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Abstract: Fast signal processing and real-time displays are essential for 
practical imaging modality in various fields of applications. However, the 
imaging speed in optical-resolution photoacoustic microscopy (OR-PAM), 
in particular, depends on factors such as the pulse repetition rate of the 
laser, scanning method, field of view (FOV), and signal processing time. In 
the past, efforts to increase acquisition speed either focused on developing 
new scanning methods or using lasers with higher pulse repetition rates. 
However, high-speed signal processing is also important for real-time 
volumetric display in OR-PAM. In this study, we carried out parallel signal 
processing using a graphics processing unit (GPU) to enable fast signal 
processing and wide-field real-time displays in laser-scanning OR-PAM. 
The average total GPU processing time for a B-mode PAM image was 
approximately 1.35 ms at a display speed of 480 fps when the data samples 
were acquired with 736 (axial) × 500 (lateral) points/B-mode-frame at a 
pulse repetition rate of 300 kHz. In addition, we successfully displayed 
maximum amplitude projection images of a mouse’s ear as volumetric 
images with an FOV of 3 mm × 3 mm (500 × 500 pixels) at 1.02 s, 
corresponding to 0.98 fps. 

©2015 Optical Society of America 

OCIS codes: (110.5120) Photoacoustic imaging; (170.3880) Medical and biological imaging; 
(170.5120) Photoacoustic imaging; (170.5810) Scanning microscopy; (180.5810) Scanning 
microscopy. 
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1. Introduction 

Photoacoustic imaging is widely used as a noninvasive imaging technology that can be 
combined with optical absorption contrast and ultrasound spatial resolution for structural, 
functional, and molecular imaging [1–3]. In particular, optical-resolution photoacoustic 
microscopy (OR-PAM), which was first introduced by Maslov et al. [4], can provide 
capillary-level spatial resolution as a result of its tightly focused micron-scale laser spot size. 
The imaging speed in OR-PAM depends on factors such as the pulse repetition rate of the 
laser, scanning methods, field of view (FOV), and signal processing time. The imaging speed 
in the first generation OR-PAM was relatively slow because of the mechanical scanning 
involved and the low pulse repetition rate (10–20 Hz) of the laser utilized. The higher 
acquisition speed can minimize motion artifacts, reduce anesthetic duration for animal 
experiments, and facilitate quantitative analysis of 3D and 4D image data. Recently, since the 
commercialization of nanosecond pulsed lasers with a few kilohertz to a few hundred 
kilohertz repetition rates, several groups have actively studied methods of accelerating the 
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imaging acquisition speed and obtaining maximum amplitude projection (MAP) images with 
wide FOVs as volumetric images. 

For example, Xie et al. [5] and Rao et al. [6] proposed a laser-scanning method that uses a 
2D galvanometer scanner or hybrid scanning method combined with a 1D galvanometer 
scanner and a 1D motorized stage at a 5-kHz repetition rate. Wang et al. [7] presented a fast 
mechanical scanner based on a voice-coil stage with a laser repetition rate of 4 kHz. In 
addition, real-time volumetric laser-scanning OR-PAM images have been exhibited by Rao et 
al. [8] and Shi et al. [9, 10] at pulse repetition rates of 100 kHz, 320 kHz, and 600 kHz. To 
acquire the real-time volumetric PAM data, either small amounts of volumetric data pixels 
were collected for small FOVs (a few hundred micrometers) [8, 10] or block-data (or 3D 
data) with a large number of pixels for large FOVs (a few millimeters) and saved them 
without data transfer until the acquisition was complete [9, 10]. Data acquisition speed was 
increased by using new scanning methods and lasers with higher pulse repetition rates, but 
most of the volumetric OR-PAM images were still displayed via post-signal processing 
because of the long computation time involved. 

Mattison et al. [11] introduced real-time photoacoustic demodulation and PA images 
using a field programmable gate array (FPGA). They collected and processed a 1000 × 1000 
× 1000 pixel PAM data set in 10.575 s at a pulse repetition rate of 100 kHz. In addition, they 
stated that the results of simulations conducted indicated that real-time processing was 
capable up to a line rate of 1 MHz. Finally, the heart of a zebrafish embryo was dynamically 
and volumetrically imaged with an FOV of 1 mm, 200 × 200 × 200 pixels, and a period of 
1.76 s at a pulse repetition rate of 25 kHz. 

In recent times, graphics processing units (GPUs) have been used in the place of central 
processing units (CPUs) to accelerate numerical computations in optical imaging techniques 
such as optical coherence tomography, digital holography microscopy, and confocal 
microscopy [12–15]. This is because a GPU has many stream processors, which can enable 
highly parallel processing. Consequently, GPU techniques have been applied to integrated 
photoacoustic tomography (PAT), ultrasound dual-modality systems, and 3D PAT image 
reconstruction algorithms [16–18]. Yuan et al. [16] and Beán-Ben et al. [17] used a 
configuration comprising an arrayed ultrasound transducer for detection and a fiber bundle for 
illumination at a low pulse repetition rate of 10 Hz. They also applied a GPU technique 
incorporating the back projection algorithm for real-time display [16, 18]. Further, Peng et al. 
[18] proposed a finite element (FEM) based 3D reconstruction algorithm that exploits GPUs. 

In this study, we realized real-time display of 2D B-mode PAM images and MAP PAM 
images on a laser-scanning OR-PAM at a pulse repetition rate of 300 kHz. Photoacoustic 
signals were collected frame-by-frame (2D data set) instead of block-by-block (3D data set), 
and then processed using CPU multithreading technology and GPU parallel processing 
technology. Respective display rates of 480 fps for B-mode PAM images and 0.98 fps for 
MAP PAM images at a resolution of 500 × 500 pixels and an FOV of 3 mm × 3 mm were 
achieved. 

2. Material and methods 

2.1. Laser-scanning OR-PAM 

A schematic of a laser-scanning OR-PAM is shown in Fig. 1(a). Ytterbium-doped fiber laser 
(YLP-G10, IPG Photonics Corp.), which has variable pulse repetition rate from 20 kHz to 
600 kHz with a 1-ns pulse width at 532 nm, was used as a light source. In this experiment, the 
repetition rate was set to 300 kHz using a function generator. Light from the laser was 
incident on a single-mode optical fiber via a 5 × -objective lens with 0.13 NA in a fiber 
launch platform. The light that passed through the optical fiber was scanned using a 2D 
galvanometer scanning mirror and focused by means of a scan lens (LSM03-VIS, Thorlabs 
Inc.). The scan lens had an effective focal length of 39 mm, a working distance of 25.1 mm, 

#249785 Received 10 Sep 2015; revised 26 Oct 2015; accepted 29 Oct 2015; published 2 Nov 2015 
(C) 2015 OSA 1 Dec 2015 | Vol. 6, No. 12 | DOI:10.1364/BOE.6.004650 | BIOMEDICAL OPTICS EXPRESS 4652 



and a maximum FOV of 10.3 × 10.3 mm. The focusing beam passed through a glass window 
with a thickness of approximately 1 mm and was incident on the sample, as shown in Fig. 
1(a). The 2D galvanometer scanning mirror was controlled via a data acquisition board (NI 
USB-6363, National Instruments Corp.) with two saw-tooth functions for the x-axis and y-
axis. The x-axis was driven at 480 Hz with a duty cycle of 80%, and the y-axis was set at 0.98 
Hz with a duty cycle of 100%. When the scan angle of all axes was set to ± 1.5 degree, the 
measured FOV was approximately 3 mm × 3 mm. Geometrically, the FOV should be 
approximately 2 mm × 2 mm. This difference occurred for several reasons: (1) the focal 
position shifted slightly because the focusing beam passed through a glass window. (2) A 
distance error occurred between the 2D galvanometer and the objective lens. (3) A scan angle 
error occurred because the scan angle was controlled by the applied voltage. The acoustic 
waves that occurred at the focal plane were detected using an unfocused ultrasound 
transducer (V316-N-SU, Olympus-NDT) with a center frequency of 20 MHz and a −6 dB 
bandwidth of 71%. The acoustic signals detected were amplified by two amplifiers (ZFL-
500LN + , Mini-Circuits) with a gain of 24 dB (total 48 dB) and filtered using a low-pass 
filter (VLF-52 + , Mini-Circuits). These signals were finally converted using a high-speed 
digitizer (ATS9350, AlazarTech) at a sampling rate of 250 MSamples/s. The digitizer was 
able to convert with 12-bit resolution and transfer data to a personal computer (PC) at a speed 
of 1.6 GB/s. To obtain PAM images, samples were positioned on the transparent glass of the 
sample stand, as shown in Fig. 1(a). 

Figure 1(b) shows the synchronized signals for the line-trigger (green line) of 300 kHz, 
frame-trigger (blue line) of 480 Hz, and fast-axis (x-axis, red line) galvanometer. In previous 
studies, only line-triggers generated by a function generator or a photodiode were used [4–
10]. In this study, we added frame-trigger signals to reduce the jitter generated by different 
main clocks between the function generator, analog-output board, and the digitizer. The fast-
axis galvanometer was moved (magenta line) with a delay time of approximately 0.43 ms 
compared with the function signal from the A/D board, as shown in Fig. 1(b). Consequently, 
the TTL signal for the frame-trigger was delayed compared with the saw-tooth function for 
the fast-axis galvanometer. The data acquisition started at the positive edge of the frame-
trigger signal. Thus, 736 points per line were sampled by the line-trigger and 500 lines per B-
mode-frame were collected. 

 

Fig. 1. (a) Schematic of laser-scanning OR-PAM. FLP: fiber launch platform, OF: optical 
fiber, Col. Lens: collimation lens, Obj. lens: objective lens, UT: ultrasound transducer, and 
AMP: amplifier. (b) Synchronized signals for line-trigger (green), frame-trigger (blue), fast-
axis galvanometer signal (red) from the A/D board, and position signal of the fast-axis 
galvanometer (magenta). 
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2.2. Parallel signal processing implementation 

The sequence flow for the real-time display PAM imaging is shown in Fig. 2. First, thread 1 
of the CPU generates an analog-output signal to control the 2D galvanometer, trigger frames, 
and acquire 736 (axial) × 500 (lateral) samples per frame acoustic signals. Next, thread 2 of 
the CPU calls the signal processing sequences of the GPU with five kernels to perform the 
following functions: 

(1) Type conversion from 16-bit unsigned integer to 64-bit double (Kernel 1) 

(2) Hilbert transform (Kernels 2 and 3, as shown in the dotted box in Fig. 2) 

(3) Computation of the amplitude from real values and imaginary values of the Hilbert-
transformed data (Kernel 4) 

(4) Type conversion from 64-bit double to 8-bit unsigned character for a 256 colormap 
(Kernel 4) 

(5) Find maximum amplitude (Kernel 5) 

 

Fig. 2. Signal processing sequence flowchart in the CPU and GPU. 

For the Hilbert transform, fast Fourier transform (FFT) and inversed-FFT were carried out 
using the CUDA FFT library (cuFFT). The Fourier transformed signals were multiplied by 
H(n) as follows: 

 

1 0 and / 2

( ) 2 0 / 2

0 / 2 1

n n N

H n n N

N n N

= =
= < <
 < < −

              

                     

               

 (1) 

where N is the number of sampled even numbers per A-line. The multiplied signals were then 
converted back to the time domain via inverse-FFT. In thread 3 of the CPU, the B-mode PAM 
image with 8-bit unsigned character was transferred to the memory of the PC and displayed 
on the monitor. If the MAP PAM images needed to be displayed on the monitor, then thread 3 
of the CPU would call for the processing of MAP on the GPU, transfer the MAP data to PC 
memory, and display the MAP PAM images on the monitor. 

The GPU-based signal processing was implemented as shown in Fig. 3. To obtain B-mode 
PAM images and MAP PAM images, three types of parallel implementations are needed. The 
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first is parallel computations of pixel-to-pixel for type conversion (Kernels 1 and 4) and 
multiplication of H(n) (Kernel 3), as shown in Fig. 3(a). The second is line-to-line parallel 
computation for FFT or IFFT (Kernel 2, Fig. 3(b)). The third is line-to-pixel parallel 
computations to find the maximum amplitude (Kernel 5), as shown in Fig. 3(c). 

A personal computer with a quad-core CPU (Intel Core i7-4790, Intel) and a graphics card 
(ASUS GTX780 Ti, ASUSTeK Computer Inc.) based GeForce series GPU (NVIDA Corp.), 
comprising 2880 stream processors, a 7000 MHz memory clock, and 3 GB of RAM were 
used to process the acquired data. To accelerate numerical calculations and display real-time 
B-mode and MAP PAM images, we developed custom software using Microsoft Visual C++ 
and NVIDIA’s compute unified device architecture (CUDA) 6.5 technology. 

 

Fig. 3. Illustration of the parallel implementation in the GPU: (a) For Kernels 1, 3, and 4, (b) 
for Kernel 2 (FFT or IFFT), and (c) for Kernel 5. 

3. Results and discussion 

In GPU processing, the computation time is affected by the number of threads per block. We 
measured the average time using 500 frames of B-mode PAM images, which had 736 (axial) 
× 500 (lateral) sampling points. In general, NVIDIA recommends that the number of threads 
per block should be set to multiples of 64. Therefore, we measured the average calculation 
time according to the changing number of threads per block, 64, 128, 256, and 512, in the 
GPU. As shown in Fig. 4(a), when the number of threads per block was set to 128, the 
computation time for the B-mode PAM image was the shortest. Table 1 summarizes the 
processing time of each sequence when the number of threads per block was 128. The total 
processing time added to each processing time was 1.35 ms. This computing time was shorter 
than the frame interval time (2.08 ms). Consequently, real-time display of the processed B-
mode PAM images was achieved. Figure 4(b) shows the GPU-accelerated image display 
speed that we subsequently compared to the image display speed achieved based on a regular 
CPU. We confirmed that the image display speed based on the GPU was 60 times and 30 
times faster than those using single thread and two threads in the CPU, respectively. 
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Fig. 4. (a) Computation time versus number of threads per block in the GPU, (b) comparison 
of the real-time display performance for B-mode PAM images on three different computational 
platforms: Intel i7 CPU using a single thread, Intel i7 CPU using two threads, and GeForce 
GTX780 GPU. 

To evaluate the performance of our laser-scanning OR-PAM system, a USAF 1951 
resolution target (Edmunds Optics, Barrington, NJ, USA), coated negatively with chrome, 
was imaged as shown in Fig. 5(a). In contrast to the mechanical scanning OR-PAM, laser-
scanning OR-PAM has a limited FOV because of the acceptance angle and element size of 
the ultrasound transducer. In our system, an area 3 mm × 3 mm was achieved as the 
maximum FOV with 500 × 500 pixels. The physical pixel size was calculated as 6 μm. 
Therefore, theoretically, the minimum lateral resolution was twice the physical pixel size, i.e., 
12 μm. In fact, in Fig. 5(a), the lines at group 5 and element 6, which correspond to a lateral 
resolution of 17.5 μm, could be distinguished. Further, when the FOV was reduced to 1 mm × 
1 mm with 500 × 500 pixels, we could clearly recognize the lines at group 7 and element 1, 
corresponding to a lateral resolution of 7.8 μm, as shown in Fig. 5(b). This value was lower 
than the theoretical mean spot size of the focused light, which was 9.9 μm at 633 nm. For this 
experiment, when the resolution target was exposed to a laser pulse energy of 80 nJ, acoustic 
signals from the chrome layer were saturated. Under this condition, we measured a signal-to-
noise ratio (SNR) of approximately 23 dB. 

Table 1. Average GPU processing time using 500 frames of B-mode PAM images when 
the number of threads per block was 128. 

Processing Time (ms) 

Data transfer (CPU → GPU) 0.31 

Type conversion (16-bit → 64-bit) 0.06 

cuFFT 0.09 

Multiplication with H(n) 0.06 

Inverse cuFFT 0.09 

Type conversion (64-bit → 8-bit) 0.15 

Data transfer (GPU → CPU) 0.56 

etc. 0.03 

Total 1.35 
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Fig. 5. MAP OR-PAM images of the USAF1951 resolution target: (a) FOV of 3 mm × 3 mm 
and 500 × 500 pixels, (b) FOV of 1 mm × 1 mm and 500 × 500 pixels. 

Finally, we obtained in-vivo B-mode PAM images and MAP PAM images of micro-
vasculatures in a BALB/c-nude mouse’s ear. Figure 6(a) shows the cross-sectional B-mode 
PAM image at the distal end of the mouse’s left ear. Visualization 1 was constructed with 500 
B-mode PAM images, which are one volumetric PAM data. These B-mode PAM images 
were displayed at 480 fps on the monitor, but we converted Visualization 1 to 50 fps. In Fig. 
6(a), a mirrored image (red arrows) is presented owing to the reflected acoustic wave from the 
glass of the sample stand. Figure 6(b) shows the MAP PAM image of blood vessels in the ear. 
Capillaries (white arrows) can clearly be seen in Fig. 6(b). A total time of 1.02 s was needed 
to acquire and display one volumetric PAM data with 500 × 500 pixels and FOV of 3 mm × 3 
mm. In addition, we were able to obtain a total of 23 frames of MAP PAM images within a 
period of 23.47 s, which we used to make a movie (Visualization 2) and converted 
Visualization 2 to 5 fps. 

 

Fig. 6. OR-PAM images of a BALB/c-nude mouse’s ear. (a) B-mode PAM image 
(Visualization 1), (b) MAP PAM image (Visualization 2). BV: Blood vessel. 
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In the in-vivo study, the laser pulse energy on the mouse’s skin was approximately 100 nJ. 
Estimating that the depth of the focused spot was ~180 μm below the skin surface, the surface 
spot size was calculated to be approximately 9.3 μm. Therefore, the calculated surface laser 
fluence was 36.8 mJ/cm2. Although the ANSI laser safety limit is 20 mJ/cm2, the value 
obtained is below the skin damage threshold [5, 19]. In practice, we observed no thermal 
damage on the skin surface, as shown in Visualization 2. If the optic and ultrasound beams 
are aligned confocally and the focused ultrasound transducer is used, the laser pulse energy 
can be reduced. We believe that this would result in a laser fluence that is below the ANSI 
safety limit. 

If the volumetric PAM image data are saved as a block, only five volumetric PAM 
images, corresponding to 4.9 s, can be acquired because data size per volume is 351 MB (2 
bytes × 736 × 500 × 500) and the digitizer only has 2 GB of onboard memory. The digitizer 
can also continuously save data to hard disk in streaming mode. In streaming mode, post-
processing should be carried out to display B-mode and MAP PAM images. Therefore, it 
would be impossible to achieve real-time display in such a scenario. If the pixel size of a 
MAP PAM image is reduced to 500 (x-axis) × 250 (y-axis) pixels with an FOV of 3 mm × 1.5 
mm, the display speed can be doubled (1.96 fps). 

In the previous study by Mattison et al. [11], the results of simulations indicated that their 
PAM system using an FPGA was capable of a maximum line rate of 1 MHz. Nevertheless, 
only volumetric images with an FOV of 1 mm × 1 mm and 200 × 200 × 200 pixels were 
obtained at a period of 1.76 s using a laser with a pulse repetition rate of 25 kHz, owing to a 
limitation of the laser. However, even if the laser was at a pulse repetition rate of 1 MHz and 
overcame the limitations in obtaining PAM images, the PAM system would still have the 
disadvantage of a limited imaging depth of ~1.5 mm, because the speed of acoustic waves in 
tissues is approximately 1500 m/s. In our OR-PAM system based on GPU-accelerated signal 
processing at a pulse repetition rate of 300 kHz, continuous real-time MAP display with an 
FOV of 3 mm × 3 mm (9 × larger) and 736 × 500 × 500 pixels (23 × larger) is available at a 
period of 1.02 s (1.7 × faster). Comparison of the time consumed for parallel processing by 
the GPU method to that consumed by the FPGA method is rather difficult because parallel 
processing time is dependent on factors such as data size, processing algorithm, and type of 
application. Although controversy has arose regarding the performance of GPU compared to 
that of FPGA [20, 21], it can be stated unequivocally that the GPU technique has merits such 
as relative ease of software development without low-level programming language due in 
large part to its many available programming libraries. 

In related studies, Beán-Ben et al. [17] utilized the GPU technique in a real-time PAT 
system. They used an arrayed ultrasound transducer instead of a single ultrasound transducer 
for detection because a pulse repetition rate of the laser, which was used, was very slow (10 
Hz). Using the arrayed ultrasound transducer should need the back projection algorithm as 
image reconstruction algorithm. Because the back projection algorithm involves complicated 
computations, long computation time is required unless parallel processing is accomplished. 
However, even though the data size was 128 × 128 × 64 pixels (smaller by a factor of 175) 
and the GPU technique was used, they were only able to realize a computation time 52 times 
faster (19.5 ms) than that realized in this study. 

Continuous real-time MAP display has several advantages as microscopic imaging 
modality such as monitoring of system performance, immediate confirmation of animal 
condition, and biological transition. Figure 7 (Visualization 3) shows the movements of the 
sample (mouse ear), which can be generated during in-vivo studies in both macroscopic and 
microscopic imaging. These movements occurred image distortion (white arrow, Fig. 7(c)) 
owing to movement of the sample position or changes of shapes and intensities (white arrows, 
Fig. 7(d)) owing to movement of focal position in the sample. Although dynamic variance 
results can be observed using post-processing [8–10, 19] and real-time processing [11] in OR-
PAM with a laser at a high repetition rate, movements such as these can be monitored only in 
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real-time processing and display. Catching these movements is important in in-vivo studies 
and reduces the time wasted as a result of failed experiments. Visualization 3 was also 
converted from 0.98 fps to 5 fps with 23 frames of MAP images. 

The galvanometer scanning mirror used in our OR-PAM system has a trade-off between 
scan angle and scan frequency. When a large scan angle (large FOV) is needed, the fast-axis 
scan frequency (B-mode frequency) has to be lower than it is at a small scan angle. On the 
other hand, if the scan angle of the fast-axis galvanometer is set to a small angle, the scan 
frequency can be increased. A water-immersible MEMS scanning mirror for wide-field fast-
scanning OR-PAM has recently been reported [22–24]. Combining the MEMS scanning 
mirror with a laser that has a high pulse repetition rate bestows MEMS-OR-PAM with 
powerful advantages such as fast acquisition with wide scanning range and high SNR owing 
to the confocal alignment of the optical and acoustic beams; further, it facilitates the 
application of a handheld probe or endoscopy. However, for volumetric MAP image display, 
MEMS-OR-PAM still depends on post-signal processing. In further study, we expect to 
display real-time volumetric MAP PAM images with a larger FOV of 6 mm × 3 mm and 
1000 × 500 pixels at 600 kHz pulse repetition rate by applying the GPU-accelerated signal 
processing technique to the MEMS-OR-PAM system. 

 

Fig. 7. Image distortion owing to movement of the sample position and changes of shapes and 
intensities owing to movement of focal position in the sample when there were breathing or 
momentary movement (Visualization 3). 

4. Conclusion 

In conclusion, we demonstrated real-time volumetric display in laser-scanning OR-PAM 
using GPU-accelerated signal processing at a 300-kHz pulse repetition rate. We generated 
five kernels in the GPU to process Hilbert transform and maximum amplitude projection, and 

#249785 Received 10 Sep 2015; revised 26 Oct 2015; accepted 29 Oct 2015; published 2 Nov 2015 
(C) 2015 OSA 1 Dec 2015 | Vol. 6, No. 12 | DOI:10.1364/BOE.6.004650 | BIOMEDICAL OPTICS EXPRESS 4659 

https://www.osapublishing.org/boe/viewmedia.cfm?uri=boe-6-12-4650-3
https://www.osapublishing.org/boe/viewmedia.cfm?uri=boe-6-12-4650-3


then optimized the number of threads per block in the GPU. When the number of threads per 
block was set to 128, the computation time for B-mode PAM image was the shortest. The 
averaged total time for GPU processing of a B-mode PAM image was approximately 1.35 ms 
and the display speed was 480 fps when the data samples were acquired with 736 (axial) × 
500 (lateral) points/B-mode-frame. In addition, we were able to display MAP PAM images of 
a mouse’s ear as volumetric images at 0.98 fps (500 × 500 pixels, 3 mm × 3 mm). 
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