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Turbulence is a fundamental and ubiquitous phenomenon in nature,
occurring from astrophysical to biophysical scales. At the same time,
it is widely recognized as one of the key unsolved problems in
modern physics, representing a paradigmatic example of nonlinear
dynamics far from thermodynamic equilibrium. Whereas in the past,
most theoretical work in this area has been devoted to Navier–
Stokes flows, there is now a growing awareness of the need to
extend the research focus to systems with more general patterns
of energy injection and dissipation. These include various types of
complex fluids and plasmas, as well as active systems consisting of
self-propelled particles, like dense bacterial suspensions. Recently, a
continuum model has been proposed for such “living fluids” that is
based on the Navier–Stokes equations, but extends them to include
some of the most general terms admitted by the symmetry of
the problem [Wensink HH, et al. (2012) Proc Natl Acad Sci USA
109:14308–14313]. This introduces a cubic nonlinearity, related to
the Toner–Tu theory of flocking, which can interact with the qua-
dratic Navier–Stokes nonlinearity. We show that as a result of the
subtle interaction between these two terms, the energy spectra at
large spatial scales exhibit power laws that are not universal, but
depend on both finite-size effects and physical parameters. Our
combined numerical and analytical analysis reveals the origin of this
effect and even provides a way to understand it quantitatively.
Turbulence in active fluids, characterized by this kind of nonlinear
self-organization, defines a new class of turbulent flows.
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Despite several decades of intensive research, turbulence—the
irregular motion of a fluid or plasma—still defies a thorough

understanding. It is a paradigmatic example of nonlinear dynamics
and self-organization far from thermodynamic equilibrium also
closely linked to fundamental questions about irreversibility (1)
and mixing (2). The classical example of a turbulent system is a
Navier–Stokes flow, with a single quadratic nonlinearity, well-
separated drive and dissipation ranges, and an extended in-
termediate range of purely conservative scale-to-scale energy
transfer (3). However, many turbulent systems of scientific interest
involve more general patterns of energy injection, transfer, and
dissipation. A fascinating example of these kinds of generalized
turbulent dynamics can be observed in dense bacterial suspensions
(4). Although the motion of the individual swimmers in the
background fluid takes place at Reynolds numbers well below
unity, the coarse-grained dynamics of these self-propelled particles
display spatiotemporal chaos, i.e., turbulence (5–7). Nevertheless,
the correlation functions of the velocity and vorticity fields display
some essential differences compared with their counterparts in
classical fluid turbulence (8, 9). Moreover, the collective motion of
bacteria in such suspensions exhibits long-range correlations (10),
appears to be driven by internal instabilities (11), and depends
strongly also on physical parameters like large-scale friction (12).
Such results challenge the orthodox understanding of turbulent
motion and call for a detailed theoretical investigation. There also
exist many other systems with similar characteristics, including
flows generated by space-filling fractal square grids (13) , turbulent
astrophysical (14) and laboratory (15, 16) plasmas, and chemical
reaction–diffusion processes (17).

In the present work, we study—numerically as well as
analytically—the spectral properties of a continuum model that has
recently been suggested as a minimal phenomenological model
to describe the collective dynamics of dense bacterial suspensions
(4, 18, 19). A basic assumption of the model is that at high con-
centrations the dynamics of bacterial flow may be described as an
incompressible fluid obeying the following equation of motion for
the velocity field vðx, tÞ,

∂v
∂t
+ λ0ðv ·∇Þv+∇p=−Γ0Δv−Γ2Δ2v− μðvÞv  , [1]

where μðvÞ= α+ βjvj2. In addition to the advective nonlinearity,
ðv ·∇Þv, and pressure term, ∇p, familiar from the Navier–Stokes
model, the equation also accounts for internal drive and dissipation
processes. Apart from the last term on the right-hand side and the
pressure term, Eq. 1 amounts to a straightforward multidimen-
sional generalization of the Kuramoto–Sivashinsky (KS) equation
that has found application in describing magnetized plasmas (20,
21), chemical reaction–diffusion processes (22, 23), and flame front
propagation (24, 25). It is widely regarded as a prototypical exam-
ple of “phase turbulence.” (26) As a hallmark, if both kinetic pa-
rameters are positive (Γ0,   Γ2 > 0), the KS equation is linearly
unstable for a band of wave vectors k, similar to other paradigmatic
models of nonlinear dynamics, e.g., the Swift–Hohenberg model
(27). For active systems this feature emulates energy input into the
bacterial system through stress-induced instabilities (11). The
growth of these linearly unstable modes is limited by nonlin-
ear and dissipative terms. The main dissipation mechanism in
Eq. 1 is mediated through the cubic nonlinearity on the right-hand
side, −μðvÞv. Such a term was originally introduced by Toner and
Tu to account for a propensity of self-propelled rod-like ob-
jects to exhibit local polar order (“flocking”) (28, 29). This hydro-
dynamic model comprises some of the key features common to
systems exhibiting mesoscale turbulence: interplay of energy input
due to a band of linearly unstable modes with the advective
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Navier–Stokes nonlinearity as well as with terms modeling flock-
ing behavior and dissipation. These generic features are shared
by more elaborate hydrodynamic models of active matter re-
cently reviewed in ref. 30. Thus, Eq. 1 serves as a simple but
generic test case to address some of the fundamental questions
in the field of active turbulence. Via an appropriate choice of
parameters, one can describe several different physical systems
as explained in more detail in Table S1.
First and foremost, the similarities and differences between

low and high Reynolds number turbulence remain to be eluci-
dated. In particular, there is still a lack of understanding of the
energy flow between different length scales. Here, we address the
above questions by a systematic analysis of the turbulent features
of Eq. 1, combining numerical and analytical approaches, and we
give a comprehensive picture of the spectral energy balance fa-
cilitating the understanding of the interactions among different
spatial scales. Furthermore, extensive numerical simulations
confirm the existence of a spectral power law at the largest scales
of the system with its steepness depending on the parameters of
the system (both of the linear and of the nonlinear terms in Eq.
1). The form of the turbulent energy spectrum is an important
quantity related to the frictional drag between the system and the
surrounding walls (31, 32). In the present work, insight into the
remarkable feature of a variable spectral exponent is gained by
analyzing the role of the different terms in the equation for the
spectral energy balance. As expected for a 2D incompressible
fluid, there exists an inverse flow of energy from intermediate to
large scales (33). Nevertheless, in contrast to classical, fully de-
veloped 2D Navier–Stokes turbulence, there is no inertial range
characterized by a constant energy flux. Instead, we find that at
large scales the nonlinear frequency corresponding to the Navier–
Stokes energy flux is constant for the whole range characterized by
spectral self-similarity. This differs fundamentally from the clas-
sical Navier–Stokes case, where this nonlinear frequency, the in-
verse of the nonlinear eddy turnover time, is a function of wave
number and energy. In the model at hand, this energy flux is
balanced by a linear dissipation/injection and a cubic dissipation
term. For the latter, we derive an analytic approximation that
compares very favorably with the numerical results and allows for
an analytic closure predicting the type of dependence of the power
law on the model parameters that is also confirmed numerically.

Results
We have studied the 2D version of the continuum model defined
by Eq. 1 both analytically and numerically. Our computational
approach relies on a pseudospectral code where the linear terms
are computed in Fourier space and the nonlinearities in real
space. The details of this procedure and the necessary normali-
zation are described in SI Text, section S1. All numerical results
reported in this paper use a resolution of 1,024 effective Fourier
modes in each direction, unless stated otherwise. A typical ve-

locity is given by v0 :=
ffiffiffiffiffiffiffiffiffiffiffiffi
Γ3
0=Γ2

q
. From the spectral representation

γðkÞ :=−α+Γ0k2 −Γ2k4 of the linear part of Eq. 1, one reads off
the wave number of the fastest growing mode, kmax =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ0=ð2Γ2Þ

p
,

which suggests characteristic length and time scales as ℓ= 5π=kmax
and τ= ℓ=v0, respectively. Accordingly, the normalized form
of the parameters Γ0 and Γ2 reduces to fixed numbers; i.e.,
Γ0τ=ℓ2 = 1=ð5 ffiffiffi

2
p

πÞ and Γ2=ðℓv30Þ≈ 9 · 10−5. The parameters β and
λ0 can still be chosen freely and here they are set to βτv0 = 0.5 and
λ0 = 3.5. The normalization units used here are the same as the
ones in ref. 4, meaning that our parameters (with α=−1 and up to
the different sign of Γ0) correspond to the bacterial suspension
described therein. A typical snapshot of the real-space vorticity
field in the turbulent regime is shown in Fig. 1. It makes evident
the random distribution of vortices across the simulation domain.
Moreover, the time evolution of the vortex configuration turns out
to be strongly incoherent. Due to this highly nonlinear behavior,

associated with spatiotemporal chaos, exhibited by the system, we
refer to its dynamics as turbulent.

Spectral Analysis. For the analysis of the flow of energy between
different spatial scales mediated by the various terms in Eq. 1 we use
a Fourier decomposition of v (SI Text, section S1). Ek := hjvkðtÞj2i=2
is referred to as the energy of Fourier mode k, where h · i denotes an
ensemble average, equivalent to a time average for a statisti-
cally stationary state as discussed in SI Text, section S1. The
ensuing spectral energy balance equation reads

∂tEk = 2γðkÞEk +Tadv
k +Tcub

k , [2]

with the advective and cubic nonlinear terms given by

Tadv
k =+λ0  Re

"X
p

MijlðkÞ
D
vi−kv

l
k−pv

j
p

E#
, [3a]

Tcub
k =−β Re

"X
p, q

DijðkÞ
D
vi−kv

l
k−p−qv

l
qv

j
p

E#
, [3b]

where we have used sum convention for Cartesian indexes,
DijðkÞ := δij − kikj=k2 are the components of the projection ten-
sor, MnjlðkÞ :=−ði=2ÞðkjDnlðkÞ+ klDnjðkÞÞ, and we have omitted
all time arguments for simplicity. The Ekman term (proportional
to α) either injects (α< 0) or dissipates (α> 0) energy into/from
the system with a rate proportional to Ek. The other linear terms
are also responsible for either local energy injection (Γ0 term) or
dissipation (Γ2 term). The nontrivial dynamics of Eq. 1 result
from the nonlinear terms, i.e., advection term and cubic non-
linearity. They couple different wave numbers and provide a flow
of energy in spectral space that (on average) balances the local
injection or dissipation. The different terms in Eq. 2, obtained

Fig. 1. Snapshot of the 2D vorticity field ζ = ∂xvy −∂yvx right after the onset
of the turbulent regime as obtained from a numerical solution of Eq. 1,
using a pseudospectral code. The computation has been performed with
1,024 (effective) points in each direction under the constraint of periodic
boundary conditions. The Ekman parameter equals ατ=−1, implying that
there are two energy sources acting at large scales—the two positive terms
in the expression for γðkÞ. The strength of the cubic nonlinearity is set to
βτv0 = 0.5 and for the advective term we have used λ0 = 3.5. One can clearly
see the highly disordered distribution of vortices justifying the classification
of the regime as turbulent.
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from a numerical solution of Eq. 1, are shown in Fig. 2. We have
averaged over nearly 10,  000 time steps and (using spherical sym-
metry) summed over modes with the same absolute value (hence
the scalar form of the index k). Note that the advective non-
linearity (green curve) is positive for small k but negative for
intermediate k and, thus, transports energy from small to large
scales. This inverse energy flow is characteristic of 2D turbulent
systems and is due to the constraint of enstrophy conservation
(34). In the present context, it takes energy from the intermedi-
ate wave numbers where the Γ0 injection (magenta) is particu-
larly active and transports it to larger scales where it acts as an
energy source together with the Ekman term (red) for α< 0. At
large length scales, those two sources are balanced by the cubic
nonlinearity (dark blue) acting as an energy sink for most wave
numbers. This energy sink, however, has a nonlinear character
that allows it to dynamically adjust its magnitude to the sources
for a balance to be reached. Additionally, at large scales the
contribution of the cubic interaction is roughly proportional to
the energy spectrum Ek. Later, we show that those two features
can be derived from a closure approximation for small k.

Spectral Shell Decomposition. To further assess the energy transfer
among different length scales, we divide the spectral space into
circular shells SJ, J = 1,2,3, . . . centered at k= 0 and comple-
mentary to each other. (Details on the shell decomposition are
given in SI Text, section S2). Moreover, we introduce the pro-
jection operator PJ defined as

ðPJ f ÞðrÞ := hf ðrÞiJ :=
X
k∈SJ

fkeik · r. [4]

Such a decomposition will prove useful for analyzing the non-
linear terms. The latter terms represent interactions between
different spatial scales and computing the contributions arising
from different shells will help us gain physical insights into those

interactions, e.g., the degree of locality of the energy transfer.
Additionally, examining the symmetry of the shell-to-shell coupling
corresponding to the quadratic and cubic nonlinearity will reveal
their completely different physical character.
Applying PJ to Eq. 1 leads to an evolution equation for the energy

EJ :=
R ��hviJ ��2dΩ=ð2V Þ of shell SJ, which reads

∂EJ

∂t
=
X
k∈SJ

γðkÞ  jvkj2 +
X
I

�
Tadv
IJ +Tcub

IJ

�
, [5]

with the advective and cubic nonlinear terms

Tadv
IJ =−λ0

X
k

hvkiJ ·F
�ðv ·∇ÞhviI�ðkÞ , [6a]

Tcub
IJ =−β

X
k

hvkiJ ·F
n
jvj2hviI

o
ðkÞ , [6b]

where F denotes the Fourier transform (SI Text, section S1).
The terms Tadv

IJ and Tcub
IJ characterize the transfer of energy

between shells SI and SJ. Due to the incompressibility constraint,
Tadv
IJ is antisymmetric with respect to the shell indexes I and J (SI

Text, section S2); i.e., summing over both indexes gives zero. This
shows that (in an incompressible system) the Navier–Stokes
nonlinearity neither injects nor dissipates energy but only redis-
tributes it among the different shells SJ. A numerical computa-
tion of Tadv

IJ is shown in Fig. 3A. In addition to verifying the
antisymmetry, this also illustrates the direction of energy transfer
in spectral space. There is a combination of forward and inverse
energy flows. At intermediate wave numbers, there is mainly a
local forward energy flux; see the areas next to the diagonal in
Fig. 3A, where red above the diagonal and blue below it indicate
a flow from smaller to larger k. Additionally, there is also a
nonlocal inverse energy flow dominating at small wave numbers,
represented by the smaller side branches in Fig. 3A. The green
curve in Fig. 2 represents the cumulative effect of the 2D struc-
tures seen in Fig. 3A. The Navier–Stokes nonlinearity extracts
energy from the intermediate wave numbers (negative contribu-
tion) and supplies it to both smaller (inverse cascade) and larger
(forward cascade) wave numbers. The contribution of the cubic
nonlinearity, on the other hand, is symmetric (Tcub

IJ =Tcub
JI ) and,

therefore, cannot be viewed as a term that simply transfers energy
from one shell to another in a conservative manner (SI Text,
section S2). Because every second-rank tensor can be uniquely
decomposed into a symmetric and an antisymmetric part, Tcub

IJ
represents physical processes that are fundamentally distinct from
a Navier–Stokes-like energy transfer. It does not redistribute en-
ergy between different shells. Instead, it couples different shells,
say SI and SJ, in such a way that the same amount of energy is
either produced in both shells or extracted from them. The nu-
merical results displayed in Fig. 3B clearly show that the entries of
Tcub
IJ are dominated by the diagonal terms whereas the off-diagonal

terms are negligibly small. Note that the curve in Fig. 3B, Inset
resembles closely the blue line in Fig. 2. Moreover, the diagonal
entries are negative, indicating the dissipative nature of the cubic
nonlinearity. This feature together with the different physical in-
terpretation of the cubic term represents the central result that the
shell-to-shell decomposition yields. Both aspects are essential for
the cubic interaction and should be captured by a successful
closure approximation.

Cubic Damping Term. To make progress beyond a numerical anal-
ysis, we seek an approximate solution for the stationary state of
the energy spectrum. The analysis is complicated by the fact that
the right-hand side of Eq. 2 involves third- and fourth-order ve-
locity correlation functions, Tadv

k and Tcub
k . Formulating evolu-

tion equations for those gives rise to even higher-order velocity
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Fig. 2. Spectral form of the different terms in Eq. 2 in the statistically sta-
tionary state (time averaged): red, Ekman term; green, advective non-
linearity Tadv

k ; dark blue, cubic interaction T cub
k ; magenta, k2 injection; light

blue, k4 dissipation; black, time average of the left-hand side. A positive
contribution means that at these wave numbers the corresponding term acts
as an energy source, and a negative value indicates an energy sink. We see
that the nonlinear terms change their character, depending on the scale
under consideration. At large and intermediate scales, however, the cubic
nonlinearity is always dissipative. Additionally, the Ekman term can provide
energy injection or dissipation, depending on the sign of α. For the simu-
lation presented here the latter was set to ατ=−1; i.e., it represents an ad-
ditional energy source.

15050 | www.pnas.org/cgi/doi/10.1073/pnas.1509304112 Bratanov et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509304112/-/DCSupplemental/pnas.201509304SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509304112/-/DCSupplemental/pnas.201509304SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509304112/-/DCSupplemental/pnas.201509304SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509304112/-/DCSupplemental/pnas.201509304SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509304112/-/DCSupplemental/pnas.201509304SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509304112/-/DCSupplemental/pnas.201509304SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1509304112


correlations. One way to deal with this “hierarchy” problem is to
make approximations at some level (via a “closure relation”),
leading to a closed set of equations. Guided by the observation
that the statistics of the velocity field at large spatial separations in
classical 2D Navier–Stokes turbulence are very close to Gaussian
(which we also confirmed numerically for Eq. 1 as explained in
SI Text, section S3), a natural way to approach the cubic damping
term in Eq. 2 is via the quasi-normal approximation (35), also
known as the Millionshchikov hypothesis (36). According to it,
third-order correlations, e.g., hvi−kvlk−pvjpi, are nonzero, and the
even-order correlations are approximately sums of products of
all possible combinations of second-order correlations (as in
Wick’s theorem). Defining the scalar correlation function QkðtÞ
via DijðkÞQkðtÞ := hvi−kðtÞvjkðtÞi and using spatial homogeneity and
isotropy, one arrives (for a 2D setting) at

Tcub
k ≈−βQk

X
p

 
2
ðk · pÞ2
k2p2

+ 1

!
Qp ≈−8β  Etot   Ek, [7]

where Etot denotes the total energy of the system; for details of the
derivation see SI Text, section S3. Hence, the approximation of the
cubic damping term in Eq. 2 is directly proportional to the energy
spectrum Ek. This resonates with Fig. 3B, showing that the diag-
onal terms are the dominant ones in Tcub

IJ . Hence, the cubic damp-
ing term is of the same form as the linear Ekman damping,
however, with a damping rate that is not constant but proportional
to the total energy Etot of the system. This captures the nonlinear
character of the cubic damping term: It provides a dynamical re-
sponse at large spatial scales, where an increase of the total energy
of the system leads to a stronger dissipation that, in turn, decreases
Ek. This nonlinear feature helps to maintain the spectral energy
balance and achieve a statistically stationary state. The latter can-
not always be attained if β= 0. Our investigations revealed that in
this case there is a critical value for α (necessarily positive) below
which the dissipation due to friction is insufficient and cannot
balance the energy that accumulates at the large scales as a result
of the inverse energy flow in 2D Navier–Stokes systems.

Advective Nonlinearity. In contrast to the cubic damping term, the
advective nonlinearity in Eq. 2 produces an expression that in-
volves third-order correlations, meaning that the quasi-normal
approximation is not directly applicable. Formulating an evolution
equation for the third-order correlation leads to the known hier-
archy problem, which here, due to the presence of the cubic term,
would be even more convoluted. Such a hierarchical scheme can,
nevertheless, lead to a closed system of equations after applying
the Millionshchikov hypothesis, but the resulting system of equa-
tions is highly complicated and tractable only numerically.
Because our goal here is to arrive at an analytical approximation

for the energy spectrum at small wave numbers, we choose a more
heuristic approach. As already discussed, the advective nonlinearity
redistributes energy only among the different modes. This implies
an energy flux in spectral space, defined as Πadv

k =−
R k
0 Tadv

p dp,
which is taken to be proportional to the energy Ek at any given
scale. The energy corresponding to an eddy of size ∼ 1=k scales as
k  Ek, which suggests the relationYadv

k

∝ωk   k  Ek, [8]

where ωk is a characteristic frequency that may vary with k. Be-
cause ωk is still undetermined, the above relation merely shifts the
challenge to finding the function ωk. However, it suggests a phys-
ical interpretation for it. In 2D and 3D Navier–Stokes turbulence
this frequency is determined by ω2

k ∼
R k
0 p2Epdp (35). Physically,

1=ωk can be viewed as the characteristic distortion time at length
scale 1=k. For the energy cascade in classical turbulence ωk scales
as k2=3. Thus, larger eddies have longer eddy turnover times
whereas smaller eddies have shorter ones. This implies that over
a time period of the order of the eddy turnover time at scale 1=k
the effects of the larger wave numbers average out due to their
faster dynamics. On the other hand, due to their comparatively
slower dynamics, the larger length scales (compared with 1=k)
provide a coherent contribution to the average shear rate acting
at the scale 1=k. Given the decrease of Ek with k in the cascade
range of Navier–Stokes turbulence, the main contribution to the
integral comes from the part of the integrand around p∼ k. Thus,
most of the shear stems from wave numbers of a magnitude sim-
ilar to k, which relates to the locality of the classical energy
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Fig. 3. Numerical computation of the shell-to-shell couplings Tadv
IJ and T cub

IJ
as given in Eqs. 6a and 6b; all shells have the same width of three times the
minimal wave number Δk and a time average over the statistically stationary
state has been performed. (A) The coupling term Tadv

IJ due to the advective
Navier–Stokes nonlinearity in units of v30=ℓ. It exhibits both forward and
backward energy flow in spectral space. At intermediate and large wave
numbers there is a local forward flux; see the lobes close to the diagonal. In
contrast, for small k, there is an inverse flux nonlocal in spectral space; see
the side branches. (B) The coupling term T cub

IJ due to the cubic nonlinearity in
units of v30=ℓ. Note the logarithmic scale. In contrast to the Navier–Stokes
term, T cub

IJ is symmetric in the shell indexes. In addition, it is almost diagonal,
indicating that coupling between different shells is negligible. This shows
that at large scales the cubic interaction can be well approximated as a local
dissipation term. Inset displays only the diagonal entries on a linear scale.
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Fig. 4. Numerical computation of the frequency ωk as a function of k as
defined by Eq. 8. Owing to the positive definiteness of the denominator kEk,
the sign of the function agrees with the sign of the energy flux arising from
the advective nonlinearity. Thus, there is evidently an inverse energy flow
(negative flux) at large length scales and a forward energy flow (positive
flux) at small length scales. Additionally, ωk is approximately constant at
small wave numbers. The numerical simulation was performed with ατ= 1.
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cascade. Eq. 8 together with the integral expression for ωk given
above simplifies the equations and provides a closure that, in the
limit of an energy/enstrophy cascade, i.e., constant energy/enstro-
phy flux, yields the Kraichnan solution for the energy spectrum in
the energy/enstrophy inertial range (37). As evident from Fig. 2,
however, at large scales there is no range of wave numbers for
which the advective nonlinearity is zero; i.e., there is no inertial
range. Furthermore, as shown in Fig. 4, the spectral form of the
ratio Πadv

k =ðkEkÞ is constant at large scales, i.e., ωk =ωc = const,
implying that the physics in our case are qualitatively different
from what we have in classical Navier–Stokes turbulence, both
2D and 3D. The result that the characteristic frequency is not a
function of the local wave number but instead a constant over a
wide range in spectral space implies a kind of synchronization of
the large-scale structures. Such a synchronization deviates consid-
erably from the classical ωk ∝ k2=3 scaling and requires nonlocal
interactions involved in the inverse energy cascade at small k as
seen in Fig. 3A. In addition, in classical turbulence models large
spatial scales are more energetic than smaller ones, giving the
former the potential to shear and distort the latter. For Eq. 1,
however, the energy spectrum Ek first increases with k up to some
maximum and then decreases again; see the red curve in Fig. 2.
Hence, for the spectral region we are interested in, the larger
scales are not able to shear the smaller ones. In summary, our
investigation of the advective nonlinearity in this model shows that
at small wave numbers there is a distinct constant frequency ωc
that controls the energy transfer at large scales. Incorporating this
insight into our analysis will provide us with an approximate solu-
tion for the energy spectrum at those scales.

Variable Spectral Exponent. In the statistically stationary state,
time-averaging Eq. 2 yields zero on the left-hand side,

−2
�
α+ 4βEtot +Γ0k2 −Γ2k4

�
Ek −

dΠadv
k

dk
= 0, [9]

where we have already incorporated the result of the quasi-normal
approximation for the cubic damping term. Discarding the term
proportional to Γ2 that is negligible at small wave numbers and
using Eq. 8 with constant ωk, we arrive at a differential equation
for the energy spectrum Ek, the solution of which reads

Ek = eE0kδ exp
�
−

Γ0

λ0ωc
k2
	
, [10]

where eE0 is a constant of integration and the exponent is given by
δ= ð2α+ 8βEtotÞ=ðλ0ωcÞ− 1. Eq. 10 shows that at small wave
numbers (k→ 0) the energy spectrum behaves as a power law.
However, the exponent δ of this power law is not universal but
depends (directly and indirectly) on various system parameters.
Qualitatively, a stronger dissipation, i.e., a positive α and a higher
factor of βEtot, will induce a steeper power law. An example is
shown in Fig. 5, where the numerical solution of Eq. 1 is pre-
sented for two different values of α. In both cases, the system
exhibits clear power-law spectra over more than one order of
magnitude in wave-number space, and it is evident that our
model predicts the correct qualitative dependence of the spectral
exponents. A quantitative test of our semianalytical result can be
undertaken by carrying out numerical simulations for different
values of α. We note in passing that such a parameter scan
requires that there are always enough instabilities to drive the
turbulence and that statistical homogeneity and isotropy are en-
sured. The linear growth rate of the most unstable mode equals
−α+Γ2

0=ð4Γ2Þ, which gives an upper bound on the variation of α
once Γ0 and Γ2 have been set. On the other hand, the term −αv in
Eq. 1 tries to destroy the statistical isotropy of the system. Thus,
the energy injected by the α term must be considerably smaller
than that injected by the Γ2 term, which imposes a lower bound
on α. The result from such a parameter scan of the numerical
solution of Eq. 1 is displayed in Fig. 6, where every point is
obtained by fitting a power law on the left end of the energy
spectrum. The data from our investigation show a linear depen-
dence of the slope δ on the parameter α, which agrees with the
expression for δ provided by our model. Further numerical sim-
ulations indicate that the dependence of the slope on the
strength of the cubic interaction β is qualitatively the same but
quantitatively much weaker. This can be due to the factor βEtot
appearing in δ. Stability analysis shows that for λ0 =Γ0 =Γ2 = 0
and α< 0 an ordered state arises with a constant velocity field
and total system energy Etot ∝ 1=β. If a similar scaling applies also
in the presence of the advective nonlinearity and the other linear
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Fig. 5. Time-averaged energy spectrum Ek for two different values of ατ at
the two ends of the parameter domain supporting the turbulent regime,
ατ=−1 and ατ= 4. There is a clear power law at large scales and the effect of
varying the strength of the Ekman term manifests as a variation of its slope.
In general, more intensive energy injection (via the parameter α) leads to a
less steep slope of the power law, more energy at each scale, and a peak of
the energy spectrum that occurs at smaller wave numbers.
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Fig. 6. Variation of the slope of the energy spectrum at small wave num-
bers with respect to α. The steepness of the power law at large scales varies
continuously with the driving parameter in a nearly linear fashion as long as
there is a statistically isotropic turbulent regime. The parameter range where
this applies derives from the condition that there are enough linear insta-
bilities to sustain the turbulence: i.e., α should not be too large, and the
energy injection from the Ekman term should not dominate over the Γ0

term; i.e., α should not be too negative.
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terms, then the product βEtot should exhibit only weak depen-
dence on β.

Summary and Conclusions
In the present work, we investigated the properties of a contin-
uum model describing the turbulent motion of active fluids
driven by internal instabilities. In addition to the convective non-
linearity of Navier–Stokes type, the model contains a cubic non-
linearity. Analytical and numerical considerations revealed that at
large scales, the latter behaves like an Ekman damping with a fre-
quency that is set by the system self-consistently. The system dis-
plays power-law energy spectra even in the absence of an inertial
range, but the spectral exponents depend on the system parameters.
These properties should be observable in laboratory experiments.
How do these findings fit into a broader perspective on turbu-

lence? In Navier–Stokes turbulence, the dynamics are character-
ized by an inertial range that is dominated by a single nonlinear
term and free of energy sources/sinks, displaying universal prop-
erties. Several turbulence models in the literature deviate from
this standard picture in that they introduce multiscale forcing and/
or damping with a power-law spectrum, thereby removing the
inertial range (in a strict sense) (38–40). It can be shown, however,

that, in general, this modification really affects the system only at
very small or very large scales, i.e., in the asymptotic limit (41). If
and only if the power-law exponent is such that the linear forcing/
damping rates scale exactly like the nonlinear energy transfer
rates, does the forcing/damping affect the entire scale range, in-
ducing nonuniversal behavior (16, 42, 43).
The physical system discussed in this paper is fundamentally

different, however. Here, the existence of a second nonlinearity
provides additional freedom, such that the system is able to self-
organize into such a critical state (characterized by a scale-by-
scale balance between linear forcing/damping rates and non-
linear transfer rates), without the need for external fine-tuning.
The observed nonuniversal behavior is a natural consequence of
this feature. These properties define a new class of turbulence.
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