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Abstract

To identify evolutionary events from the footprints left in the patterns of genetic variation in a 

population, people use many statistical frameworks, including neutrality tests. In datasets from 

current high throughput sequencing and genotyping platforms, it is common to have missing data 

and low-confidence SNP calls at many segregating sites. However, the traditional statistical 

framework for neutrality tests does not allow for these possibilities; therefore the usual way of 

treating missing data is to ignore segregating sites with missing/low confidence calls, regardless of 

the good SNP calls at these sites in other individuals. In this work, we propose a modified 

neutrality test, Extended Tajima’s D, which incorporates missing data and SNP-calling 

uncertainties. Because we do not specify any particular error-generating mechanism, this approach 

is robust and widely applicable. Simulations show that in most cases the power of the new test is 

better than the original Tajima’s D, given the same type I error. Applications to real data show that 

it detects fewer outliers associated with low quality data.
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1. INTRODUCTION

Empowered by modern high-throughout sequencing technologies, more and more 

evolutionary insights are revealed and it was predicted that a golden age is coming 

(Hernandez et al. 2011; Przeworski 2011). However, some of the most important statistical 

frameworks to detect evolutionary events within a population, traditional frequency-based 

neutrality tests, e.g. Tajima’s D (Tajima 1989), Fu & Li’s D (Fu and Li 1993) and Fay & 
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Wu’s H (Fay and Wu 2000), all assume that the sample size is the same for different 

segregating sites. That is, if we find a total of S segregating sites in n chromosomes, then for 

any given site we must observe one of its alleles in all the chromosomes. (Actually, in 

standard analytical tools, e.g., DnaSP (Rozas et al. 2003), SNPs with even one missing call 

in the input file will be discarded.) However, for the current high-throughput sequencing 

platforms, e.g. Illumina (Bentley et al. 2008), where low-coverage data are often used, this 

precondition is rarely fulfilled. There is often a large number of missing calls. For instance, 

in the SNP calls from 51 low-coverage individuals in the 1000 Genomes Project (1000-

Genomes-Project-Consortium 2010) (http://www.1000genomes.org/page.php) freeze 3 data, 

only about 1% of SNPs have calls in all individuals. The reason is that if we resequence a 

large number of individuals at millions of sites with relatively low coverage, it is likely that 

the sample sizes will not be equal at different sites even if the success rate of sequencing is 

very high. Actually, the variable sample size problem is not a new problem observed only in 

high-throughput resequencing projects; it is also seen in high-throughput genotyping data. 

An example is that, in the HapMap III dataset (International-HapMap-Consortium et al. 

2010) (http://www.hapmap.org/), after QC, only half of the SNPs have a full list of 

genotyping calls in all individuals. To either discard these sites, or do extra experiments 

(usually using non-high-throughput instruments) is a poor use of resources. Sometimes, 

people allow PHASE (Stephens et al. 2001) or other programs (Stephens and Scheet 2005; 

Marchini et al. 2007) to fill in the missing data by imputation. But there are also 

uncertainties in the imputation results that may distort traditional neutrality test results, 

particularly for low-frequency variants.

Besides missing data, another important feature is that SNPs are often called from a small 

number of reads within a statistical model. Therefore, when the coverage is low, we may 

have substantial uncertainties in the SNP calls; but, fortunately, this uncertainty can be 

expressed quantitatively by confidence scores calculated as a posterior probability. If we 

could incorporate these uncertainties when carrying out neutrality tests, the robustness of the 

results might be significantly increased. Incorporating uncertainties of SNP calling could 

also be used in other scenarios as well. For example, as mentioned above, both 

resequencing-based and genotyping-based genotypes may be improved by imputation 

(Stephens and Scheet 2005; Marchini et al. 2007; Delaneau et al. 2013). Due to the 

stochastic nature of the original data, the confidence of imputed alleles at different 

segregating sites may be different, and this variation should therefore be incorporated when 

carrying out neutrality tests.

In this article we revise Tajima’s D, which is the first and most widely-used neutrality test, 

by incorporating SNP uncertainties into the calculation without specifying any particular 

scenario of error mechanism. The first section serves as an introduction to the general 

background. After that, we detail the intuitions and mathematics of our new statistic in the 

second section. In the third section, we present the critical value calculation and power 

evaluation from simulated data. Applications to real data from the pilot phase of the 1000 

Genomes Project (1000-Genomes-Project-Consortium 2010) and comparisons with 

SeattleSNP (http://pga.gs.washington.edu/new.html) regions are presented in the fourth 

section. Finally, a section of discussion and comparisons with existing work is provided. To 
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keep the main text suitable for general readers, we have placed most of the mathematical 

and simulation details in Appendices.

2. GENERAL BACKGROUND

High-throughput resequencing

In current high-throughput sequencing experiments, e.g., Illumina/454, resequencing 

instruments generate very short reads. For a genome the size of the human genome, these 

cannot be reliably assembled de novo, but have to be mapped onto a reference sequence (e.g. 

using MAQ (Li et al. 2008), BWA (Li and Durbin 2009) or SSAHA (Ning et al. 2001)). 

Afterwards, we can call SNPs from the consensus heterozygous or homozygous calls in the 

assembly. Given the analysis of single molecules, the relatively short length of the reads and 

the complexity of mammalian genomes, the “SNP calling” process contains more 

uncertainties than in traditional Sanger capillary resequencing. One obvious consequence is 

that low confidence SNPs will inflate the variance and therefore leads to more false 

positives in the selection scan. At the same time, based on the base qualities and mapping 

qualities of the reads supporting a SNP call, most mapping tools provide SNP scores which 

could be utilized to calculate the probabilities that the SNP calls are wrong. This enables us 

to incorporate these uncertainties quantitatively into neutrality tests.

Tajima’s D

Let us assume we have n individuals with S segregating sites, effective population size N 

(unknown), and a mutation rate per generation of μ (also unknown). The traditional Tajima’s 

D is defined as the difference between two estimators of the scaled mutation rate θ = 4N μ 

divided by its standard deviation. The first estimator is Tajima’s estimator θπ (Tajima 1983) 

which is the average number of pairwise differences. The second is Watterson’s estimator 

θW (Watterson 1975) which reflects the number of segregating sites. Thus, we have:

Where,

kij is the difference between sequence i and j.

Since both statistics are estimators of θ under the neutral model, the mean of Tajima’s D is 

zero when the null hypothesis holds. Assuming that selection or a population event changes 

allele frequencies, these in turn change the pairwise difference measure, but leave the total 

number of segregating sites unchanged. Thus observing a Tajima’s D value with significant 
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derivation from zero can be taken as a sign of a non-neutral event such as selection or a 

demographic change.

3. CONSTRUCTING THE STATISTICAL TEST

We assume the dataset contains missing genotype calls and each of the known calls is 

assigned a confidence score. (In an extreme case, the score could be 1.0, indicating that there 

is no uncertainty in this call, or 0.0 indicating no confidence at all.) We will describe the 

intuition behind our approach in this section, leaving detailed mathematics to Appendix A. 

In this work, we adopt the framework of the original Tajima’s D, but calculate the 

denominator in a different way.

A hypothesis is that the total number of segregating sites observed is not sensitive to missing 

genotypes in a subset of individuals. (But in the case of a singleton-segregating site, this 

does not hold: see Discussion.) Therefore we keep the Watterson estimator the same. That 

is:

On the other hand, we use  to denote the estimated θπ for Tajima’s estimator, calculated as 

below:

1. Calculate the allele frequencies xij of different segregating sites in the individuals in 

whom we can call the genotype, where i is the site index and j is the allele index.

2. Estimate the sample heterozygosity  using the allele frequencies calculated from 

known sites:

3.
Sum up all  and get .

If we do not have missing data, it has already been pointed out that  is identical to θπ 

(Tajima 1989), (Fay and Wu 2000). When we have missing data,  is an unbiased estimator 

of hi. Therefore the mean of  equals θπ, implying that  is still a useful estimator of θ.

In the standard framework of designing these statistics, the remaining task is to calculate the 

variance of (  − θW), i.e. Var(  − θW). We have not derived the closed form of this 

variance. Instead, with the underlying motivation of capturing the inflated variance due to 

the missing/uncertain data, we use the approximation below.

As mentioned above, it is proven that the calculation of the scaled mutation rate by means of 

pairwise difference and by means of heterozygosity are identical when calculating Tajima’s 

D (Tajima 1989), (Fay and Wu 2000). However, in the presence of missing/uncertain data, 
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the calculation based on heterozygosity is only an estimate of the pairwise difference. 

Essentially, when calculating , we are using a subset of the sample (the individuals who 

have genotype calls at this particular site) to calculate the heterozygosity, and we then 

assume this is the heterozygosity of the full sample, which in turn evaluates the 

heterozygosity of the population. If fewer known genotypes (and hence more “guessed” 

genotypes) contribute to the calculation, the variance will be inflated. The same idea applies 

to uncertain genotypes – the more uncertain the calls, the larger the variance. Actually, the 

total variance of (θ − θW) can be decomposed into many terms in which each term depends 

on two pairs of sequences (See Appendix A for mathematical details). Making use of this, 

we assign a weight to the contribution from each pair of sequences. The value of this weight 

is decided by the number of missing calls and the confidence levels of the calls that are 

present. More missing calls (or less confidence in the present calls) will result in a larger 

weight. (To detail how the weighting system works and the flexibility offered to users, see 

Appendix A.) In this sense, although the denominator in our D is not the standard deviation 

of the nominator, (  − θW), it captures the fact that the variance is inflated and precisely 

captures where and to what extent it is inflated. Therefore we expect it to be a good 

approximation of the extent of variation of (  − θW). In the extreme case, if there is no 

missing data and all the genotype calls have confidence 1.0, the extended D is identical to 

the original Tajima’s D.

In practice, the confidence score from different statistical frameworks can vary in absolute 

value, even though more confident calls have higher scores and less confident calls have 

lower scores. Some people use a mapping based tool, e.g. (Li et al. 2008), which adopts a 

binomial model; others may use an imputation algorithm using a hidden Markov model 

(Scheet and Stephens 2006). Given this variability, it would be useful for users to be able to 

decide to what extent they want the uncertainties to influence the calculation. We therefore 

provide a user-specified parameter c in the calculation. It ranges from 0.0 to 1.0. In the 

extreme case, if the user sets c = 0, the extended D is identical to the original Tajima’s D 

(See Appendix A for details).

4. POWER OF THE TEST

In this section we estimate the power of the new test and compare it with the existing 

Tajima’s D (Tajima 1989) by simulations. In most comparisons of this kind, researchers 

compare the power of newly invented and existing tests under a range of selection/

demographic models. However, the key point of the test presented in this work is not any 

special insight into evolutionary/demographic scenarios. Instead, using the same framework 

as the original Tajima’s D, it focuses on how to handle uncertainties in the data. Therefore 

we use only two representative scenarios and focus more on simulating data with variable 

data error models.

SFS_CODE (Hernandez 2008) is a generalized Wright-Fisher population forward genetic 

simulation program for finite-site mutation models with selection, recombination, and 

demography. It enables us to incorporate many kinds of evolutionary/demographic events. 

In this section, besides the neutral sequences, we simulate sequences under two scenarios: 

one includes selection, and the other population growth. Based on the “genomic” sequences 
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simulated by SFS_CODE under these scenarios, we then simulate “sequenced” data under 

different error distributions and calculate the extended Tajima’s D with different c settings. 

In this section, we focus more on the data error distribution model, rather than the 

evolutionary/demographic model used in SFS_CODE. The detailed SFS_CODE commands 

used are listed in Appendix B.

Following the standard process of power calculation, in all the simulations, for a given data 

error model, uncertainty weight c, sample size n, and scaled mutation rate θ, we generate 

10,000 samples under the null hypothesis, i.e., the neutral model, to get the one-tailed 0.01 

critical values for both the original and extended Tajima’s D. Using those critical values, we 

generate another 10,000 samples under a selective/demographic model and calculate the 

power. All the critical values we use are listed in Appendix B. Actually, we generate these 

critical values only for the purpose of the comparison in this study; we do not suggest that 

users should use them in practice. Instead, because of the complexity of different error 

model and the investigators’ different insights into the extent to which they want the 

uncertainty to affect the calculation, we do not provide a set of critical values in advance. 

We suggest that users do simulations themselves to find the most suitable critical value(s) 

for their applications.

Firstly, we use an error-generating model based on the empirical distribution. More 

specifically, we summarize the empirical error distribution in the real data from the 1000 

Genomes Project and simulate confidence scores of each SNP according to this empirical 

distribution independently. The power results are depicted in Figure 1. One can see that the 

powers of extended Tajima’s Ds are generally higher than the power of the original Tajima’s 

D. When small c values are taken, the power is slightly higher but close to the original 

Tajima’s D. Reasonably larger c can increase power significantly; however, when it is 

greater than 0.4, the power goes down to even lower than the original Tajima’s D.

We note that, in the above settings, the confidence scores of different SNPs are independent, 

which is not realistic. In practice, the error rates of SNPs in adjacent regions are dependent 

for various reasons. The most common of these are library preparation or sequencing 

artifacts. For example, a poor PCR product, or a low-quality or mismapped read can make 

the error distribution blocky. What is more, if we use an imputation algorithm, the low 

confidences of SNPs in a particular region will be propagated to the other SNPs in the same 

region. It would be good if we could find a model capturing all the above-mentioned factors 

and simulate data accordingly. However, due to the complexity of the factors affecting the 

blocky structure, it is not easy to do such more realistic simulations. Therefore, we adopted a 

relatively simple simulation scheme. That is, we keep the total error rate the same as in the 

empirical distribution in the independent model, but make the SNPs in the same region 

correlated to each other. The result of this simulation is shown in Figure 2, which shows 

similar trends to the random error models.

The power simulations presented above show that the extended Tajima’s D is in general 

more powerful than the original Tajima’s D given the same false positive rate. In practice, 

the parameter c is an important factor that influences the power of the test.
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5. APPLICATION TO REAL DATA

We next apply our analysis to real data from the 1000 Genomes Project. The coverage of 

each individual is around 4× and the data were generated by different sequencing platforms. 

(1000-Genomes-Project-Consortium 2010) Although the 1000 Genomes Project has 

subsequently updated its datasets, these early data illustrate the power of the extended 

Tajima’s D particularly clearly. A small portion (chromosome 22 from the 36 CEU sample 

with European ancestry) of the analysis is depicted in Figures 3 and 4. In these figures, each 

point shows the extended/original Tajima’s D value for a 15 kb window along the 

chromosome. These values are highly correlated and the patterns have striking similarities, 

as expected. But there are also significant differences. For example, there is an outstandingly 

high value in the original Tajima’s D (indicated by the red arrow), which does not show up 

in the extended Tajima’s D. On checking the raw data from this region, we find that the 

confidence values of SNPs there are quite low, suggesting that this high value is likely to 

represent a false positive.

The top 1% of negative and positive values from these calculations are of interest as 

empirical outliers and are listed in Tables 1 and 2 (The coordinates are based on NCBI Build 

36).

Despite the similarities between the overall patterns, among the extreme outliers, which are 

of particular biological interest, 39 of the 44 locations are shared. These regions are 

therefore candidates for further biological investigation.

We also compared our original and extended Tajima’s D values with empirical data from the 

six chromosome 22 regions investigated by the SeattleSNPs Project (http://

pga.gs.washington.edu/) in independent samples of European origin. This project re-

sequenced genes of interest by standard capillary sequencing and identified SNPs with high 

reliability. The results are shown in Table 3, where the high correlation between the 

SeattleSNPs values and both the original and extended Tajima’s D values (both r2 = 0.92) is 

notable.

6. DISCUSSION

We designed an extended Tajima’s D statistic especially for whole genome scans based on 

low coverage sequencing data. If data are complete and accurate, it returns the same value as 

the original Tajima’s D and thus, as expected, extended D values are generally similar to the 

original D values calculated from either 1000 Genomes or SeattleSNPs data (Figures 3, 4; 

Table 3). Its novel advantages are seen when data are incomplete or of low quality. When 

applying our statistic, if a particular region was under selection, but does not have enough 

SNPs or we fail to call the SNPs with high confidence, we may see a small D value and 

therefore have less opportunity to identify this selection. So at the first glance, our extended 

D serves as a kind of filter to guarantee that most signals we find are based on high quality 

data. However, if the selection signal is strong enough, we can still identify it even if the 

data quality is not very good. In this sense, it is not a simple filter on data quality. Instead, it 

strikes a balance between true selective signals and the false positives caused by low quality 

Zhang et al. Page 7

Stat Interface. Author manuscript; available in PMC 2015 December 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://pga.gs.washington.edu/
http://pga.gs.washington.edu/


data. We believe that, compared with our statistic, simply applying traditional Tajima’s D 

analysis will generate more false positives, but simply filtering in advance will cause more 

false negatives.

Power calculations following standard procedures are presented in this paper. In practice, 

the complexities of evolutionary histories and DNA sequences mean that researchers cannot 

precisely specify critical values for significance levels. Therefore, sometimes investigators 

still rely on manual review of the values of the test statistic across the genome, and report 

significant events based on a combination of the empirical distribution and modeling. In this 

case, our extended Tajima D has a substantial advantage because it prevents us from being 

misled by false positives arising from poor data.

An important feature of re-sequencing, compared with genotyping at known sites, is its 

ability to detect novel rare SNPs. In an extreme case we could see many singleton SNPs 

(Nelson et al. 2012; Tennessen et al. 2012). In such a case, the uncertainty of calling 

singleton SNPs will influence the precision of Watterson’s estimator. We have not dealt 

with this situation in this study. In particular, to calculate Fu & Li’s D, the precision of 

singletons is more important than in Tajima’s D. This problem needs to be addressed in 

future work. Another interesting extension is to incorporate the uncertainties into the 

calculation of the numerator too, which needs another extension to the present statistical 

framework that models the variance.

Other researchers have also considered the uncertainties introduced by sequencing errors. 

Johnson and Slatkin (Johnson and Slatkin 2008) and Achaz (Achaz 2008) have incorporated 

the bias from sequencing error into population-genetic estimates by calculating the mean of 

the observed estimator using the closed form of the probability of the observed variation as a 

function of true variation. Hellmann et al. (Hellmann et al. 2008) proposed an extended 

Watterson estimator as a CLE (composite likelihood estimator) in the presence of variable 

read lengths and coverage at different segregating sites and potential sequencing errors. 

Compared with the framework adopted in our extended Tajima’s D, both of their approaches 

can provide more precise estimators when their assumptions hold because of the use of the 

closed form. However, at the same time, assuming the specific distributions/probabilities of 

the source of the error may also decrease the flexibility of the method and therefore restrict 

the scope of its applications. For example, in Johnson and Slatkin’s work, they assume that 

the distribution of the number of pairs of sites that are in fact the same but mismatched due 

to sequencing errors, Yk, follows a Bernoulli distribution and can be estimated from the 

overall error probability. Therefore it does not address the different error rates found in 

different regions. In contrast, Hellmann et al.’s work addresses this aspect very well, but 

veers towards another extreme: it specifies a very detailed model for shotgun assemblies 

which might not be appropriate if the error source is, for example, imputation software. 

Another factor is that, for both known and unknown reasons, the confidence score may not 

faithfully tell us the probability that the SNP call is correct. If this is the case, in most 

applications our framework is more appropriate. Although we also hope that the quality 

score of a SNP call is the probability of the call being correct, our calculation does not 

depend on the absolute value of the score very much. As long as the order of the scores is 

right, i.e. the call with higher score has higher reliability, our approach works robustly. In a 
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sense, the trade-offs between our approach and the existing approaches are similar to the 

trade-offs between model-free approaches and model-based approaches. This is a 

controversial topic in statistics, but one that it is useful to explore in the context of neutrality 

tests based on new technology sequence data, and we have provided a novel alternative: a 

robust statistic in a model-free context.

In conclusion, we have developed an extended version of the most widely-used neutrality 

statistic, Tajima’s D, suitable for whole-genome re-sequence data such as that produced by 

the 1000 Genomes Project. This statistic will improve the detection of non-neutral regions of 

the genome and thus promises novel genome wide insights into human evolutionary history.
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APPENDIX A. MATHEMATICAL DETAILS

Let us say we have n chromosomes (i.e., n/2 individuals) and in total S segregating sites, and 

 and θW are calculated as described in the main text. Now we are going to discuss the 

variance:

As described in the section Approach, by adding weights to Var(θπ) and Cov(θπ, θW), we 

can approximately replace Var( ) and Cov( , θW). Formally, we would like to derive

(0)

We use kij to denote the random variable of the pairwise difference between chromosome i 

and j. We have:

Following (Tajima 1983) (A7) we define
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Intuitively, U2, U3, U4 are variance contributed by two pair of chromosomes. The only 

difference between those formulas is the overlapping chromosomes between the pairs that 

result in a different way of counting.

The solutions to the above equations are given by (Tajima 1983) (A12):

It is obvious that ∀i, j, we have E(kij) = θ, thus we have

Let us define Wijrs = Πm=i,j,r,s Πl=1…S u(ml) as the weight added to each U in the above 

equation, where u(ml) is the uncertainty factor calculated by the SNP calling confidence of 

the l th site of chromosome m. More precisely, it is defined as follows:

If the allele of ml is decided in SNP calling with confidence p, u(ml) = e(1−p)c where c is a 

constant coefficient that allows tuning by users. If the confidence is 1, then the weight is 1, 

which means no weight. On the other hand, if ml is an uncertain call, then 

, where  is the average confidence of all the known SNPs called at this 

site, n is the total number of chromosomes, and nl is the total number of known SNPs at site 

l. The intuition behind this setting is that the confidence of the unknown SNP depends on the 

average of the known SNP, and the number of known SNPs.

With this weighting system defined, we can define an approximate variance of  as the 

weighted variance:

(1)

where each Cov(kijkrs) is given by the corresponding Uα (α = 2, 3, 4).

Next let us derive the approximate covariance Cov * ( , θW).

From (Tajima 1989), we have
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where Cov( , S*) is the corresponding covariance of (n−1) chromosomes and 

 is the variance at any terminal branch of the genealogical tree.

We add the average weight  to above term, and therefore yield:

Because when n = 2, we have

We could define when n = 2,

We could expend this iterative equation and finally derive that

Therefore,

(2)

Also, from (Watterson 1975) we have

Therefore,

(3)
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Substitute (1), (2), and (3) into (0), we get Var*(  − θW).

In summary, our statistic is defined as

Where Var*(  − θW) is given by (0)–(3).

APPENDIX B. SFS_CODE COMMANDS AND CRITICAL VALUES USED

Firstly, we use the basic SFS_CODE command, “sfs_code 1 1 -n 36”, to generate data under 

a neutral model in which there is no selection or demographic events. The sample size is 

fixed at 36, identical to the real data used in this paper. We simulate data under this setting 

10,000 times for each different uncertainty weight c. Please note that, in the case of 

extended Tajima’s D, for different c, the critical values of the same significance level are 

different. A larger c should yield a smaller critical value. On the other hand, for the original 

Tajima’s D, the critical values should be the same regardless of the c parameter.

Here are the detailed SFS_CODE commands we used:

(1) For demographic models:

sfs_code 1 1 -n 36 -Tk 0 2.0 1.2 -TE 1 -a N

sfs_code 1 1 -n 36 -Tk 0 3.0 1.2 -TE 1 -a N

sfs_code 1 1 -n 36 -Tk 0 4.0 1.2 -TE 1 -a N

sfs_code 1 1 -n 36 -Tk 0 5.0 1.2 -TE 1 -a N

sfs_code 1 1 -n 36 -Tk 0 6.0 1.2 -TE 1 -a N

sfs_code 1 1 -n 36 -Tk 0 7.0 1.2 -TE 1 -a N

sfs_code 1 1 -n 36 -Tk 0 8.0 1.2 -TE 1 -a N

sfs_code 1 1 -n 36 -Tk 0 9.0 1.2 -TE 1 -a N.

(2) For selective models:

sfs_code 1 1 -n 36 -W 1 10.0 0.5 1.0 -a N

sfs_code 1 1 -n 36 -W 1 15.0 0.5 1.0 -a N

sfs_code 1 1 -n 36 -W 1 20.0 0.5 1.0 -a N

sfs_code 1 1 -n 36 -W 1 25.0 0.5 1.0 -a N

sfs_code 1 1 -n 36 -W 1 35.0 0.5 1.0 -a N

sfs_code 1 1 -n 36 -W 1 40.0 0.5 1.0 -a N

sfs_code 1 1 -n 36 -W 1 45.0 0.5 1.0 -a N
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sfs_code 1 1 -n 36 -W 1 50.0 0.5 1.0 -a N

Here are the critical values used:

(1) For the independent error model (ED stands for extended Tajima’s D, whereas 

OD stands for the original Tajima’s D) (Table 4).

(2) For blocky error model (ED stands for extended Tajima’s D, whereas OD stands 

for the original Tajima’s D) (Table 5).
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Figure 1. 
Power comparison for independent error models. The left panel shows the selection model, 

and the right panel the demographic model. OD (dashed thick line) stands for the original 

Tajima’s D. The other lines stand for the extended Tajima’s D with different c settings. The 

x axis shows the SFS_CODE parameter of selection or demographic force, respectively
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Figure 2. 
Power comparison for blocky error models. The left panel shows the selection model, and 

the right panel the demographic model. OD (dashed thick line) stands for the original 

Tajima’s D. The other lines stand for the extended Tajima’s D with different c settings. The 

x axis shows the SFS_CODE parameter of selection or demographic force, respectively
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Figure 3. 
Extended Tajima’s D values in 15 kb windows along chromosome 22 using data from the 

1000 Genomes Project freeze 3 CEU samples
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Figure 4. 
The original Tajima’s D values in 15 kb windows along chromosome 22 using data from the 

1000 Genomes Project freeze 3 CEU samples

Zhang et al. Page 18

Stat Interface. Author manuscript; available in PMC 2015 December 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Zhang et al. Page 19

Table 1

Top 1% of significant negative values

location ED OD location ED OD

21151870 −1.83664 −1.91643 21151870 −1.83664 −1.91643

20709004 −1.77186 −1.87306 34777312 −1.7665 −1.87811

34777312 −1.7665 −1.87811 20709004 −1.77186 −1.87306

24352535 −1.74789 −1.86262 24352535 −1.74789 −1.86262

34724879 −1.72383 −1.84616 34724879 −1.72383 −1.84616

30977332 −1.5423 −1.68049 30977332 −1.5423 −1.68049

39098072 −1.50474 −1.57443 27019460 −1.43642 −1.64345

27019460 −1.43642 −1.64345 24386697 −1.41989 −1.58939

34651216 −1.42319 −1.58113 34651216 −1.42319 −1.58113

24386697 −1.41989 −1.58939 39098072 −1.50474 −1.57443

24217783 −1.41195 −1.55516 27666372 −1.3688 −1.56211

34493620 −1.3999 −1.50594 27079043 −1.38865 −1.55645

45967255 −1.39275 −1.46628 34667372 −1.36135 −1.5557

27079043 −1.38865 −1.55645 24217783 −1.41195 −1.55516

32214456 −1.37372 −1.47708 34493620 −1.3999 −1.50594

27666372 −1.3688 −1.56211 20787369 −1.33111 −1.48388

34667372 −1.36135 −1.5557 32214456 −1.37372 −1.47708

24325574 −1.35516 −1.45527 45967255 −1.39275 −1.46628

15076629 −1.33518 −1.40567 24325574 −1.35516 −1.45527

20787369 −1.33111 −1.48388 30435841 −1.26914 −1.44788

30744501 −1.30964 −1.44008 30744501 −1.30964 −1.44008

The left panel is sorted by extended Tajima’s D (c = 0.25) and the right panel by the original Tajima’s D
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Table 2

Top 1% of significant positive values

location ED OD location ED OD

21515571 2.846391 3.028526 37625562 2.691356 3.369293

21426012 2.816427 3.01648 33116938 2.479885 3.274953

37625562 2.691356 3.369293 33103566 2.297268 3.23722

31020083 2.514281 3.111772 21515571 2.846391 3.028526

33116938 2.479885 3.274953 21426012 2.816427 3.01648

21836759 2.318392 2.984994 21836759 2.318392 2.984994

21412052 2.297929 2.454759 18888594 1.628212 2.899158

33103566 2.297268 3.23722 43219974 2.194745 2.869068

16472649 2.225322 2.762314 34915188 2.113339 2.821092

43219974 2.194745 2.869068 27808831 2.060364 2.785883

20888310 2.184635 2.483804 16472649 2.225322 2.762314

34915188 2.113339 2.821092 33790522 2.004768 2.699624

31862932 2.094596 2.6124 32932188 1.881843 2.643153

21470159 2.078124 2.20137 31862932 2.094596 2.6124

41734964 2.076077 2.562095 41734964 2.076077 2.562095

27808831 2.060364 2.785883 33561762 1.999181 2.523429

23406938 2.031665 2.416551 20888310 2.184635 2.483804

33790522 2.004768 2.699624 33667758 1.848925 2.475666

45816855 2.003667 2.461891 45816855 2.003667 2.461891

33561762 1.999181 2.523429 21412052 2.297929 2.454759

23424794 1.980101 2.366971 30914501 1.947837 2.450824

The left panel is sorted by extended Tajima’s D (c = 0.25) and the right panel by the original Tajima’s D
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Table 3

Comparison of gene regions analyzed by the SeattleSNPs and 1000 Genomes Projects

Gene Start End #Seqs Seattle #Seqs 1000g #SNPs Seattle #SNPs 1000g OD Seattle ED 1000g OD 1000g

A4GALT 41416394 41447672 46 72 80 208 0.924 1.142 1.346

APOBEC3F 37766357 37781373 46 72 40 56 2.140 1.425 1.683

APOBEC3G 37801497 37814271 46 72 51 58 −0.690 0.112 0.126

HMOX1 34103954 34122171 46 72 45 91 0.243 0.356 0.403

IL2RB 35850703 35876286 46 72 97 130 0.718 0.875 1.025

PPARA 44926043 45010351 46 72 79 256 −0.787 −0.249 −0.281

#Seqs = number of sequences. OD = Original Tajima D, ED = Extended Tajima D (at ED column, c = 0.25)
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Table 4

c ED negative ED positive OD negative OD positive

0.10 −1.781 2.171 −1.845 2.231

0.15 −1.721 2.065 −1.845 2.231

0.20 −1.672 2.021 −1.845 2.231

0.25 −1.553 1.948 −1.845 2.231

0.30 −1.545 1.896 −1.845 2.231

0.35 −1.512 1.875 −1.845 2.231

0.40 −1.441 1.823 −1.845 2.231

0.45 −1.394 1.782 −1.845 2.231

0.50 −1.371 1.724 −1.845 2.231
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Table 5

c ED negative ED positive OD negative OD positive

0.10 −1.801 2.178 −1.870 2.234

0.15 −1.785 2.172 −1.870 2.234

0.20 −1.770 2.144 −1.870 2.234

0.25 −1.760 2.087 −1.870 2.234

0.30 −1.721 2.080 −1.870 2.234

0.35 −1.678 2.079 −1.870 2.234

0.40 −1.674 2.075 −1.870 2.234

0.45 −1.668 1.991 −1.870 2.234

0.50 −1.615 1.990 −1.870 2.234
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