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An automated noise-robust premature ventricular contraction (PVC) detection method is proposed based on the sparse signal decomposition,
temporal features, and decision rules. In this Letter, the authors exploit sparse expansion of electrocardiogram (ECG) signals on mixed
dictionaries for simultaneously enhancing the QRS complex and reducing the influence of tall P and T waves, baseline wanders, and
muscle artefacts. They further investigate a set of ten generalised temporal features combined with decision-rule-based detection algorithm
for discriminating PVC beats from non-PVC beats. The accuracy and robustness of the proposed method is evaluated using 47 ECG
recordings from the MIT/BIH arrhythmia database. Evaluation results show that the proposed method achieves an average sensitivity of
89.69%, and specificity 99.63%. Results further show that the proposed decision-rule-based algorithm with ten generalised features can
accurately detect different patterns of PVC beats (uniform and multiform, couplets, triplets, and ventricular tachycardia) in presence of
other normal and abnormal heartbeats.
1. Introduction: Accurate detection of premature ventricular
contraction (PVC) beats in electrocardiogram (ECG) signal is
essential for predicting life-threatening ventricular arrhythmias
[1–3]. Many methods were presented based on spline wavelet [1],
Gaussian process classifiers (GPCs) and support vector machines
(SVMs) [2], wave-based Bayesian framework [4], fuzzy neural
network (FNN) [5], wavelet transform (WT) and timing interval (TI)
features [6], Haar wavelet coefficients [7], Gaussian process and
S-transform [8], WT and discrete cosine transform (DCT) [9], SVM
and particle swarm optimisation (PSO) [10], principal component
analysis (PCA) and feed-forward artificial neuron network (ANN)
using the multi-dimensional PSO scheme [11], high-order statistics
(HOS) and GPC [12], 26 features and Kth nearest-neighbours
(KNN) rule [13], and the quadratic spline wavelet and FNN [14].
In this section, we briefly summarise signal features and classi-

fiers used for discriminating PVC beats from non-PVC beats. In
[1], Chang et al. presented a PVC detection based on the biorthogo-
nal spline wavelet-based R-peak detection and two features includ-
ing the sum of the trough, and the sum of the R-peak with
minimum. In [4], Omid Sayadi et al. presented a detection of
PVCs using a wave-based Bayesian framework with an extended
Kalman filter. In [5], Joon S. Lim presented a set of eight general-
ised coefficient features for PVC classification using the Haar WT
and the neuro-fuzzy system with the bounded sum of weighted
fuzzy membership functions. In [6], Inan et al. presented a robust
neural network (NN)-based PVC classification using quadratic
spline WT and TI features. In [7], Adnane and Belouchrani pre-
sented a PVC detection based on the Haar coefficients and fixed
feature thresholding rule. The product of the third detail and
fourth detail coefficients is used to discriminate between normal
and PVC beats. In [8], Ya Bazi et al. presented a PVC detection
and classification using Gaussian process and S-transform.
In [9], Khorrami and Moavenian presented a comparative study

of discrete wavelet transform (DWT), continuous wavelet trans-
form (CWT), and DCT transforms for classifying ECG arrhyth-
mias. In [10], the effectiveness of different approaches based on
the KNN classifier, radial basis function (RBF) NN, three SVM
classifiers (SVM-linear, SVM-poly and SVM-rbf), PCA-KNN,
PCA-RBF, PCA-SVM-rbf, and PSO-SVM classifiers was studied
for ECG beats. In [13], Christov et al. presented PVC and
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normal beat classification using the KNN rule and 26 parameters
(including, 11 × 2 for two ECG leads, QRS width and three para-
meters derived from a single vectorcardiogram plane). In [14],
Shyu et al. presented a wavelet-based ventricular premature con-
traction (VPC) detection approach with the QRS duration and
QRS area features that are obtained from the three and four
scales, respectively, and the FNN classifier.

The results of the previous studies showed that the methods could
not distinguish between PVCs and left bundle branch block
(LBBB) beats [4, 6, 14]. Based on the classification results reported
in [4] for normal, PVC and other beat classes, it is noted that the
method had PVC beat class detection rates of below 95% for a
few ECG records 116, 201, 202, 213, 215, and 219 but it had
other beat classification rates of below 75% for the records 100,
105, 114, 200, 202, 203, 205, 208, 213, 220, 223, and 234. In
most methods, the database annotation is used to locate R-peaks
in ECG signals and to perform ECG wave boundary recognition
[2, 6]. In practice, a good performance of PVC detection method
depends heavily on the accurate and reliable detection of the
R-wave peaks under varying PQRST morphologies and noisy con-
ditions. Most studies have shown that large datasets greatly reduces
classification accuracy due to the significant variations in ECG beat
morphologies [2, 4, 6]. Existing methods had poor detection accur-
acy for the ECG signals with LBBB, right bundle branch block
(RBBB), atrial premature (AP) beats, aberrated AP beats, atrial
flutter, and paced beats. Results further showed that most
methods had poor tradeoff between the sensitivity (Se) and specifi-
city (Sp). Thus, automatic PVC beat detection is still a challenging
problem under different kinds of PQRST morphologies and back-
ground noises.

In this Letter, an automated noise-robust PVC detection method
is presented based on the sparse signal decomposition, R-peak de-
termination, temporal feature extraction, and decision-rule-based
PVC detection algorithm. The rest of the Letter is organised
as follows. Section 2 describes the sparse expansions of ECG
signals and background noises on mixed dictionaries. The proposed
temporal features and decision-rule-based PVC detection algorithm
are explained in detail. In Section 3, accuracy and robustness of the
proposed method is validated using different types of clean and
noisy ECG signals. Finally, conclusions are drawn in Section 4.
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2. Proposed PVC detection method: In this section, we first
introduce sparse representation of ECG signals on mixed
dictionaries for simultaneously enhancing the QRS complex and
reducing the influence of P and T waves, baseline wander (BW),
power line interference (PLI), and muscle artefact (MA).

2.1. ECG signal decomposition on mixed dictionaries: In this
Letter, we assume that the composite ECG signal x is compactly
represented on hybrid dictionary matrix C [ RN×M , M>N,
including time-localised and frequency-localised elementary
waveforms. For a predefined mixed dictionary C with M>N, a
discrete-time signal x can be expressed as

x = Ca =
∑M
m=1

amcm (1)

where α = [α1, α2, α3, …, αM] is the sparse transformed coefficient
vector [15–17]. The representation overcomplete dictionary matrix
C can either be designed using analytical basis functions or
constructed using the beat patterns extracted from the reference
ECG signals. The frequency-domain localised components such
Fig. 1 Outputs of the proposed sparse decomposition approach
a Original ECG signal taken from a mitbiha record 208 containing BW, narrow a
b Extracted BW xB[n] plus PLI signal xP[n]
c Extracted LF signal xL[n] including the P-wave, LF components of QRS compl
d Extracted HF xH[n] including the high-slope portions of QRS complex and spik
e Filtered signal y[n] = xL[n] + xH[n] after discarding the xB[n] and xP[n]
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as BW and PLI noises and low-frequency (LF) components of an
ECG beat can be effectively modelled using sinusoidal
waveforms. The spike-like components of MA may be modelled
as impulsive elementary waveforms. As compared with transform
matrix constructed using a single basis function, the additive
components of the ECG signal and background noise can be well
approximated with a mixed dictionary matrix including both
time-localised and frequency-localised elementary waveforms
derived from different basis functions. Thus, the sinusoidal and
impulse basis functions are used for compact representations of
ECG signals and background noise. In this Letter, the ECG
signal is decomposed using the predefined overcomplete hybrid
dictionary matrix C with a size of N ×M as

C = [CBW|CLF|CPLI|CHF]N×M (2)

where N denotes the length of discrete-time ECG sequence x, M
denotes the number of elementary waveforms (or columns) of
hybrid dictionary C, CBW denotes the BW dictionary designed
for capturing the BW components, ΨLF denotes the LF dictionary
designed for capturing the P-wave, T-wave, and LF components
of QRS complexes, ΨPLI denotes the PLI dictionary for capturing
nd wide QRS complexes

ex, and T-wave
e components
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the PLI components and ΨHF denotes the high-frequency (HF)
dictionary for capturing the high-slope portions of the QRS
complexes and muscle spikes in the ECG signal. The HF
dictionary ΨHF contains the elementary impulse waveforms that
are well localised in the time domain. The HF dictionary is
constructed as

[CHF]ij =

1 0 . . . 0 0
0 1 . . . 0 0
0 0 1 0 0

..

. ..
. ..

. . .
.

0
0 0 0 . . . 1

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

N×N

(3)

The BW dictionary ΨBW, LF dictionary ΨLF, and PLI dictionary
ΨPLI matrices are constructed using the elementary sine and
cosine waveforms computed from the discrete sine and cosine
basis functions, which can adequately capture the noise
components including the BW, PLI, and local ECG waves
including the P-wave, T-wave, and wide QRS complexes. For a
given frequency bin range of each aforementioned dictionary, a
Fig. 2 Outputs of the proposed sparse decomposition approach
a Original ECG signal taken from a mitbiha record 101 containing narrow QRS c
b Extracted BW xB[n] plus PLI signal xP[n]
c Extracted LF signal xL[n] including the P-wave, LF components of QRS compl
d Extracted HF xH[n] including the high-slope portions of QRS complex and spik
e Filtered signal y[n] = xL[n] + xH[n] after discarding the xB[n] and xP[n]
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set of elementary sine waveforms is computed as

[S]ij =
			
2

N

√
ei sin

p(2j + 1)(i+ 1)

2N

( )[ ]

i = 0, 1, 2, 3, . . . , N − 1, j = 0, 1, 2, 3, . . . , N − 1

(4)

where ei = 1/
		
2

√
for i =N–1, otherwise ei = 1 and a set of

elementary cosine waveforms is computed as

[C]ij =
			
2

N

√
ei cos

p(2j + 1)i

2N

( )[ ]

i = 0, 1, 2, 3, . . . , N − 1, j = 0, 1, 2, 3, . . . , N − 1

(5)

where ei = 1/
		
2

√
for i = 0, otherwise ei = 1. In this Letter, we use

both discrete cosine and sine elementary waveforms in order to
reduce the waveform discontinuities at the block boundaries. The
computational complexity of the sparse coefficient estimation
algorithm depends upon the size of the dictionary matrix and the
number of iterations performed by the algorithm [16, 18].
Depending on specific-event detection, feature parameter
estimation, compression and denoising problems, the sizes of the
omplexes, BW, and background noises

ex, and T-wave
e components
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Fig. 3 Proposed detection algorithm for determining R-peaks
cosine and sine dictionaries can be adopted based on the frequency
characteristics of the signals of interests [16]. Since this Letter
mainly focuses on the detection of the PVC beats, the sizes of the
above sinusoidal dictionary matrices such as ΨBW, ΨPLI, and ΨLF

are determined based on the dominant frequency ranges of the
BW, the PLI, and the ECG local waves (including P-wave, wide
QRS complex, and T-wave). The frequency of BW noise is
typically below 0.8 Hz, extending up to 1 Hz during stress tests
[19]. The PLI signals fall within a grid operating frequency range
of 57–63 (or 47–53) Hz for the fundamental of 60/50 Hz. The
dominant frequencies of the P and T waves lie in the range of 2–
6 Hz [20]. The dominant frequencies of the wide QRS complexes
generally fall within a range of 3–10 Hz. The variations of
dominant frequencies of wide and narrow QRS complexes are
observed in the range of 3–40 Hz [21]. In this Letter, the
frequency bin ranges for capturing the BW, PLI, and LF
components are chosen as: [0–1], [47–53], and [1–6] Hz. For a
given frequency F1, the column number is computed as
⌊2NF1/Fs⌋, where Fs is the sampling rate and N is the length of
the signal. Then, the elementary sine and cosine waveforms are
obtained using mathematical expressions in (4) and (5) for each
of the desired frequency bin ranges. The LF dictionary matrix
ΨLF is constructed for adequately capturing the P and T waves
and the wide QRS complexes of the ECG signal.

For a predefined overcomplete dictionary matrix Ψ and ECG
signal x, the sparse coefficients vector α is estimated by using the
ℓ1-norm-regularised least squares algorithm [17, 18]

ã = argmin
a

{‖Ca− x‖22 + l‖a‖1} (6)

where ‖Ca− x‖22 and ‖a‖1 are known as the reconstruction error
term and the sparsity term, respectively, x is a signal to be decom-
posed, and λ is a regularisation parameter for sparsity that controls
the relative importance of the fidelity and the sparsity of vector α.
The ℓ1-norm and ℓ2-norm of the vector α are defined as
‖a‖ℓ1 =

∑
i |ai| and ‖a‖ℓ2 =

∑
i |ai|2)

( )1/2
, respectively. The esti-

mated sparse coefficients vector ã is represented as

ã = [aB aL aP aH]
T, (7)

where αB is the sine and cosine coefficients obtained for the BW
dictionary ΨBW, αL is the sine and cosine coefficients obtained
for the LF dictionary ΨLF, αP is the sine and cosine coefficients
obtained for the PLI dictionary ΨPLI, and αH is the impulsive coef-
ficients obtained for the HF dictionary ΨHF. By using equations (1),
(2), and (7), the input ECG signal x can be represented as a linear
combination of weighted elementary waveforms from columns of
overcomplete hybrid dictionary (OHD) matrix Ψ

x = Cã = [CBW|CLF|CPLI|CHF]ã (8)

= CBWaB +CLFaL +CPLIaP +CHFaH (9)

Finally, the input ECG signal can be approximately expressed as

x[n] ≃ xB[n]+ xL[n]+ xP[n]+ xH[n] (10)

By using the above mentioned decomposition algorithm, the ECG
signal is decomposed into four sub-signals: the BW signal xB[n];
the LF signal xL[n] including the P-wave, LF components of
QRS complex, and T-wave; the PLI signal xP[n]; and the HF
signal xH[n] including the high-slope portions of QRS complex
and spike components. The effectiveness of the proposed decom-
position approach is illustrated in Figs. 1 and 2. Based on our de-
composition results, it is noted that the proposed method
significantly suppresses the BW and background noises. The LF
signal xL[n] contains the LF components of wide QRS complex,
144
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P and T waves. The HF signal xH[n] contains only high-slope por-
tions of QRS complexes for clean normal and abnormal ECG
signals. Thus, the HF signal xH[n] is further processed to locate
R-peaks in the ECG signal. From the LF signals as shown in
Figs. 1c and 2c, it is noted that the maximum and minimum ampli-
tudes for an ECG signal with narrow QRS complexes (−0.2–0.2
mV) are much smaller as compared with that of an ECG signal
with wide QRS complexes. Therefore, at the first stage of PVC de-
tection, the absolute maximum value of the LF signal is used to
detect the ECG signals with narrow QRS complexes (<100 ms)
and P/T waves with absolute amplitude <0.2 mV. Results further
show that the proposed decomposition approach adequately pre-
serves the morphological content including amplitude, duration,
timing, and polarity of the P-wave, QRS complex, and T-wave in
LF and HF signals (xL[n] and xH[n]) and filtered signal y[n].
Thus, we investigate the temporal features extracted from the sub-
signals and filtered signal for detection of PVC beats.

2.2. Decision-rule-based PVC detection algorithm: In this section,
we present the components of R-wave peak detection, a set of ten
generalised features extracted from the LF signal xL[n] and
filtered signal y[n], and the significance of each of the proposed
features for discriminating PVC beats from non-PVC beats.

2.2.1 R-peak detection: In the R-wave peak detection stage, the HF
signal xH[n] is processed using the detection algorithm presented in
Fig. 3 for determining locations of R-peaks in the ECG signal. The
outputs of different stages of the proposed algorithm are shown in
Figs. 4a–e. The detection results show the effectiveness of the pro-
posed algorithm for the ECG signal containing narrow and wide
QRS complexes, negative QRS complexes, BW, and background
noises. The comprehensive results of the R-peak detection algo-
rithm on the MIT/BIH arrhythmia database are summarised in
Table 1.

2.2.2 Temporal feature extraction: The normal ECG signals typical-
ly exhibit the narrow QRS complexes and regular RR intervals. The
PVC beats have the following main characteristics [1, 3]: (i) broad
QRS complex (at least > 0.12 s, but often very broad at around
0.16–0.20 s) with abnormal morphology, (ii) ST depression and
Healthcare Technology Letters, 2015, Vol. 2, Iss. 6, pp. 141–148
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Fig. 4 Outputs of the proposed PVC detection method
a Original ECG signal taken from a mitbiha record 208 containing narrow and wide QRS complexes, BW, and background noises
b Extracted HF signal xH[n]
c Output of the smoothing filter
d Output of the Gaussian derivative based peak finding logic
e Output of the peak correction step
f Features extracted from the filtered signal y[n]
g Features extracted from the LF signal xL[n]
h Detection results of the proposed method (NP, non-PVC beat; P, PVC beat)
large T-wave inversion in leads with a dominant R-wave (or ST ele-
vation with upright large T waves in leads with a dominant S wave),
and (iii) full compensatory pause (the PVC beats have a shorter RR
interval preceding the PVC with a longer RR interval after the PVC)
[4]. The PVCs often occur in repeating patterns [22]: bigeminy, tri-
geminy, and quadrigeminy. The PVCs may occur as isolated single
beat or as couplets, triplets, and consecutive of more than four beats.
Ventricular tachycardia (VT) is a fast heart rhythm, with at least
three or more ventricular premature beats in a row. A few such
repeating wide complexes can produce VT event with fast normal
Healthcare Technology Letters, 2015, Vol. 2, Iss. 6, pp. 141–148
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rhythm at rate of about 120–250 beats/min. It is noted that the
local RR interval ratio (IR) feature may fail to detect the PVC
beats occurred in couplets, triplets, and consecutive of more than
four beats (or VT event), wherein the detection rule is based on esti-
mated IR value: normal beats (IR≃ 1) and PVC beats (IR <1) [4, 6].

Based on the above mentioned ECG characteristics, the temporal
features are extracted from the filtered signal y[n] and the LF signal
xL[n] for discriminating PVC beats from non-PVC beats: (i) local
maximum QRS complex peak amplitude (Rpdy), which corresponds
to an amplitude of y[n] at the location of detected R-peak, denoted
145
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Table 1 Detection results on MIT/BIH arrhythmia database

ECG type Test ECG signals Results of our method Results of [2]

R-peak PVC PVC

Rec. no. Total beats PVC beats MDR, % FDR, % Se, % Sp, % Se, % Sp, %

A 115 1952 0 0.31 0.10 – 100 – 99.97
122 2474 0 0 0 – 100 – 99.97

B 106 2027 520 0.30 0.10 97.88 100 99.89 99.95
119 1987 444 0 0 98.65 100 99.64 100
123 1517 3 0 0 100 100 100 99.79
221 2427 396 0 0 97.98 100 98.59 93.04
230 2255 1 0 0 100 100 100 99.14

C 101 1864 0 0.16 0.16 – 100 – 99.63
103 2083 0 0 0 – 100 – 99.96
112 2537 0 0 0 – 100 – 99.98
113 1794 0 0.33 0.22 – 100 – 99.41
117 1534 0 0 0 – 100 – 99.81
212 2747 0 0.51 0 – 99.49 – 99.91
220 2046 0 0.20 0 – 99.32 – 97.19
222 2483 0 0.16 0 – 99.84 – 77.62

D 107 2136 59 0 0 94.92 99.13 82.37 96.98
109 2530 38 0 0 92.10 99.36 23.16 99.86
118 2277 16 0.13 0.09 100 99.38 100 97.91
214 2260 256 0.35 0.13 97.66 99.60 99.61 98.31
111 2123 1 0 0 100 99.62 40 99.85
124 1618 47 0 0 91.49 99.24 62.13 99.91
232 1779 0 0 0.17 – 99.38 – 97.32

E 100 2271 1 0 0 100 100 100 99.69
102 2185 4 0 0 75.00 99.17 60 100
105 2572 41 0.23 0.31 92.68 100 97.07 95.58
114 1879 43 0 0 90.70 99.78 85.12 99.50
116 2411 109 1.00 0 90.83 99.65 99.08 99.63
121 1862 1 0 0 0 100 100 99.65
200 2600 826 0.15 0.12 98.06 99.77 96.47 98.83
201 1963 198 0.31 0 95.96 98.98 81.92 92.88
202 2135 19 0.23 0 94.74 99.81 66.32 83.99
203 2979 444 0.74 0 86.94 94.95 91.48 71.99
205 2655 71 0.30 0 100 99.69 80.86 99.96
208 2953 992 0.68 0 96.47 100 99.13 89.56
210 2648 194 0.72 0 93.81 99.43 80.72 93.55
213 3249 220 0.06 0 96.36 99.97 96 97.05
215 3361 164 0 0 92.68 100 92.93 99.62
217 2208 162 0.32 0 95.06 99.46 98.89 95.51
219 2154 64 0.09 0.09 92.19 99.90 98.13 57.51
223 2604 473 0.15 0 98.10 100 68.16 96.26
228 2053 362 0.78 0.25 98.34 100 97.62 99.12
231 1570 2 0.51 0.19 50 99.62 70.00 75.88
233 3077 830 0.26 0 99.52 99.87 86.36 99.11
234 2752 3 0.07 0 33.33 100 100 99.86
104 2227 2 0.18 0.40 100 99.28 30 99.88
108 1761 16 0.45 0.40 87.50 99.31 96.25 98.83
209 3003 1 0.13 0 100 99.73 60 97.76
as tpdy; and local minimum ST segment amplitude (Sndy) and its lo-
cation (tndy), which is computed by selecting a window of samples
from the filtered signal y[n], starting from the R-peak location to
half of the next RR interval after the current R-peak; (ii) the local
maximum amplitude (AmaxL) and local minimum amplitude
(AminL) that are extracted from the LF signal xL[n] by selecting a
window of −50 ms to half of the next RR interval around the
R-peak; (iii) the peak locations (tmaxL and tminL) of the AmaxL and
AminL values, respectively; (iv) the global absolute maximum amp-
litude AagmL from the LF signal xL[n]; (v) the maximum T-wave
amplitude (Tamp), which is computed by selecting a window of
samples from the LF signal xL[n], starting from the minimum ST
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segment amplitude location (tndy) to half of the next RR interval
after the current R-peak; and (vi) the preceding RR interval (RRp)
and the next RR interval (RRn) features for the current R-peak.
The decision-rule-based PVC detection algorithm is presented in
Fig. 5. Here, the detection threshold parameters are chosen based
on the nominal values of amplitude and duration of QRS and
T-waves, RR intervals measured for the consecutive of more than
two PVC beats (couplets, triplets, VT), and refractory period. The
extracted features are marked in Figs. 4f and g. The effectiveness
of the proposed detection approach is shown in Fig. 4h for the
ECG signal containing narrow and wide QRS complexes, BW,
and background noises.
Healthcare Technology Letters, 2015, Vol. 2, Iss. 6, pp. 141–148
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3. Results and discussion: In this section, we evaluate robustness
and accuracy of the proposed PVC detection method using the
well-known MIT/BIH arrhythmia (mitbiha) database, which
contains 48 half-hour of two-channel ECG recordings digitised at
sampling rate of 360 Hz with 11-bit resolution over a 10 mV
range [22]. The ECG recordings are categorised into five groups
[4]: group A (records only with normal beats); group B (records
including only normal beats and PVCs); group C (records with
no PVCs); group D (records with no normal beats); group E
(records containing normal beats and abnormal beats such as AP
beats, aberrated AP beats, supraventricular premature beats,
fusion beats, junctional premature beats, paced beats). It is noted
that the ECG signals include sharp and tall P and T waves,
sudden changes in QRS amplitudes and QRS morphologies,
BWs, muscle noise, and long pauses. The primary annotations of
the 48 ECG recordings are available in [22].
In this Letter, the performance of proposed method is tested and

validated using complete duration of 47 mitbiha ECG recordings.
The proposed method is implemented using MATLAB software
on a 1.6 GHz AMD E-350 Processor with 2 GB RAM. For each
ECG recording, the detection performance of our method is com-
pared with the existing methods such as wave-based Bayesian filter-
ing (WBF) [4], NN with WT and TI features (NN+WT+TI) [6]. The
performance of the R-peak detection approach is evaluated in terms
of missed detection rate (MDR), which is defined as the fraction of
missed R-peaks over the total number of R-peaks in the record; and
false detection rate (FDR), which is defined as the fraction of false
detections over the total number of peaks by the method. The per-
formance of the PVC detection method is evaluated in terms of
three metrics [2, 4, 6, 14]: the Se = TN/(TN+FP), where true nega-
tive (TN) denotes PVC beat being classified as PVC and false posi-
tive (FP) denotes PVC beat being miss-classified as non-PVC beat;
and the Sp = TP/(TP+ FN), where true positive (TP) denotes
Fig. 5 Proposed decision-rule-based PVC detection algorithm
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non-PVC beat being classified as non-PVC beat and false negative
(FN) denotes non-PVC beat being miss-classified as PVC beat.

Based on our comprehensive results in Table 1, it is noted that the
proposed R-wave peak detector achieves an average MDR of
0.216% with 233 missed beats for a total of 107582 beats and
FDR of 0.06%. The results further show that the proposed
R-peak detection approach can effectively determine R-peaks in
normal and abnormal ECG signals under influence of BW and
MA noises. Unlike existing R-peak detection approaches, the pro-
posed approach does not use search back algorithm with sets of
amplitude-dependent, timing-dependent, and duration-dependent
thresholds for rejecting noise peaks and including missed peaks.

The comprehensive PVC detection results of the proposed
method and the HOS+GP-RBF-ARD method [2] are summarised
in Table 1. In [2], the HOS+ GP-RBF-ARD method had a poor
PVC detection rate of below Se = 87% for the ECG records: 107
(Npvc = 59, 82.37%), 109 (Npvc = 38, 23.16%), 114 (Npvc = 43,
85.12%), 124 (Npvc = 47, 62.13%), 201 (Npvc = 198, 81.92%), 205
(Npvc = 70, 80.86%), 210 (Npvc = 194, 80.72%), 223 (Npvc = 473,
68.16%), and 233 (Npvc = 830, 86.36%) and had a poor non-PVC
detection rate of below Sp = 90% for the ECG records: 202
(Nnpvc = 2116, 83.99%), 203 (Nnpvc = 2532, 71.99%), 208 (Nnpvc

= 1692, 89.56%), 219 (Nnpvc = 2088, 57.51%), 222 (Nnpvc = 2579,
77.62%), and 231 (Nnpvc = 1564, 75.88%). The WT-NN-based
method with RR IR achieved a Se of 3.05% and Pp of 83.33%
for record 215 with a total of 164 PVCs [6]. In [6], the
WT-NN-based method had a Se of below 83% for the ECG
records 105 (4.88%), 109 (65.79%), 116 (77.98%), 118
(43.75%), 213 (43.18%), 214 (47.66%), 215 (3.05%), 219 (75%),
223 (40.38%), and 233 (82.77%) that include runs of more than
two PVC beats, longest pauses of VT events, multiform PVCs,
and sudden changes in RR intervals.

For the above mentioned ECG record numbers, the proposed
method achieves a Se ranging from 91.41 to 100% and a Sp
ranging from 99.62 to 100%. For most test ECG records, the
method had better overall detection rates as compared with the
rates of the HOS+ GP-RBF-ARD method [2], except for the ECG
records: 102 (Npvc = 4, Se = 75%), 203 (Npvc = 444, Se = 86.94%),
231 (Npvc = 02, Se = 50%), 234 (Npvc = 3, Se = 33.33%), and 108
(Npvc = 16, Se = 87.50%). The proposed method had poor detection
rates for the record 203 (Se = 86.94% and Sp = 94.95%) which
includes low-amplitude QRS complexes and wide QRS complexes
that look like PVC events, but these beats are annotated as non-PVC
beats in the database. For the record 102 with a total of 4 PVC beats,
the proposed method detects 03 PVC beats. By visually inspecting
the detection results, it is noted that the ECG beat (at sample
number 207743 in the original record) is labelled as a PVC beat
but it has narrow QRS (<120 ms) and also the amplitudes of R
and S waves are nearly equal. In most cases, the detection results
show that the proposed method is capable of discriminating PVC
beats from different types of abnormal beats under the influence
of BWs and MA.

Based on our results, it is noted that the transition interval (Dti)
measured between the R-peak location (tpdy) and minimum ST
segment amplitude location (tndy), and the maximum T-wave amp-
litude (Tamp) features significantly improve overall detection rates
for the ECG signals including LBBB and RBBB, paced and AP
beats. Further, the method yields better detection rates for the
ECG signals with the isolated single PVC beats and the runs of
more than two PVC beats by using the proposed three decision
rules that are constructed based on the interval features (RRp and
RRn) and the local amplitude features (AmaxL and AminL), and the
local amplitude timing features (tmaxL and tminL). It is found, in
this Letter, that the proposed global absolute maximum amplitude
AagmL feature can effectively distinguish the ECG signals with
narrow QRS complexes (<120 ms) from the ECG signals with
wide QRS complexes. The results of PVC detection methods are
summarised in Table 2. The proposed method achieves an
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Table 2 Comparison of PVC detection results

PVC detection methods Rec.
no.

Total
beats

PVC
beats

Se,
%

+P/
Sp*,
%

NN+WT+TI [6] 40 100239 6958 82.57 93.42
WT-PCA+multi-
dimensional (MD)-PSO
[11]

40 100239 6958 93.4 93.3

26 features+KNN [13]* 44 100225 6996 97.2 96.7
WBF [4] 40 92588 6956 98.77 97.47
HOS+GP-RBF-ARD [2]* 48 109887 7117 92.19 95.15
HOS+GP [12]* 27 – 4080 84.7 97.5
Haar WT+neural network
with weighted fuzzy
membership functions
(NEWFMs) [5]*

6 – 935 99.21 99.93

WT+FNN [14]* 7 – 943 99.02 96.67
proposed method* 47 107582 7023 89.69 99.63
average Se of 89.69% and an Sp of 99.63%. These results demon-
strate that the proposed method significantly outperforms the detec-
tion rates of the existing methods. Based on the results, it is noted
that the computation time of the sparse decomposition technique is
high as compared with the other decomposition techniques. As
compared with other existing methods, the proposed method has
the following advantages: (i) the sparse signal decomposition tech-
nique adequately preserves the essential morphological features (in-
cluding amplitude, duration, polarity, and shape of QRS complex)
and effectively reduces the influence of the P/T waves and the BW,
PLI, and MA, (ii) does not require feature dimensionality reduction
approach, (iii) does not require learning phase to obtain detection
thresholds based on the past detected R-peaks, and (iv) does not
demand collection of different types of ECG beats for generating
heartbeat models.

4. Conclusion: An automated noise-robust PVC detection method
is presented based on the sparse signal decomposition, R-peak
determination, temporal feature extraction, and
decision-rule-based PVC detection algorithm. The decomposition
results demonstrate that the proposed sparse signal decomposition
technique adequately preserves the essential morphological
features (including amplitude, duration, polarity, and shape of
QRS complex) and effectively reduces the influence of the P/T
waves, BWs, powerline interference, and MA. Evaluation results
show that the proposed method can effectively discriminate PVC
beats from different types of non-PVC beats, providing an
average Se of 89.69%, and Sp of 99.63% on 47 ECG recordings
of the MIT/BIH arrhythmia database. Results further show that
the proposed PVC detection algorithm with ten generalised
temporal features extracted from the decomposed signals is
capable of accurately detecting PVC beats in presence of other
normal and abnormal beats such as LBBB, RBBB, fusion,
junctional, paced, and AP beats.
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