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Abstract 

Background:  The Tigecycline Evaluation and Surveillance Trial (T.E.S.T) is a global antimicrobial surveillance study of 
both gram-positive and gram-negative organisms. This report presents data on antimicrobial susceptibility among 
organisms collected in Mexico between 2005 and 2012 as part of T.E.S.T., and compares rates between 2005–2007 
and 2008–2012.

Method:  Each center in Mexico submitted at least 200 isolates per collection year; including 65 gram-positive iso‑
lates and 135 gram-negative isolates. Minimum inhibitory concentrations (MICs) were determined using Clinical Labo‑
ratory Standards Institute (CLSI) broth microdilution methodology and antimicrobial susceptibility was established 
using the 2013 CLSI-approved breakpoints. For tigecycline US Food and Drug Administration (FDA) breakpoints were 
applied. Isolates of E. coli and K. pneumoniae with a MIC for ceftriaxone of >1 mg/L were screened for ESBL production 
using the phenotypic confirmatory disk test according to CLSI guidelines.

Results:  The rates of some key resistant phenotypes changed during this study: vancomycin resistance among 
Enterococcus faecium decreased from 28.6 % in 2005–2007 to 19.1 % in 2008–2012, while β-lactamase production 
among Haemophilus influenzae decreased from 37.6 to 18.9 %. Conversely, methicillin-resistant Staphylococcus aureus 
increased from 38.1 to 47.9 %, meropenem-resistant Acinetobacter spp. increased from 17.7 to 33.0 % and multidrug-
resistant Acinetobacter spp. increased from 25.6 to 49.7 %. The prevalence of other resistant pathogens was stable over 
the study period, including extended-spectrum β-lactamase-positive Escherichia coli (39.0 %) and Klebsiella pneumo-
niae (25.0 %). The activity of tigecycline was maintained across the study years with MIC90s of ≤2 mg/L against Ente-
rococcus spp., S. aureus, Streptococcus agalactiae, Streptococcus pneumoniae, Enterobacter spp., E. coli, K. pneumoniae, 
Klebsiella oxytoca, Serratia marcescens, H. influenzae, and Acinetobacter spp. All gram-positive organisms were suscepti‑
ble to tigecycline and susceptibility among gram-negatives ranged from 95.0 % for K. pneumoniae to 99.7 % for E. coli.

Conclusion:  Antimicrobial resistance continues to be high in Mexico. Tigecycline was active against gram-positive 
and gram-negative organisms, including resistant phenotypes, collected during the study.
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Background
The widespread occurrence of antimicrobial resist-
ance among bacterial pathogens is a global concern, and 
infections caused by resistant bacteria are now frequent 
events in hospitalized or community patients. Countries 
in Latin America are recognised to have high levels of 
resistance and antimicrobial susceptibility has decreased 
among many pathogens in Mexico in recent years [1–8]. 
For example, in one tertiary care hospital in Mexico sus-
ceptibility to meropenem among Acinetobacter bauman-
nii decreased from 91.7 % in 1999 to 11.8 % in 2011 [8].

The Tigecycline Evaluation and Surveillance Trial 
(T.E.S.T.) is a global in  vitro antimicrobial surveillance 
study which started in 2004 and began collecting gram-
positive and gram-negative isolates from Mexican centers 
in 2005. Susceptibility is tested against a range of antimi-
crobials, including tigecycline, by each medical center 
before shipping to a central laboratory; the central labo-
ratory then carries out data validation and the collation 
of the T.E.S.T. database. In this report, we compare data 
for isolates collected between 2005–2007 and 2008–2012 
as well as presenting data for 2005–2012 as a whole. This 
report serves as an update to some of the data presented 
in Rossi et al. [9], who presented data on antimicrobial sus-
ceptibility across Latin America between 2004 and 2007. 
Data for S. aureus collected across Latin America between 
2004 and 2010 was previously published by Garza-
González and Dowzicky [10] and data on gram-negative 
organisms collected across Latin America between 2004 
and 2010 was previously published by Fernández-Canigia 
and Dowzicky [11]. These reports also contain data from 
Mexican centers which are included in this analysis.

Methods
In total, there were 16 centers in Mexico over the study 
period (1 center in 2005; 9 in 2006; 10 in 2007; 10 in 2008; 
10 in 2009; 10 in 2010; 4 in 2011; and 15 in 2012). All cent-
ers did not participate in all years. The maximum number 
of years any one center participated for was 7 years. This 
was the case for two centers. One center participated for six 
years and four centers participated for 5 years. The remain-
ing nine centers participated for between 2 and 4 years.

Isolates collection
Each participating centre submitted at least 200 isolates per 
collection year; including 65 gram-positive isolates [Entero-
coccus spp. (E. faecium and E. faecalis; n = 15), S. aureus 
(n =  25), Streptococcus agalactiae (n =  10), and S. pneu-
moniae (n = 15)] and 135 gram-negative isolates [Acineto-
bacter spp. (n = 15), Enterobacter spp. (n = 25), Escherichia 
coli (n = 25), Haemophilus influenzae (n = 15), Klebsiella 
spp. (K. oxytoca and K. pneumoniae; n = 25), Pseudomonas 
aeruginosa (n = 20), and Serratia spp. (n = 10)].

All body sites were considered acceptable sources, 
although a maximum of 25  % of isolates could be uri-
nary in origin. Inclusion of any isolate in the study was 
independent of patient medical history, previous antimi-
crobial use, age or gender. Only a single isolate was per-
mitted from each patient. Ethics committee approval was 
not required as the study does not collect patient identi-
fying information.

Antimicrobial susceptibility testing
All participating medical centres were responsible for 
isolate identification and susceptibility testing. Mini-
mum inhibitory concentrations (MICs) for all pathogens 
and each antimicrobial agent in the T.E.S.T. panel were 
determined using Clinical Laboratory Standards Institute 
(CLSI) broth microdilution methodology [12], and either 
MicroScan® panels (Dade Microscan Inc., West Sacra-
mento, CA, USA) or Sensititre® plates (TREK Diagnostic 
Systems, East Grinstead, UK). The core T.E.S.T. antimi-
crobial panel included: amoxicillin-clavulanate, ampicil-
lin, ceftriaxone, imipenem or meropenem, levofloxacin, 
minocycline, piperacillin-tazobactam and tigecycline. 
Imipenem was replaced by meropenem in 2006 due to 
imipenem stability issues, while MicroScan® panels were 
replaced by Sensititre® plates. Gram-positive pathogens 
were tested against the core antimicrobials plus line-
zolid, penicillin and vancomycin; gram-negative isolates 
were tested against the core panel as well as amikacin, 
cefepime and ceftazidime. The S. pneumoniae test panel 
was expanded in 2006 to include azithromycin, clarithro-
mycin, erythromycin and clindamycin.

All isolates of E. coli and K. pneumoniae were tested 
for extended-spectrum β-lactamase (ESBL) production 
while all H. influenzae were tested for β-lactamase pro-
duction. Isolates of E. coli and K. pneumoniae with a 
MIC for ceftriaxone of >1 mg/L were screened for ESBL 
production using the CLSI phenotypic confirmatory 
disk test according to CLSI guidelines [13] using cefo-
taxime (30  µg), cefotaxime/clavulanic acid (30/10  µg), 
ceftazidime (30  µg), and ceftazidime/clavulanic acid 
(30/10  µg) disks (Oxoid, Inc., Ogdensburg, NY, USA). 
Mueller–Hinton agar used in testing was manufac-
tured by Remel, Inc. (Lenexa, KS, USA). An increase 
of >5 mm in the inhibition zone of the combination disk 
when compared to that of the cephalosporin disk alone 
demonstrated ESBL production. H. influenzae isolates 
were tested for β-lactamase production using local 
methodologies.

Quality control (QC) strains were tested on each day 
of isolate testing. The QC strains used were E. coli ATCC 
25922, H. influenzae ATCC 49247 and ATCC 49766, 
P. aeruginosa ATCC 27853, E. faecalis ATCC 29212, S. 
aureus ATCC 29213, and S. pneumoniae ATCC 49619. 
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MIC data were used only if the daily QC test results were 
within ranges considered acceptable by CLSI [13].

All isolates were sent to International Health Manage-
ment Associates, Inc. (IHMA, Schaumberg, IL, USA). 
IHMA were responsible for the organisation of isolate 
collection and transport and the management of a cen-
tralized database. IHMA were also responsible for car-
rying out isolate identification QC checks, which were 
conducted on approximately 10–15 % of isolates.

Antimicrobial susceptibility was established using 
CLSI-approved breakpoints. The 2013 version was used 
for all isolates in this study [13]. Tigecycline breakpoints, 
as published by the US Food and Drug Administration 
(FDA), were used in this analysis [14]. FDA tigecycline 
breakpoints for E. faecalis (vancomycin-susceptible) were 
used for all Enterococcus isolates.

Statistical analysis
Comparison of susceptibility between the 2005–2007 and 
2008–2012 time periods were analysed using the Cochran–
Mantel–Haenszel test with SAS (Version 8.2). Because 
of the large number of hypothesis tests, significance was 
determined at p < 0.01. The Fisher’s exact test was used to 
analyse changes in the percentage of resistant phenotypes 
between the two time periods, again using SAS (version 
8.2). In this test significance was defined at p < 0.05.

Results
Demographic and source data for the isolates in this 
study are presented in Table 1.

Table 2 presents data on the antimicrobial susceptibil-
ity of gram-positive and gram-negative isolates collected 
in Mexico between 2005 and 2012. Among gram-positive 
isolates ≥99  % were susceptible to linezolid, tigecycline 
and vancomycin. The one exception to this was E. faecium 
as only 75.0 % of isolates were susceptible to vancomycin. 
For S. pneumoniae susceptibility data for isolates from 
cerebrospinal fluid (CSF) are presented separately from 
data for isolates from other culture sources. Among non-
CSF isolates there was a statistically significant decrease 
in susceptibility between the two time periods for amoxi-
cillin-clavulanate and penicillin (p < 0.01). For isolates of E 
faecalis rates of susceptibility were similar between 2005–
2007 and 2008–2012; however, for E. faecium rates of sus-
ceptibility were higher in 2008–2012 than in 2005–2007 
for all antimicrobials with less than 100  % susceptibility 
and in the cases of ampicillin and penicillin these differ-
ences were statistically significant (p < 0.01).

The activity of the antimicrobial panel against the 
gram-negative organisms varied with susceptibility 
to the carbapenems and tigecycline at  ≥95  % against 
Enterobacter spp., E. coli, K. oxytoca and K. pneumo-
niae when examining the 2005–2012 data. Susceptibility 

among Acinetobacter spp. and P. aeruginosa was lower. 
The MIC90 for tigecycline against Acinetobacter spp. 
was 2  mg/L for the 2005–2012 and 0.5 and 2  mg/L for 
the 2005–2007 and 2008–2012 time periods, respec-
tively. Decreases in susceptibility among the E. coli sub-
mitted were noted for a number of antimicrobials with 
the largest decreases in susceptibility seen for minocy-
cline and piperacillin-tazobactam. Both these decreases 
were considered statistically significant (p  <  0.0001). 
For K. pneumoniae statistically significant (p  <  0.01) 
decreases in susceptibility to minocycline, piperacillin-
tazobactam, amoxicillin-clavulanate and ceftriaxone 
were seen between the two time periods. Susceptibility 
among Acinetobacter spp. was lower in 2008–2012 than 
in 2005–2007 for the majority of antimicrobial agents 
and decreases in susceptibility to amikacin, levofloxacin, 
meropenem, and minocycline were considered to be sta-
tistically significant (p < 0.01).

Antimicrobial susceptibility among MRSA, methicillin-
susceptible S. aureus, ESBL-positive E. coli and K. pneu-
moniae and MDR Acinetobacter spp. are presented in 
Table 3. Greater than 97 % of S. aureus were susceptible 
to linezolid, minocycline, tigecycline and vancomycin 
irrespective of methicillin status. The carbapenems and 
tigecycline have the highest rates of susceptibility against 
ESBL-positive E. coli and K. pneumoniae. The MIC90 for 
tigecycline against MDR Acinetobacter spp. was 2 mg/L 
for the 2005–2012 time period; between 2005 and 2007 
the MIC90 was 1 mg/L and between 2008 and 2012 was 
4 mg/L.

A total of 504 carbapenem-resistant Enterobacte-
riaceae, Acinetobacter spp. and P. aeruginosa were iden-
tified in this study. Susceptibility data are presented in 
Table 4 K. oxytoca were not included in this table as only 
2 isolates were identified.

Resistant phenotypes
Rates of resistant phenotypes for the three time periods 
are presented in Table  5. Rates of MRSA, meropenem-
resistant Acinetobacter spp. and MDR Acinetobacter spp. 
increased between 2005–2007 and 2008–2012 with the 
rates of meropenem-resistant and MDR Acinetobacter 
spp. increasing significantly (p  <  0.05). In comparison, 
β-lactamase production among H. influenzae decreased 
significantly (p < 0.05) between the two time periods.

Discussion
Rates of antimicrobial resistance among both gram-
positive and gram-negative organisms were high in this 
report from Mexico. Antimicrobial resistance is a rec-
ognized problem in Latin America with high levels of 
resistance among both gram-positive and gram-negative 
organisms [1–3]. There is a known relationship between 
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antimicrobial use and resistance [15], and it can be sur-
mised that one of the factors contributing to the high 
rates of resistance in Mexico is overuse of antimicrobi-
als. Data on previous antimicrobial use is not collected 
by T.E.S.T.; however, such data would be of interest if the 
T.E.S.T. program were to develop in the future.

Overall, 45 % of S. aureus reported as MRSA, 22 % of 
E. faecium reported as vancomycin-resistant, 25 % of K. 
pneumoniae and 39  % of E. coli reported as ESBL-pro-
ducers, 27 % of Acinetobacter spp. reported as resistant to 
meropenem and 42.8 % of Acinetobacter spp. were MDR. 
These results are similar to those presented by Jones 

Table 1  Demographic and  source data for  clinically important gram-positive and  gram-negative isolates collected 
in Mexico, T.E.S.T. 2005–2012

Gram-positive (%) (n = 2207) Gram-negative (%) (n = 4860) Gram-positive + Gram-negative (%) (n = 7067)

2005–2007 
(n = 721)

2008–2012 
(n = 1486)

2005–2007 
(n = 1459)

2008–2012 
(n = 3401)

2005–2007 
(n = 2180)

2008–2012 
(n = 4887)

2005–2012

Age group (years)

 ≤18 18.0 21.5 16.2 18.3 16.8 19.3 18.5

 19–65 60.5 61.1 60.9 61.5 60.7 61.4 61.2

 ≥66 17.6 14.5 18.8 17.1 18.4 16.3 17.0

Gender

 Female 48.7 46.1 48.5 44.3 48.5 44.9 46.0

 Male 51.0 52.0 51.4 52.7 51.3 52.5 52.1

Source

 Bodily fluids 23.7 25.8 18.8 18.3 20.5 20.6 20.5

 Central nervous 
system

0.3 0.5 0.5 0.1 0.5 0.2 0.3

 Cardio-vascular 
system

9.8 23.1 16.9 24.8 14.5 24.3 21.3

 Gastro-intestinal 1.0 0.2 1.7 1.0 1.5 0.7 1.0

 Genital/urinary 12.6 7.4 12.3 10.4 12.4 9.5 10.4

 Head/ears/eyes/
nose/throat

10.0 3.5 3.9 2.2 5.9 2.6 3.6

 Integumentary 12.5 16.2 14.3 14.4 13.7 15.0 14.6

 Instruments 3.2 3.3 4.2 6.1 3.9 5.3 4.9

 Lymph 0.7 0.0 0.1 0.0 0.3 0.0 0.1

 Reproductive 5.8 4.2 1.4 0.8 2.9 1.9 2.2

 Respiratory 18.7 14.3 24.4 20.8 22.5 18.9 20.0

 Skeletal 0.0 0.5 0.1 0.2 0.1 0.3 0.2

 Muscular 1.5 0.3 0.9 0.2 1.1 0.2 0.5

Ward/clinic

 Clinic/office 6.7 6.5 3.5 5.4 4.5 5.7 5.4

 Emergency 
room

3.3 4.7 4.5 4.0 4.1 4.2 4.2

 Medicine 
general

30.9 40.2 31.6 41.3 31.4 40.9 38. 0

 Medicine ICU 8.0 7.0 9.6 11.5 9.1 10.1 9.8

 Nursing home/
rehab

0.0 0.1 0.1 0.1 0.1 0.1 0.1

 Pediatric general 4.0 6.5 4.3 5.3 4.2 5.7 5.2

 Pediatric ICU 3.7 7.1 5.2 6.4 4.7 6.6 6.0

 Surgery general 4.0 9.6 6.7 9.1 5.8 9.2 8.2

 Surgery ICU 1.0 1.5 1.7 1.0 1.5 1.1 1.2

In/outpatient

 Inpatient 51.7 71.8 59.2 74.5 56.7 73.7 68.4

 Outpatient 10.0 11.3 8.2 9.5 8.8 10.0 9.7
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Table 2  Antimicrobial susceptibility [MIC90 (mg/L), % susceptible] of clinically important gram-positive and gram-nega-
tive isolates collected in Mexico, T.E.S.T. 2005–2012

Pathogen 2005–2007 2008–2012 2005–2012

MIC90 %S MIC90 %S MIC90 %S

Gram-positive

 E. faecalis n = 142 n = 332 n = 474

  Ampicillin 2 100 2 97.9 2 98.5

  Levofloxacin ≥64 58.5 ≥64 56.0 ≥64 56.8

  Linezolid 2 100 2 99.1 2 99.4

  Minocycline ≥16 30.3 ≥16 32.2 ≥16 31.6

  Penicillin 4 100 8 97.3 4 98.1

  Tigecycline 0.25 100 0.25 100 0.25 100

  Vancomycin 2 100 2 99.4 2 99.6

 E. faecium n = 42 n = 94 n = 136

  Ampicillin ≥32 19.0 ≥32 53.2a ≥32 42.6

  Levofloxacin ≥64 19.0 ≥64 30.9 ≥64 27.2

  Linezolid 2 100 2 100 2 100

  Minocycline ≥16 54.8 ≥16 68.1 ≥16 64.0

  Penicillin ≥16 21.4 ≥16 51.1a ≥16 41.9

  Tigecycline 0.12 100 0.25 100 0.25 100

  Vancomycin ≥64 66.7 ≥64 78.7 ≥64 75.0

 S. aureus n = 294 n = 728 n = 1022

  Levofloxacin 32 60.9 32 50.3a 32 53.3

  Linezolid 2 100 2 100 2 100

  Minocycline 0.5 99.7 1 98.2 1 98.6

  Tigecycline 0.25 100 0.25 100 0.25 100

  Vancomycin 1 100 1 100 1 100

 S. agalactiae n = 114 (33/81) n = 173 n = 287 (33/254)

  Ampicillin 0.12 100 0.12 100 0.12 100

  Ceftriaxone 0.12 100 0.12 100 0.12 100

  Levofloxacin 1 99.1 1 98.8 1 99.0

  Linezolid 1 100 1 100 1 100

  Meropenem ≤0.12 100 0.25 100 ≤0.12 100

  Minocycline ≥16 23.7 ≥16 21.4 ≥16 22.3

  Penicillin 0.12 100 0.12 100 0.12 100

  Tigecycline 0.06 100 0.12 100 0.12 100

  Vancomycin 0.5 100 1 100 0.5 100

 S. pneumoniae, non-CSF n = 120 (19/101) (78b) n = 141 (122b) n = 261 (19/242) (200b)

  Amoxicillin-clavulanate 1 99.2 4 86.5a 2 92.3

  Azithromycin 64 69.2 ≥128 54.9 ≥128 60.5

  Ceftriaxone 1 98.3 1 90.8 1 94.3

  Clarithromycin ≥128 70.5 ≥128 55.7 ≥128 61.5

  Clindamycin ≥128 84.6 ≥128 78.7 ≥128 81.0

  Erythromycin 64 67.9 ≥128 54.9 64 60.0

  Imipenem 0.5 84.2 – – – –

  Levofloxacin 1 99.2 2 100 1 99.6

  Linezolid 1 100 1 100 1 100

  Meropenem 0.5 73.3 0.5 62.4 0.5 66.9

  Minocycline 8 65.8 ≥16 52.5 ≥16 58.6

  Penicillinc

   Oral 2 46.7 4 22.7a 2 33.7

   Parenteral (non-meningitis) 2 97.5 4 89.4a 2 93.1
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Table 2  continued

Pathogen 2005–2007 2008–2012 2005–2012

MIC90 %S MIC90 %S MIC90 %S

   Parenteral (meningitis) 2 46.7 4 22.7a 2 33.7

  Tigecycline 0.06 100 0.06 100 0.06 100

  Vancomycin 0.5 100 0.5 100 0.5 100

 S. pneumoniae, CSF n = 9 (2/7) (8b) n = 18 (0/18) (16b) n = 27 (2/25) (24b)

  Azithromycin – [8] ≥128 75.0 32 83.3

  Ceftriaxone – [8] 1 83.3 1 85.2

  Clarithromycin – [8] 8 75.0 4 83.3

  Clindamycin – [8] 64 87.5 0.25 91.7

  Erythromycin – [8] 16 81.3 4 87.5

  Imipenem – [2] – – – –

  Levofloxacin – [9] 2 100 2 100

  Linezolid – [9] 2 100 2 100

  Meropenem – [6] 0.5 66.7 0.5 72.0

  Minocycline – [6] ≥16 33.3 ≥16 44.4

  Penicillinc

   Parenteral (meningitis) – [5] 2 27.8 2 37.0

  Tigecycline – [9] 0.06 100 0.06 100

  Vancomycin – [9] 1 100 0.5 100

Gram-negative

 Enterobacter spp. n = 283 (58/225) (277d) n = 530 n = 813 (58/755) (807d)

  Amikacin 32 86.9 16 94.0a 16 91.5

  Amoxicillin-clavulanate ≥64 7.1 ≥64 11.9 ≥64 10.2

  Ampicillin ≥64 1.1 ≥64 8.3a ≥64 5.8

  Cefepime 16 87.3 16 89.4 16 88.7

  Ceftriaxone ≥128 56.5 ≥128 59.1 ≥128 58.2

  Imipenem 0.5 100 – – – –

  Levofloxacin 8 85.9 8 85.7 8 85.7

  Meropenem 0.25 97.3 0.5 95.5 0.5 96.0

  Minocycline ≥32 67.5 ≥32 60.8 ≥32 63.1

  Piperacillin-tazobactam 128 76.7 128 76.8 128 76.8

  Tigecycline 1 96.5 1 96.6 1 96.6

 E. coli n = 333 (99/234) n = 863 (17/846) n = 1196 (116/1080)

  Amikacin 8 96.1 16 91.4a 16 92.7

  Amoxicillin-clavulanate 32 45.0 ≥64 37.1a 32 39.3

  Ampicillin ≥64 15.0 ≥64 14.0 ≥64 14.3

  Cefepime ≥64 64.6 ≥64 63.8 ≥64 64.0

  Ceftriaxone ≥128 45.3 ≥128 43.5 ≥128 44.0

  Imipenem 0.5 99.0 ≤0.06 100 0.25 99.1

  Levofloxacin ≥16 35.7 ≥16 33.8 ≥16 34.4

  Meropenem 0.25 95.3 0.25 98.6 0.25 97.9

  Minocycline 16 64.3 ≥32 49.1a ≥32 53.3

  Piperacillin-tazobactam 16 90.1 128 74.3a 64 78.7

  Tigecycline 0.5 99.7 0.5 99.7 0.5 99.7

 K. oxytoca n = 45 (10/35) (44d) n = 91 (1/90) n = 136 (11/125) (135d)

  Amikacin 8 97.8 8 94.5 8 95.6

  Amoxicillin-clavulanate 32 84.4 32 68.1 32 73.5

  Ampicillin ≥64 0.0 ≥64 2.2 ≥64 1.5

  Cefepime 8 93.3 32 82.4 16 86.0

  Ceftriaxone 32 75.6 ≥128 68.1 ≥128 70.6
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Table 2  continued

Pathogen 2005–2007 2008–2012 2005–2012

MIC90 %S MIC90 %S MIC90 %S

  Imipenem 0.25 100 – [1] 0.25 100

  Levofloxacin ≥16 84.4 ≥16 73.6 ≥16 77.2

  Meropenem 0.25 100 0.5 95.6 0.25 96.8

  Minocycline 16 75.6 16 74.7 16 75.0

  Piperacillin-tazobactam 8 95.6 32 83.5 32 87.5

  Tigecycline 1 97.8 1 97.8 1 97.8

 K. pneumoniae n = 236 (66/170) (233d) n = 616 n = 852 (66/786) (849d)

  Amikacin 16 91.1 ≥128 83.9a 64 85.9

  Amoxicillin-clavulanate 32 67.8 ≥64 55.5a ≥64 58.9

  Ampicillin ≥64 1.3 ≥64 2.8 ≥64 2.4

  Cefepime 4 93.6 ≥64 80.5a 32 84.2

  Ceftriaxone 64 68.2 ≥128 56.2a ≥128 59.5

  Imipenem 1 100 – – – –

  Levofloxacin ≥16 78.0 ≥16 73.9 ≥16 75.0

  Meropenem 0.12 98.2 0.5 94.6 0.5 95.4

  Minocycline 16 70.8 ≥32 55.5a ≥32 59.7

  Piperacillin-tazobactam 64 82.6 ≥256 70.1a ≥256 73.6

  Tigecycline 1 97.9 2 95.0 2 95.8

 S. marcescens n = 102 (26/76) (101d) n = 211 n = 313 (26/287) (312d)

  Amikacin 64 77.5 32 86.3 64 83.4

  Amoxicillin-clavulanate ≥64 15.7 ≥64 7.6a ≥64 10.2

  Ampicillin ≥64 5.0 ≥64 4.7 ≥64 4.8

  Cefepime 16 87.3 8 90.0 16 89.1

  Ceftriaxone ≥128 64.7 64 69.7 ≥128 68.1

  Imipenem 2 88.5 – – – –

  Levofloxacin 4 85.3 8 85.3 8 85.3

  Meropenem 0.5 93.4 0.5 92.9 0.5 93.0

  Minocycline 16 74.5 16 50.2a 16 58.1

  Piperacillin-tazobactam 128 81.4 64 82.9 64 82.4

  Tigecycline 2 97.1 2 95.3 2 95.8

 H. influenzae n = 117 (24/93) n = 111 (5/106) n = 228 (29/199)

  Amoxicillin-clavulanate 2 98.3 4 97.3 2 97.8

  Ampicillin 32 59.8 32 79.3a 32 69.3

  Cefepime ≤0.5 98.3 ≤0.5 100 ≤0.5 99.1

  Ceftriaxone 0.12 100 0.12 97.3 0.12 98.7

  Imipenem 0.5 100 – [5] 0.5 100

  Levofloxacin 0.03 100 0.03 100 0.03 100

  Meropenem 0.25 100 0.12 100 0.25 100

  Minocycline 1 100 1 98.2 1 99.1

  Piperacillin-tazobactam ≤0.06 99.1 0.12 99.1 0.12 99.1

  Tigecycline 0.25 99.1 0.25 97.3 0.25 98.2

 Acinetobacter spp. n = 129 (33/96) n = 324 n = 453 (33/420)

  Amikacin ≥128 60.5 ≥128 45.1a ≥128 49.4

  Cefepime 32 56.6 ≥64 51.2 ≥64 52.8

  Ceftazidime ≥64 28.7 ≥64 30.6 ≥64 30.0

  Ceftriaxone ≥128 28.7 ≥128 30.9 ≥128 30.2

  Imipenem 2 97.0 – – – –

  Levofloxacin 8 44.2 ≥16 40.1a ≥16 41.3

  Meropenem 16 76.0 ≥32 63.3a ≥32 66.2



Page 8 of 14Morfin‑Otero et al. Ann Clin Microbiol Antimicrob  (2015) 14:53 

et  al. [3] for isolates collected in Mexico in 2011 where 
the MRSA rate was 48  % and 26  % of enterococci were 
vancomycin-resistant. ESBL rates among E. coli and K. 
pneumoniae were higher in the Jones et al. [3] report (71 
and 56 %); however, as with this study, the rate of ESBLs 
was higher among E. coli than K. pneumoniae. SENTRY, 
which began in 1997, is also an antimicrobial surveillance 
program which collects isolates and antimicrobial sus-
ceptibility data from around the globe. Comparing sus-
ceptibility results for E. coli collected in Mexico through 
the SENTRY surveillance study (2008–2010) with results 
from this T.E.S.T. study show they were broadly compara-
ble, with high levels of quinolone resistance occurring in 
both studies (34.4 % levofloxacin resistance in the current 
study, 35.4  % ciprofloxacin resistance in SENTRY) [16]. 
In addition, Klebsiella spp. susceptibility to piperacillin-
tazobactam, ceftriaxone and cefepime was approximately 
7–9 % higher in the SENTRY study than in T.E.S.T. for K. 
pneumoniae, although susceptibility was similar among 
other antimicrobial agents [16]. Carbapenem resistance 
among K. pneumoniae and E. coli was low in T.E.S.T. as 
has been previously reported for Mexico [17].

There was a variation in the susceptibility of S. pneu-
moniae to penicillin which was dependent on the break-
points applied. For the 2005–2012 time period among 
non-CSF isolates susceptibility was 33.7  % using the 
oral or parenteral (meningitis) breakpoints but 93.1  % 
when using the parenteral (non-meningitis) breakpoints. 

Penicillin oral breakpoints are S  ≤  0.06  mg/L; I 
0.12–1 mg/L; R ≥ 2 mg/L; whereas those for parenteral 
administered penicillin are: non-meningitis (S ≤ 2 mg/L; 
I 4  mg/L; R ≥  8  mg/L) and meningitis (S ≤  0.06  mg/L; 
R ≥ 0.12 mg/L). This highlights the importance of using 
the correct breakpoints when interpreting the suscepti-
bility of an organism.

When comparing rates of resistance in Mexico with 
other countries the rate of MRSA (45 %) was similar to 
that reported for other Latin American countries such 
as Guatemala (49  %) and Panama (47  %) [3]. With lim-
ited treatment options, concern continues about the 
prevalence of MRSA globally and although rates have 
been reported to be decreasing in some regions, most 
notably North America and Europe [18, 19], the preva-
lence in other areas, particularly developing countries, is 
of increasing concern [20]. In their study of isolates col-
lected between 2010 and 2014 Conceição et al. reported 
rates of 61.6 % in Angola, 25.5 % in São Tomé and Prínc-
ipe, 5.6  % in Cape Verde and 0.0  % in East Timor [21]. 
At 22 % the rate of vancomycin-resistant E. faecium was 
similar to that reported for enterococci in Brazil by Jones 
et al. (27 %) for 2011 [3]. It is also comparable to the rate 
of 18.5  % reported for Saudi Arabia in 2009–2010 [22]. 
The rates of ESBL producing E. coli and K. pneumoniae, 
although high, were relatively low when compared to 
some other countries. Sharma et al. reported that 67 % of 
Klebsiella spp. and 57 % of E. coli were ESBL producers 

Table 2  continued

Pathogen 2005–2007 2008–2012 2005–2012

MIC90 %S MIC90 %S MIC90 %S

  Minocycline 4 93.8 16 77.5a 16 82.1

  Piperacillin-tazobactam ≥256 46.5 ≥256 42.0 ≥256 43.3

 P. aeruginosa n = 214 (70/144) n = 655 (1/654) n = 869 (71/798)

  Amikacin 64 71.5 ≥128 64.3 ≥128 66.1

  Cefepime ≥64 62.6 ≥64 59.5 ≥64 60.3

  Ceftazidime ≥64 51.9 ≥64 50.5 ≥64 50.9

  Imipenem ≥32 54.3 – [0] ≥32 53.5

  Levofloxacin ≥16 59.8 ≥16 58.3 ≥16 58.7

  Meropenem ≥32 56.3 ≥32 56.0 ≥32 56.0

  Piperacillin-tazobactam ≥256 61.2 ≥256 56.6 ≥256 57.8

n values given in parentheses indicate the number of isolates tested against imipenem and meropenem, respectively. When no values are given in parenthesis, all 
isolates were tested against meropenem

When <10 isolates MIC90 data are not presented and the number of isolates susceptible or resistant are presented in parenthesis

When no isolates were tested against imipenem between 2008 and 2012, imipenem data for 2005–2012 are not presented as the only data available are for the 
2005–2007 period

CSF cerebrospinal fluid
a  Indicates a statistically significant change in susceptibility (p < 0.01 by the Cochran–Mantel–Haenszel test) between 2005–2007 and 2008–2012
b  Against S. pneumoniae the n values given in parenthesis indicate the number of isolates tested against imipenem, meropenem or macrolides/clindamycin
c  Against S. pneumoniae from non-cerebrospinal sources (non-CSF) three sets of breakpoints were applied: penicillin parenteral (non-meningitis); penicillin parenteral 
(meningitis), and penicillin oral. For isolates from CSF the penicillin parenteral (meningitis) breakpoints were applied
d  Against Enterobacteriaceae the n value in parenthesis the number of isolates tested against ampicillin
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Table 3  Antimicrobial susceptibility [MIC90 (mg/L), % susceptible, % resistant] of  methicillin-resistant S. aureus, methi-
cillin-susceptible S. aureus, extended-spectrum β-lactamase-positive E. coli and K. pneumoniae and multidrug-resistant 
Acinetobacter spp., collected in Mexico, T.E.S.T. 2005–2012

Pathogen 2005–2007 2008–2012 2005–2012

MIC90 %S %R MIC90 %S %R MIC90 %S %R

S. aureus, MRSA n = 112 n = 349 n = 461

 Levofloxacin 32 5.4 94.6 ≥64 8.0 90.8 ≥64 7.4 91.8

 Linezolid 2 100 0.0 2 100 0.0 2 100 0.0

 Minocycline 0.5 100 0.0 1 97.4 1.4 1 98.0 1.1

 Tigecycline 0.25 100 – 0.5 100 – 0.5 100 –

 Vancomycin 1 100 0.0 1 100 0.0 1 100 0.0

S. aureus, MSSA n = 182 n = 379 n = 561

 Levofloxacin 0.5 95.1 3.3 2 89.2 7.9 1 91.1 6.4

 Linezolid 4 100 0.0 4 100 0.0 4 100 0.0

 Minocycline 1 99.5 0.5 0.5 98.9 0.8 0.5 99.1 0.7

 Tigecycline 0.25 100 – 0.25 100 – 0.25 100 –

 Vancomycin 1 100 0.0 1 100 0.0 1 100 0.0

E. coli, ESBL-positive n = 134 (43/91) n = 333 (9/324) n = 467 (52/415)

 Amikacin 16 94.8 0.7 32 87.7 6.3a 32 89.7 4.7

 Amoxicillin-clavulanate 32 26.1 29.1 32 16.8 40.2a 32 19.5 37.0

 Ampicillin ≥64 0.7 99.3 ≥64 2.1 97.6 ≥64 1.7 98.1

 Cefepime ≥64 23.9 58.2 ≥64 26.1 60.7 ≥64 25.5 60.0

 Ceftriaxone ≥128 0.0 98.5 ≥128 3.6 95.8 ≥128 2.6 96.6

 Imipenem 0.5 97.7 2.3 – [9] [0] 0.25 98.1 1.9

 Levofloxacin ≥16 3.0 94.8 ≥16 7.8 90.7 ≥16 6.4 91.9

 Meropenem 0.12 100 0.0 0.25 97.2 1.5 0.25 97.8 1.2

 Minocycline 16 70.1 17.9 ≥32 47.7 36.0a ≥32 54.2 30.8

 Piperacillin-tazobactam 32 88.8 2.2 128 63.4 15.3a 128 70.7 11.6

 Tigecycline 0.5 100 0.0 0.5 100 0.0 0.5 100 0.0

K. pneumoniae, ESBL-positive n = 59 (15/44) n = 154 n = 213 (15/198)

 Amikacin ≥128 76.3 16.9 ≥128 59.1 32.5 ≥128 63.8 28.2

 Amoxicillin-clavulanate ≥64 25.4 40.7 ≥64 13.6 53.9 ≥64 16.9 50.2

 Ampicillin ≥64 1.7 96.6 ≥64 0.0 100 ≥64 0.5 99.1

 Cefepime 32 81.4 11.9 ≥64 53.9 36.4a ≥64 61.5 29.6

 Ceftriaxone ≥128 3.4 91.5 ≥128 0.0 98.1 ≥128 0.9 96.2

 Imipenem 1 100 0.0 – – – – – –

 Levofloxacin ≥16 45.8 49.2 ≥16 44.8 51.3 ≥16 45.1 50.7

 Meropenem 0.5 95.5 4.5 0.5 93.5 4.5 0.5 93.9 4.5

 Minocycline ≥32 52.5 32.2 ≥32 40.3 41.6 ≥32 43.7 39.0

 Piperacillin-tazobactam ≥256 49.2 25.4 ≥256 37.0 37.0 ≥256 40.4 33.8

 Tigecycline 2 96.6 0.0 2 94.8 0.6 2 95.3 0.5

Acinetobacter spp., MDR n = 33 (7/26) n = 161 n = 194 (7/187)

Amikacin ≥128 12.1 84.8 ≥128 6.8 83.2 ≥128 7.7 83.5

Cefepime ≥64 6.1 48.5 ≥64 14.9 63.4 ≥64 13.4 60.8

Ceftazidime ≥64 0.0 93.9 ≥64 4.3 91.3 ≥64 3.6 91.8

Ceftriaxone ≥128 0.0 100 ≥128 1.9 96.3 ≥128 1.5 96.9

Imipenem – [6] [1] – – – – – –

Levofloxacin ≥16 0.0 90.9 ≥16 1.2 95.7 ≥16 1.0 94.8

Meropenem 16 34.6 53.8 ≥32 29.8 64.6 ≥32 30.5 63.1
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in Jaipur, India in 2011–2012 [23]. Results for amikacin 
were similar in this study to the results reported for E. 
coli collected in Egypt but for K. pneumoniae susceptibil-
ity was higher in T.E.S.T. [24].

Antimicrobial susceptibility among P. aeruginosa was 
similar between the two time periods in this study and 
susceptibility rates were similar to those reported by 
Jones et  al. for Latin America in 2011 [3]. In contrast, 
rates of susceptibility to amikacin and meropenem were 
lower than those reported by Gad et al. for P. aeruginosa 
isolates collected from three Egyptian hospitals [25]. In 
the case of Acinetobacter spp., resistance to merope-
nem increased from 17.7  % in 2005–2007 to 33.0  % in 
2008–2012 in this T.E.S.T. program. Carbapenem resist-
ance among Acinetobacter spp. has been reported both 
in Latin America and globally. For example, Oliveira 
et  al. reported an increase in carbapenem resistance in 
Brazil from 7.4 % to 57.5 % between 1999 and 2008 and 
Aydin et  al. reported an increase in meropenem resist-
ance among Acinetobacter spp. collected from an ICU 
in Turkey from 26 % in 2008 to 95 % in 2011 [26, 27]. In 
addition a rate of 26 % was reported for a single center in 
India in 2013 although this was a decrease from the 33 % 
previously reported [28]. Other countries, such as Libya, 
are also reporting the emergence of carbapenem resistant 
A. baumannii [29]. These results demonstrate the vari-
ability in antimicrobial resistance between countries and 
with increasing globalization the importance of a global 
strategy to control the spread of resistant organisms.

Rossi et al. [9] examined the in vitro activity of tigecy-
cline and comparator agents against gram-positive and 
gram-negative isolates from Latin America, including 
Mexico, between 2004 and 2007 as a part of the T.E.S.T. 
study. These data from Mexico are included in the cur-
rent report but are updated with additional isolates. 
The most dramatic changes in susceptibility between 
2005–2007 and 2008–2012 occurred among S. pneumo-
niae, E. faecium, K. pneumoniae and K. oxytoca: ≥10 % 
changes were observed for seven antimicrobial agents 
against non-CSF S. pneumoniae [amoxicillin-clavu-
lanate, azithromycin, clarithromycin, erythromycin, 

meropenem, minocycline and penicillin (using oral or 
parenteral meningitis breakpoints], five antimicrobials 
against E. faecium (ampicillin, levofloxacin, minocycline, 
penicillin and vancomycin), five agents against K. pneu-
moniae (amoxicillin-clavulanate, cefepime, ceftriaxone, 
minocycline and piperacillin-tazobactam) and four anti-
microbials against K. oxytoca (amoxicillin-clavulanate, 
cefepime, levofloxacin and piperacillin-tazobactam). All 
changes for E. faecium were increases in susceptibility, 
while for S. pneumoniae, K. pneumoniae and K. oxytoca 
decreases in susceptibility were seen. These changes in 
antimicrobial susceptibility may be due to a number of 
factors. Firstly, between the two time periods there was 
an increase in the number of isolates coming from inpa-
tients in this study. As isolates from inpatients and outpa-
tients are known to have different susceptibility profiles 
this could impact the susceptibility profile of the isolates 
as a whole. Also, increases in susceptibility can be due to 
improved antimicrobial stewardship whereas decreases 
in susceptibility may occur due to failures in steward-
ship and center specific outbreaks. Over the counter dis-
pensing of antimicrobials is common in Latin America 
and in 2010 Mexico sought to enforce existing laws to 
reduce their consumption. This policy has been shown 
to have decreased consumption [30], although a trend for 
decreasing consumption had already been detected [31]. 
The relationship between antimicrobial consumption and 
resistance is well known.

Linezolid, meropenem, tigecycline and vancomycin 
retained their good in vitro activity against most T.E.S.T. 
pathogens between 2005–2007 and 2008–2012.

The in vitro activity for tigecycline reported here is also 
comparable with the literature. Gales et al. [32] reported 
that all isolates of Enterococcus spp., S. aureus, S. pneu-
moniae, and H. influenzae collected in Latin America 
between 2000 and 2002 were susceptible to tigecycline 
at MICs of ≤4 mg/L and MIC90s were ≤0.5 mg/L. Tige-
cycline retained this level of activity in the current study, 
with MIC90s for these organisms at  ≤0.25  mg/L and 
100  % tigecycline susceptibility reported among iso-
lates of Enterococcus spp., S. aureus and S. pneumoniae 

n values given in parentheses indicate the number of isolates tested against imipenem and meropenem, respectively

When <10 isolates MIC90 data are not presented and the number of isolates susceptible or resistant are presented in parenthesis

When no isolates were tested against imipenem between 2008 and 2012, imipenem data for 2005–2012 are not presented as the only data available are for the 
2005–2007 period
a  A statistically significant change in susceptibility (p < 0.01 by the Cochran–Mantel–Haenszel test) between 2005–2007 and 2008–2012

Pathogen 2005–2007 2008–2012 2005–2012

MIC90 %S %R MIC90 %S %R MIC90 %S %R

Minocycline 2 90.9 6.1 ≥32 62.1 28.6a ≥32 67.0 24.7

Piperacillin-tazobactam ≥256 9.1 84.8 ≥256 3.1 92.5 ≥256 4.1 91.2

Table 2  continued
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Table 4  Antimicrobial susceptibility [MIC90 (mg/L), % susceptible, % resistant] of  carbapenem-resistant gram-negative 
organisms

Pathogen 2005–2007 2008–2012 2005–2012

MIC90 %S %R MIC90 %S %R MIC90 %S %R

Enterobacter spp. n = 5 n = 14 n = 19

Amikacin – [0] [3] ≥128 64.3 35.7 ≥128 47.4 42.1

Amoxicillin-clavulanate – [0] [5] ≥64 14.3 78.6 ≥64 10.5 84.2

Ampicillin – [0] [5] ≥64 14.3 85.7 ≥64 10.5 89.5

Cefepime – [0] [4] ≥64 50.0 35.7 ≥64 36.8 47.4

Ceftriaxone – [0] [5] ≥128 14.3 85.7 ≥128 10.5 89.5

Levofloxacin – [0] [5] ≥16 71.4 21.4 ≥16 52.6 42.1

Minocycline – [5] [0] ≥32 28.6 42.9 ≥32 47.4 31.6

Piperacillin-tazobactam – [1] [4] ≥256 42.9 42.9 ≥256 36.8 52.6

Tigecycline – [5] [0] 2 100 0.0 2 100 0.0

E. coli n = 5 n = 8 n = 13

Amikacin – [5] [0] – [2] [5] ≥128 53.8 38.5

Amoxicillin-clavulanate – [1] [2] – [0] [4] ≥64 7.7 46.2

Ampicillin – [3] [2] – [0] [8] ≥64 23.1 76.9

Cefepime – [3] [1] – [1] [7] ≥64 30.8 61.5

Ceftriaxone – [2] [3] – [0] [8] ≥128 15.4 84.6

Levofloxacin – [4] [1] – [0] [8] ≥16 30.8 69.2

Minocycline – [1] [3] – [1] [6] ≥32 15.4 69.2

Piperacillin-tazobactam – [2] [1] – [4] [4] ≥256 46.2 38.5

Tigecycline – [5] [0] – [8] [0] 2 100 0.0

K. pneumoniae n = 3 n = 25 n = 28

Amikacin – [1] [0] ≥128 20.0 68.0 ≥128 21.4 60.7

Amoxicillin-clavulanate – [0] [3] ≥64 4.0 92.0 ≥64 3.6 92.9

Ampicillin – [0] [3] ≥64 0.0 100 ≥64 0.0 100

Cefepime – [1] [2] ≥64 12.0 76.0 ≥64 14.3 75.0

Ceftriaxone – [0] [3] ≥128 0.0 100 ≥128 0.0 100

Levofloxacin – [0] [2] ≥16 4.0 88.0 ≥16 3.6 85.7

Minocycline – [2] [0] ≥32 16.0 72.0 ≥32 21.4 64.3

Piperacillin-tazobactam – [0] [2] ≥256 8.0 80.0 ≥256 7.1 78.6

Tigecycline – [3] [0] 4 84.0 0.0 4 85.7 0.0

S. marcescens n = 5 n = 13 n = 18

Amikacin – [2] [3] ≥128 38.5 53.8 ≥128 38.9 55.6

Amoxicillin-clavulanate – [0] [5] ≥64 0.0 100 ≥64 0.0 100

Ampicillin – [0] [5] ≥64 0.0 92.3 ≥64 0.0 94.4

Cefepime – [2] [2] ≥64 38.5 46.2 ≥64 38.9 44.4

Ceftriaxone – [0] [5] ≥128 23.1 76.9 ≥128 16.7 83.3

Levofloxacin – [1] [3] ≥16 23.1 69.2 ≥16 22.2 66.7

Minocycline – [3] [1] ≥32 7.7 76.9 ≥32 22.2 61.1

Piperacillin-tazobactam – [0] [5] ≥256 23.1 61.5 ≥256 16.7 72.2

Tigecycline – [4] [0] 8 84.6 15.4 8 83.3 11.1

Acinetobacter spp. n = 18 n = 107 n = 125

Amikacin ≥128 22.2 61.1 ≥128 8.4 76.6 ≥128 10.4 74.4

Cefepime ≥64 11.1 55.6 ≥64 9.3 70.1 ≥64 9.6 68.0

Ceftazidime ≥64 0.0 94.4 ≥64 1.9 95.3 ≥64 1.6 95.2

Ceftriaxone ≥128 0.0 100 ≥128 0.9 99.1 ≥128 0.8 99.2

Levofloxacin ≥16 0.0 66.7 ≥16 2.8 90.7 ≥16 2.4 87.2

Minocycline 2 94.4 5.6 ≥32 64.5 28.0 ≥32 68.8 24.8
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and 98.2  % susceptibility reported among H. influenzae 
isolates. It is however, important to note that the break-
points applied in this study are lower than the MIC cutoff 
used by Gales et  al. [32]. The in  vitro activity of tigecy-
cline reported in this study for Mexico is also similar to 
that reported by Jones et  al. [3] for gram-positive and 
gram-negative isolates collected across Latin America in 
2011.

Breakpoints are not currently available for tigecycline 
against Acinetobacter spp. In this study the MIC90 for 
tigecycline was 0.5 mg/L between 2005–2007 and 2 mg/L 
for 2008–2012 and against MDR Acinetobacter spp. were 
one doubling dilution higher (1 and 4 mg/L, respectively). 
From the literature Garza-González et  al. [4] reported 
an MIC90 for tigecycline of 0.5 mg/L among 550 A. bau-
mannii isolates collected between 2006 and 2009 from 
a tertiary care teaching hospital in Mexico and Mendes 
et al. [33] reported a tigecycline MIC90 of 1 mg/L among 

277 Acinetobacter spp. isolates from Mexico collected 
between 2005 and 2009.

As discussed above, rates of ESBL production are 
high in Mexico. In the current study, all ESBL-positive 
E. coli isolates and 95.3 % of ESBL-positive K. pneumo-
niae isolates were susceptible to tigecycline (data not 
shown). E. cloacae and S. marcescens are not examined 
for ESBLs as part of the T.E.S.T. study, but low levels 
of tigecycline non-susceptibility were observed in this 
study for both Enterobacter spp. (3.4 %) and S. marces-
cens (4.2 %). Silva-Sanchez et al. [34] have also reported 
good in vitro activity for tigecycline against ESBL-pos-
itive Enterobacteriaceae in Mexico (as well as MRSA), 
with  >94  % of 1055 isolates reported as tigecycline 
susceptible. Tigecycline thus appears to be a potential 
treatment option in Mexico, where the prevalence of 
pathogens resistant to commonly-used antimicrobials 
is high.

When <10 isolates MIC90 data are not presented and the number of isolates susceptible or resistant are presented in parenthesis

Table 4  continued

Pathogen 2005–2007 2008–2012 2005–2012

MIC90 %S %R MIC90 %S %R MIC90 %S %R

Piperacillin-tazobactam ≥256 5.6 94.4 ≥256 0.9 97.2 ≥256 1.6 96.8

P. aeruginosa n = 75 n = 226 n = 301

Amikacin 64 38.7 42.7 ≥128 28.8 55.3 ≥128 31.2 52.2

Cefepime ≥64 25.3 60.0 ≥64 21.2 61.1 ≥64 22.3 60.8

Ceftazidime ≥64 25.3 64.0 ≥64 15.9 76.5 ≥64 18.3 73.4

Levofloxacin ≥16 26.7 69.3 ≥16 19.5 70.8 ≥16 21.3 70.4

Piperacillin-tazobactam ≥256 24.0 44.0 ≥256 24.8 49.1 ≥256 24.6 47.8

Table 5  Rates of resistant phenotypes collected in Mexico, T.E.S.T. 2005–2012

BL β-lactamase, ESBL extended-spectrum β-lactamase, R resistant, MDR multidrug resistant
a  A statistically significant change in the percentage of resistant phenotype (p < 0.05 by the Fisher’s exact test) between 2005–2007 and 2008–2012
b  A total of 129 Acinetobacter spp. were collected between 2005 and 2007; however, only 96 were tested against meropenem

Pathogen 2005–2007 2008–2012 2005–2012

N n (%) N n (%) N n (%)

Gram-positive

 E. faecalis, vancomycin-R 142 0 (0.0) 332 2 (0.6) 474 2 (0.4)

 E. faecium, vancomycin-R 42 12 (28.6) 94 18 (19.1) 136 30 (22.1)

 S. aureus, methicillin-R 294 112 (38.1) 728 349 (47.9) 1022 461 (45.1)

Gram-negative

 E. coli, ESBL-positive 333 134 (40.2) 863 333 (38.6) 1196 467 (39.0)

 K. oxytoca, ESBL-positive 45 7 (15.6) 91 14 (15.4) 136 21 (15.4)

 K. pneumoniae, ESBL-positive 236 59 (25.0) 616 154 (25.0) 852 213 (25.0)

 H. influenzae, BL-positive 117 44 (37.6) 111 21 (18.9)a 228 65 (28.5)

 Acinetobacter spp., meropenem-R 96b 17 (17.7) 324 107 (33.0)a 453 124 (27.4)

 Acinetobacter spp., MDR 129 33 (25.6) 324 161 (49.7)a 453 194 (42.8)
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Limitations of this study include the center repetition 
between years, with nine of the 16 centers participat-
ing for between two and four of the 8 years of study. The 
types of centers involved in surveillance studies can also 
influence results as large university hospitals and smaller 
community based hospitals can have differing levels of 
resistance. Both university and community based hospi-
tals submitted isolates to the T.E.S.T. program in Mexico.

Surveillance studies such as SENTRY and T.E.S.T. are 
critical tools for monitoring the development and spread 
of resistance among important clinical pathogens, assist-
ing healthcare professionals in making appropriate judg-
ments for the best use of antimicrobials on regional or 
national levels and supporting antibiotic stewardship 
efforts [35, 36]. Tigecycline demonstrates good in  vitro 
activity against most of the pathogens examined in this 
study, and should continue to be a useful option in the 
treatment of infectious diseases in Mexico.
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