see

Figure 3B). If we included all rare non-synonymous vari-

ants (MAF% 0.1%) irrespective as to whether they are pre-

dicted as damaging or not, there were two additional case

subjects with variants in JMJD1C and one case subject for

RREB1. JMJD1C had the strongest p value for CHD among

all the genes (p ¼ 0.001; Figures 3A and 3B). Of interest,
er 3, 2015



Category GO Term P Value Benjamini

BP
GO:0051276~chromosome 
organization 9.65E-12 2.74E-08

BP GO:0048729~tissue morphogenesis 1.45E-09 2.06E-06

BP GO:0006325~chromatin organization 1.81E-09 1.71E-06

BP GO:0016568~chromatin modification 3.04E-09 2.16E-06

BP GO:0035295~tube development 9.10E-09 5.18E-06

BP
GO:0043009~chordate embryonic 
development 1.28E-08 6.05E-06

BP

GO:0009792~embryonic 
development ending in birth or egg 
hatching 1.63E-08 6.62E-06

BP
GO:0032989~cellular component 
morphogenesis 6.93E-08 2.19E-05

BP
GO:0000904~cell morphogenesis 
involved in differentiation 9.87E-08 2.81E-05

BP
GO:0002009~morphogenesis of an 
epithelium 1.55E-07 3.68E-05

BP
GO:0048598~embryonic 
morphogenesis 1.81E-07 3.96E-05

BP GO:0000902~cell morphogenesis 2.62E-07 5.32E-05

BP GO:0007507~heart development 2.82E-07 5.01E-05

MF GO:0003682~chromatin binding 2.51E-08 1.73E-06

MF GO:0004386~helicase activity 1.34E-07 8.42E-06

MF GO:0003678~DNA helicase activity 2.58E-04 0.006

CC GO:0044427~chromosomal part 1.09E-06 2.30E-05

CC GO:0005694~chromosome 9.06E-06 1.55E-04

CC GO:0000785~chromatin 1.77E-04 0.002

CC
GO:0016585~chromatin remodeling 
complex 0.001 0.01
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Figure 2. GO Enrichment Analysis of
rdSNVs in the 22q11DS Cohort
(A) Top GO terms and their enrichment
p value. Table contains categories (abb-
reviations are as follows: BP, biological pro-
cess; MF, molecular function; CC, cellular
component), p value of GO terms and
values for Benjamini multiple test correc-
tion for the top categories. Additional GO
terms can be found in Table S1.
(B) Interactive network of significant GO
terms. A total of 671 genes had rdSNVs in
two or more individuals, as well as a 25%
high percentile score for residual variation
intolerance score (RVIS) and haploinsuffi-
cient score combined. These are the top
genes that would likely possess inactivating
or gain-of-function mutations. The biolog-
ical GO enrichment of the 671 genes using
DAVID (The Database for Annotation, Visu-
alization and Integrated Discovery) was

evaluated. The ‘‘Interactive graph’’ of the enriched ‘‘Biological Process’’ GO terms (Benjamini multiple test correction p value < 0.05)
was visualized with REViGO software. The shade of gray of the fill in the circles indicates user-provided p value, with the darkest shade
representing the highest p value. Highly similar GO terms are linked by edges in the graph, where the gray line width indicates the degree
of similarity.
Jmjd1c is expressed in the pharyngeal apparatus and

outflow tract region of the heart in mouse embryos at stage

E10.5 (Figure S3). All rare non-synonymous variants in

JMJD1C and RREB1 were validated by Sanger sequencing

(Figure S2).

To assess whether individual rdSNVsmight affect protein

function, we examined the type of the variant and its loca-

tion with respect to the known protein domain structure of

the gene product (Figure 3B). There were ten rare SNVs in

JMJD1C, which affected nine CHD-positive case subjects

and none of the control subjects (Figures 3B and 3C; Ta-

ble S3). Thus, one specific SNV affected two CHD-positive

case subjects (Figure 3B). Among the ten variants, the

p.Ser1429Leu (c.4286C>T) variant has been identified in

dbSNP (rs201627592) and NHLBI ESP6500 with a MAF of

0.0005 in 6,132 genomes. None of the other nine have

been reported in these databases. The frequency of SNVs

were also determined from the Exome Aggregation Con-

sortium (ExAC), which is based on exome sequencing

data of 60,706 unrelated individuals from various disease-

specific and population genetic studies. The p.Ser1429Leu

variant had a MAF of 0.0004 among 60,450 samples,

whereas the p.His546Tyr (c.1636C>T) and p.His941Arg

(c.2822A>G) variants have been reported in six and one

person inExAC, respectively. The JmjCdomain is character-

istic of the jumonji family of transcription factors and it

might be involved in histone demethylation.12 The

p.His2466Tyr (c.7396C>T) variant is located within the

JmjC domain and the p.Leu250fs (c.748_749delTT) variant

could generate a truncatedprotein thatwould lack the JmjC

domain (Figure 3C), suggesting that they might result in a

loss-of-function mutation. The rest of the variants are not

located within a known domain of the protein.

There were seven rare missense variants in RREB1, which

affected eight CHD-affected case subjects and none of

the control subjects (Figure 3B; Table S3). Thus, one variant
The American
waspresent in twodifferent unrelated case subjects. Among

the seven variants, p.Gly344Val (c.1031G>T), p.Ile614Met

(c.1842C>G), and p.Pro1064Leu (c.3191C>T) have been

identified in dbSNP (rs114551633, rs146678576, and

rs143874633) and NHLBI ESP 6500 with a MAF < 0.0006

among 6,132 samples. None of the four othermissense var-

iants have been reported in dbSNP, 1000 Genomes Project,

or NHLBI ESP 6500 Exome sequence databases. The

p.Pro295Leu (c.884C>T) and p.Gly621Arg (c.1861G>C)

variants have been reported in one and three case subjects,

respectively, among 60,706 individual genomes. The

p.Pro1064Leu variant was present in two CHD-affected

case subjects. This variant is located in a proline-rich

domain,13 but none of the other variants are locatedwithin

a known functional domain of the protein (Figure 3C).

SEC24C encodes a protein that is a coat component of

COPII vesicles, which transport proteins from the endo-

plasmic reticulum to the Golgi14–16 and is required for

embryonic development.17 There were four rdSNVs in

SEC24C, which affected seven CHD-affected case subjects

and none of the control subjects (Table S3). The

p.Arg222Gln (c.665G>A) variant was present in four

case subjects, and the others were each present in one in-

dividual. Among the four variants, three of them—

p.Arg222Gln, p.Leu230Phe (c.688C>T), and p.Pro255Ser

(c.763C>T)—have been identified in dbSNP (rs147121844,

rs141953475, and rs150235476). The variants were identi-

fied in the NHLBI ESP 6500 database, with a MAF < 0.0005

among 6,132 samples. Using ExAC, the p.Arg222Gln,

p.Leu230Phe, and p.Pro255Ser variants have been re-

ported in 102, 15, and 2 individuals among 60,706 indi-

vidual genomes, respectively. None of the rdSNVs were

located in a known functional domain of the protein

(Figure 3C).

Two of the three genes, JMJD1C18,19 and RREB1,20 are

involved in histone modification. TBX1, the strongest
Journal of Human Genetics 97, 869–877, December 3, 2015 871



A

B

C Figure 3. Identification of rdSNVs in
JMJD1C, RREB1, and SEC24C in CHD-
Affected Case Subject with 22q11DS
(A) Burden test results for JMJD1C, RREB1,
and SEC24C. We performed a burden test
for genes with at least one rdSNV in two
or more individuals. Table lists the p value
for Fisher exact and permutation tests for
JMJD1C, RREB1, and SEC24C. If we
included all rare non-synonymous SNVs
(MAF < 0.001) in the burden test irrespec-
tive to whether they are predicted to be
benign or damaging, then three additional
individuals with variants in JMJD1C and
one in RREB1 were identified. JMJD1C has
a stronger p value than any other gene
(p ¼ 0.001).
(B) Rare coding mutations identified in
JMJD1C, RREB1, and SEC24C. Rare SNVs
in JMJD1C, RREB1, and SEC24C are indi-
cated with respect to the predicted amino
acid change (HVGS Protein). In the rdSNV
column, the variants predicted to be
damaging are acknowledged as a ‘‘yes’’
while those that are predicted to be benign
are left blank. Affected Individual ID is the
coded ID of the subject containing the
SNV. All 22q11DS-affected individuals
have a CHD and are case subjects.

(C) Rare codingmutations with respect to the domain structure of JMJD1C, RREB1, and SEC24C. The domain structure of each protein is
shown (RCSB, Protein Data Bank) with respect to the position of non-synonymous rdSNVs in case subjects (MAF % 0.001) as filled lol-
lipops, with additional predicted benign rSNVs, indicated as open lollipops. Abbreviations are as follows: L, LXXLL motif; S, Sec23/24
domains; G, Gelsolin repeat; Zn, zinc finger; Pro, proline-rich region. Detailed information about functional prediction and population
frequency can be found in Table S3.
candidate for 22q11DS, encodes a DNA binding transcrip-

tion factor that interacts with the chromatin machin-

ery.21,22 This implicates regulation of transcription as

being an important consideration for affecting extremes

of heart phenotypes in the background of the 22q11.2

deletion. Further, other genes that can influence the

phenotype in individuals with 22q11DS include CRKL

(v-crk avian sarcoma virus CT10 oncogene homolog-like

[MIM: 602007]),23–25 DGCR8 (DiGeorge syndrome critical

region gene 8 [MIM: 609030]),26–28 andHIC2 (hypomethy-

lated in cancer 2 [MIM: 617712]).29 It is possible that

expression of these genes could be influenced by chro-

matin modification.

Of interest, in a previous WES study of non-syndromic

or non-deleted syndromic CHD, of unknown diagnoses,

of all types including conotruncal defects, de novo muta-

tions were found in histone-modification pathway genes

expressed in the heart.30 Based on this evidence, we then

examined other genes in the histone modification

pathway (PW:0001338; Pathway Portal of the Rat Genome

Database31) for rdSNVs. We tested whether rdSNVs could

be identified in two or more case subjects or two or more

control subjects (not in both case and control subjects).

We also included the histone modification-related genes,

which were identified in the WES study of non-syndromic

CHD-affected subjects.30

Histones can be modified by several post-translational

mechanisms resulting in either activation or suppression
872 The American Journal of Human Genetics 97, 869–877, Decemb
of gene expression.32–36 There are three major mechanisms

responsible for histone modifications: methylation, acety-

lation, and ubiquitination. There are well-characterized

modification sites on specific histone proteins that alter

chromatin structure in order to activate or repress tran-

scription. These particular modifications form the epige-

netic code, as shown in Figure 4A. We identified rdSNVs

of interest in some of these genes, in either case or control

subjects. One hypothesis is that genes with mutations in

case subjects have the opposite function as genes with mu-

tations in control subjects. Alternatively, genes in case

versus control subjects might affect certain modifications,

whether activating or repressing transcription, implicating

gene dysregulation.

Histone methylation is a complex epigenomic process

whereby both the position of the targeted amino acid as

well as the degree of methylation (mono-, di-, or trimethy-

lation) affects the overall structure of chromatin and ulti-

mately gene transcription. The histone-modifying genes

identified in subjects with non-syndromic CHD, such as

WDR5, MLL2 (also known as KMT2D), CHD7, KDM5A,

KDM5B, and SMAD2, affect H3K4 and H3K27 methyl-

ation.30 Methylation of lysine residues is catalyzed by

histone methyltransferases, whereas the reverse reaction

is catalyzed by histone demethylases (Figure 4A). We

examined these genes in our cohort for rdSNVs. Among

them, we identified rdSNVs in four genes affecting methyl-

ation (H3K4) in control and not case subjects: MEN1
er 3, 2015
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B

Figure 4. Rare Predicted Deleterious Variants
(A) Model of histone modification proteins with rdSNVs in respective genes in case versus control subjects. Histone marks are repre-
sented by circles in the histone tails (abbreviations are as follows: M, methylation; A, acetylation; U, ubiquitination). Both active histone
marks (red-filled circles) and repressive marks (green-filled circles) are shown. Individual amino acids and their position with respect to
H3 or H3 histone tails (gray) and double-stranded DNA (green) are indicated (K, lysine; R, arginine). The four boxes contain a specific
histone-modification process, with methylation-demethylation shown in the boxes above the drawing of the histone tails. Acetyla-
tion-deacetylation as well as the ubiquitination-deubiquitination are shown in the two boxes below. Proteins are included that have
rdSNVs in their respective genes in two or more case subjects only (red) or control subjects only (green). The number of individuals
affected is indicated in the order of number of case subjects/number of control subjects.
(B) Profile of each rdSNV for each individual with 22q11DS. Representative histone marks (Histone column) and their role in transcrip-
tion (Transcription column) are shown at left. The gene name with rdSNVs is listed in the third column (Samples). The rest of the col-
umns represent rdSNVs (red box) from each individual with 22q11DS, with the control subjects shown first, on the left, followed by the
case subjects, indicating the type of heart defect (see details in Figure 1).
(multiple endocrine neoplasia I [MIM: 613733]), KMT2B

(lysine (K)-specific methyltransferase 2B [MIM: 606834]),

KDM5A (lysine (K)-specific demethylase 5A [MIM:

180202]), and KDM5B (lysine (K)-specific demethylase 5B

[MIM: 605393]).37–43 Although we have not yet validated

the rdSNVs in functional assays, we speculate that dysregu-

lation of transcription via modification of histones could

influence risk for developmental anomalies with the

22q11.2 deletion. Surprisingly, de novo mutations in

KDM5A and KDM5B have been reported in non-syndromic

CHD-positive individuals,30 which affect different amino

acids and the opposite of what we found, suggesting that

these genes might play protective roles in those that

have the 22q11.2 deletion.

Ourmost significant finding is that we identified 18 of 89

case subjectswith rdSNVs in four geneswhose encodedpro-
The American
teins demethylate histones, including H3K9 and possibly

H3K27—JMJD1C, MINA (MYC induced nuclear antigen

[MIM: 612049]), KDM7A (lysine (K)-specific demethylase

7A), and RREB144–49—acting to activate transcription

(Figure 4). The rdSNVs occurred in different subjects, impli-

cating them as acting independently. We found that two

subjects had rdSNVs in PRDM2 (PR domain containing 2,

with ZNF domain [MIM: 601196]), which has the opposite

function50,51 for the two modifications. We also found

rdSNVs in PRMT5 (protein arginine methyltransferase

[MIM: 604045]) in two case subjects, possibly affecting

methylation of arginine at position H3R8.52

Besides methylation, there are two other well-known

types of histonemodifications: acetylation and ubiquitina-

tion.Histone acetylation is, in general, associatedwith gene

activation. We found four case and three control subjects
Journal of Human Genetics 97, 869–877, December 3, 2015 873



with rdSNVs that might affect acetylation, but in the oppo-

site manner (Figure 4): SIRT4 (Sirtuin 4 [MIM: 604482]),53

BRD7 (bromodomain containing 7),54 and KAT6B

(K(Lysine) acetyltransferase 6B [MIM: 605880]).55 Monou-

biquitination of nucleosome histone H2A at lysine 119

leads to gene repression or silencing, whereas deubiquitina-

tion leads to gene activation.56–59 Four case subjects were

identifiedwith rdSNVs in two genes that catalyze deubiqui-

tination (Figure 4A)—USP16 (ubiquitin specific peptidase

16 [MIM: 604735])60 and BAP1 (BRCA1 associated pro-

tein-1 [MIM: 603089])61—and four control subjects had

rdSNVs in two genes that promote ubiquitination—

HUWE1 (HECT, UBA, and WWE domain containing 1, E3

ubiquitin protein ligase [MIM: 300697])62 and CBX8 (chro-

mobox homolog 8),63—suggesting that overall dysregula-

tion could occur downstream of the deletion. Interestingly,

genes involved in histone modification have been sug-

gested to act as hub genes that could serve as modifiers of

disease states or phenotypes in humans.64 It is thus possible

that histone modifications in context of the 22q11.2 dele-

tion might have effects on embryonic development for

which the heart is particularly vulnerable. We examined

the expression level of the chromatin-modifying genes in

existing gene expression profiling data from mouse or hu-

man embryos (Table S4). Expression level was compared

to housekeeping genes versus genes differentially expressed

in various tissues. Among them, Jmjd1c has greater than

average gene expression in all the relevant tissues of biolog-

ical interest (Table S4). However, these findings need to be

tested with future expression and functional studies of pro-

genitor cells for the heart during embryonic development.

We then performed the burden tests for the entire his-

tone modification pathway. Rare mutations were not

significantly enriched in either case or control subjects

(p ¼ 0.82, OR ¼ 0.83 [0.34, 2.07]). However, histone mod-

ifications could activate (JMJD1C, MINA, KDM7A, RREB1,

USP16, BAP1, BRD7, MEN1, and KMT2B) or repress

(KDM5A, KDM5B, PRDM2, PRMT5, SIRT4, HUWE1, and

CBX8) gene expression, making it necessary to consider

biological functions for burden testing. After collapsing

the rdSNVs in either group and then performing a gene

burden test, we found that case subjects with rdSNVs are

significantly enriched in genes within the group that acti-

vates gene transcription (Fisher exact p¼ 0.0004, permuta-

tions p ¼ 0.0003, OR ¼ 5.16 [1.99, 13.44]). However,

controls are not significantly enriched in the group of

genes that represses transcription (Fisher exact p ¼ 0.80,

permutations p ¼ 0.70, OR ¼ 0.82 [0.29, 2.29]). These

results are shown graphically in Figure 4B, where we

identified the variants in genes activating or repressing

transcription depending upon which chromatin-modi-

fying gene was likely to be involved. Each variant of

interest from each individual case or control subject with

22q11DS is shown. Overall, these results suggest that

extremes of heart phenotypes in the 22q11.2 deletion

background might be modified by rdSNVs in genes for

demethylation and deubiquitination of transcription
874 The American Journal of Human Genetics 97, 869–877, Decemb
repression histone marks such as H3K9 and H2Kun119,

thereby generating hypotheses to be tested in cardiac

progenitor cells or animal models in the future.

Mutations that are de novo events might not be toler-

ated and have a high likelihood that they could contribute

to the etiology of disease. In a previous report,30 de novo

heterozygous mutations in histone-modifying genes were

identified in association with risk for CHD. Here, we

have a different hypothesis in that variants in genes iden-

tified here do not cause disease on their own, but they act

as modifiers of phenotype, when combined with the

22q11.2 deletion. The heterozygous variants in histone-

modification genes identified here, when combined with

the 22q11.2 deletion, could affect embryonic development

or heart formation in humans. Future functional studies

would be required to determine their effects with or

without loss of critical genes on 22q11.2 or in the presence

of the deletion itself. The way in which they can affect

function might be complicated to dissect, because histone

modifications are inter-connected and they act in combi-

nation and/or sequentially to regulate transcription.65–68

Further, chromatin modification works in concert with tis-

sue-specific as well as general transcription factors, which

ultimately regulate gene expression. Nonetheless, when

taken together, genes important in modifying gene expres-

sion could influence developmental fields or cardiac pro-

genitor cells that alter development of the heart and are

worthy of further investigation.

Numerous statistical methods have been developed to

test aggregate groups of rare variants for gene-based associ-

ation to disease.69–71 Association results depend on locus

architecture, effect size, and functional variant filters as

well as which statistical methods are used.72 Here we

focused on histone-modifier genes because the top genes

identified by WES involved histone modification and, in

addition, de novo mutations in this class of genes were

identified in non-syndromic or undiagnosed syndromic

CHD subjects.30 It is possible that integration of such

methods combined with a larger cohort of subjects will

be required to fully dissect the genetic architecture of mod-

ifiers of 22q11DS.
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