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Abstract: Optimizing light delivery for optogenetics is critical in order to 
accurately stimulate the neurons of interest while reducing nonspecific 
effects such as tissue heating or photodamage. Light distribution is typically 
predicted using the assumption of tissue homogeneity, which oversimplifies 
light transport in heterogeneous brain. Here, we present an open-source 3D 
simulation platform, OptogenSIM, which eliminates this assumption. This 
platform integrates a voxel-based 3D Monte Carlo model, generic optical 
property models of brain tissues, and a well-defined 3D mouse brain tissue 
atlas. The application of this platform in brain data models demonstrates 
that brain heterogeneity has moderate to significant impact depending on 
application conditions. Estimated light density contours can show the 
region of any specified power density in the 3D brain space and thus can 
help optimize the light delivery settings, such as the optical fiber position, 
fiber diameter, fiber numerical aperture, light wavelength and power. 
OptogenSIM is freely available and can be easily adapted to incorporate 
additional brain atlases. 
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1. Introduction 

New advances in optics and molecular genetics have spurred the rapid advances in the field of 
optogenetics to modulate neural activities in specific cell-types of interest using light [1–5]. 
Optogenetics has become a powerful tool for neuronal control and stimulation, and has 
recently demonstrated great promise to investigate the neuro-circuitry of a number of 
neurological diseases, such as Parkinson's diseases, autism, Schizophrenia, anxiety, 
depression, etc [6–8]. As the applications for optogenetics expand, strategies that can ensure 
adequate light delivery precision for modulating selected neurons while minimizing undesired 
side effects are critically needed [4]. 

In order to best design the optimal light delivery strategy, it is important to evaluate or 
estimate the effect of each of the parameters of the light delivery and of the brain tissue to be 
interrogated. Light distribution in brain can be affected by optical properties such as 
scattering coefficient, absorption coefficient, and scattering anisotropy factor, light source, 
and fiber geometry and positioning [2,4]. Monte Carlo methods [9,10] and analytical models 
including those related to diffusion theory or radiation transport equation [2,11] have already 
found their applications in predicting the light power density in optogenetic applications. 
However, these methods do not take into account the non-uniform 3D distribution of optical 
properties of the brain or the brain tissue heterogeneity as a whole. Examples of assumptions 
made in previous studies include: the whole brain was considered as all gray matter (GM) 
[2,9], different brain structures were treated separately and the light distribution was 
estimated within each of the structures separately using simplified one dimensional diffusion 
theory [11], only two dimensional Monte Carlo was applied [10]. In addition, there is no 
intuitive way to illustrate the light power distribution in three dimensional views of the brain. 

Hence, to resolve the challenges of brain tissue heterogeneity in terms of spatially varying 
optical properties [12–17], complex light delivery strategies [4,18,19], and the complicated 
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spatial anatomy of the mammalian brain [20,21], a complete 3D Monte Carlo modeling 
approach is needed. While a 3D Monte Carlo modeling platform will clearly improve the 
capabilities of optogenetics by offering powerful simulations of tissue light interactions, two 
practical issues must first be explored and addressed: 1) reliable optical properties of brain 
tissue may not be available for all wavelengths or tissue structures of interest; and 2) there has 
been no publicly available 3D rodent brain atlas designed for the purpose of conducting 
Monte Carlo simulation. For the first issue, optical properties of brain tissue vary across 
different regions and are wavelength dependent, and the reported measured optical properties 
are subject to variations in the measurement conditions [11–14,17,22–25]. Any effective 
modeling approach has to take this variability into account. For the second issue, the rodent 
brain has been widely used in optogenetics and other researches in neuroscience, and both in 
vivo and ex vivo 3D atlases are available. However, the atlases are constructed based on 
neuronal anatomy, not optical properties, and are not able to be directly applied to the Monte 
Carlo simulation. For example, the brain was segmented into 671 unique brain structures in 
Allen mouse brain atlas [26], 62 structures in an average MRI mouse brain atlas [27], 20 
regions in 3D MRM(Magnetic Resonance Microscopy) mouse brain atlases [28,29], and 29 
brain regions in a 3D DTI(diffusion tensor imaging) adult rat brain atlas [30]. The structures 
or regions in the atlases are unable to be classified based on the optical properties since 
optical properties may have significant change in different regions of the same neuroanatomy 
structure. Generally, a neuronal structure is a mixture of gray matter (GM) and white matter 
(WM) that are significantly different in optical properties [14,23–25] and thus these matter 
types need to be classified first in order to create an effective Monte Carlo applicable 
database. 

To resolve the challenges described above, an open-source 3D simulation platform, 
OptogenSIM was developed that integrates a 3D Monte Carlo model, generic models of brain 
tissue optical properties, and a well-defined brain tissue atlas of structure and tissue type. 
Specifically, four major goals were accomplished in our platform. First, we created a 3D 
Monte Carlo method that accommodates brain tissue heterogeneity and different light 
delivery approaches in optogenetic applications. 3D Monte Carlo code has been developed by 
several groups including voxel-based tMCimg [31] and mesh-based 3D Monte Carlo 
simulation tools [32,33]. The “gold standard” Monte Carlo program MCML [34] is for 
simulation of 3D photon propagation in planar multi-layered tissues. Our current work builds 
on our previous 3D Monte Carlo work named “mcxyz”, which is freely available 
(http://omlc.org/software/mc/mcxyz/, which presents a description of the method) and uses 
the same light transport model as in MCML [34] with only minor exceptions. This Monte 
Carlo system reads an input text file in a standard format, which can be created by a variety of 
editors routinely used to create input files such as MATLAB (The Mathworks, Inc., Natick, 
MA). The outputs are standard binary files of the fluence rate within the heterogeneous tissue. 
We previously used mcxyz for light power estimation [35,36]. In OptogenSIM, the fiber 
beam modeling has been enriched and incorporated, as shown in the appendix. Second, 
generic brain tissue models were created in the wavelength range of 400nm-1000nm for brain 
gray matter and brain white matter based on reported values in literature as well as our own 
experimental measurements [35,36]. These previous measurements yielded the optical 
properties of GM and WM for a generic brain model. Third, a mouse brain tissue type atlas 
was defined for the purpose of conducting 3D simulation by segmenting a public freely 
available mouse brain anatomy atlas [28] into GM, WM and cerebrospinal fluid (CSF) 
regions using a statistical parametric mapping tool [37,38]. The light delivered to arbitrary 
brain structures or brain atlas locations can be simulated, which takes into account brain 
tissue heterogeneity while avoiding a dramatic increase in the tissue model complexity. 
Fourth, a graphical user interface (GUI) based on MATLAB (The Mathworks, Inc., Natick, 
MA) was developed for this simulation platform, in which the user can intuitively adjust the 
simulation settings and check the light power density at any desired 3D position. 

With tested applications of this 3D Monte Carlo platform, a significant to moderate 
impact of brain heterogeneity is demonstrated and the iso-fluence contour of any specified 
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light density can be displayed in any region of the 3D brain. The 3D Monte Carlo platform 
presented here provides a useful tool for the design of light delivery strategies in optogenetics 
applications. This open source platform is named OptogenSIM and is freely available from 
www.loci.wisc.edu/software/optogensim. 

2. Materials and methods 

2.1 Construction of 3D Monte Carlo simulation platform 

The simulation platform has a MATLAB-based GUI and integrates a 3D Monte Carlo model, 
a generic brain tissue optical properties library, and a well-defined 3D mouse brain tissue type 
atlas. 

2.1.1 3D Monte Carlo model 

The 3D Monte Carlo method used in this study is based on previous work [34,39] and is a 
Cartesian-grid voxel-based method, which allows assignment of optical properties, including 
absorption coefficient, µa[mm−1], scattering coefficient, µs[mm−1], anisotropy of scattering, g 
[dimensionless], to each individual voxel. The photon transport differs from the MCML [34] 
as follows: (1) Each voxel can have a different optical property, so a heterogeneous tissue can 
be modeled; (2) each photon step size (s) is calculated as s = -ln(random number)/μs, and after 
each step photon weight (W) is deposited as W(1-exp(-μas)). When a photon step will cross 
multiple voxels, the photon takes partial steps across each encountered voxel and drops a 
portion of its photon weight in each voxel; (3) in addition to the standard collimated 
orthogonal point light source used in MCML, other light delivery mechanisms commonly 
used in optogenetics can also be implemented, such as optical fiber based stimulation in 
which physical parameters of the fiber such as diameter and numerical aperture (NA) can be 
defined as well; (4) a three-dimensional Cartesian coordinate system of voxels is used to 
record fluence rate rather than the cylindrical coordinates of MCML. A fluence rate is 
recorded for each individual voxel located in the 3D tissue atlas. The 3D code was validated 
against previous code in MCML using a 2-layer skin tissue structure that worked with both 
code bases (data is shown in the OptogenSIM website mentioned above). A more detailed 
description about the implementation of this model can be seen in the appendix. 

2.1.2 3D brain atlas 

The representative ex vivo adult male C57BL/6J mouse brain atlas used here was selected 
from a comprehensive digital atlas database of magnetic resonance images [28]. This 3D atlas 
was manually delineated into 20 brain anatomical structures and was used as a reference to 
segment other brain images. To integrate this atlas into our simulation platform, this atlas was 
segmented into GM, WM, and CSF regions by using a statistical parametric mapping based 
tool named SPMMOUSE [37,38]. An affine registration was first employed to reorient both 
the original volume atlas and the annotation atlas in order to align them with the prior 
template. Then the reoriented atlas was segmented and smoothed in its native space. The 
defined individual single mouse brain tissue atlas has 256 × 512 × 256 x × y × z voxels, and 
each voxel has a dimension of 47µm × 47µm × 47µm. 

2.1.3 Generic brain tissue models 

The generic tissue model is based on the tissue constitution and can provide a good estimate 
of optical properties for various tissue types at any desired wavelength [17]. The reduced 
scattering coefficient (μs’) is modeled as 

 ( ) ( )
' ,

500

b

s a
nm

λμ λ
−

 
=   

 
 (1) 
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where the scaling factor a equals the value of '
sμ  at 500 nm wavelength. The b factor is the 

scattering power, typically ~0.5 – 1.0 for soft tissues and ~2.0 for collagenous tissues. The 
scattering coefficient μs is calculated as ( )' 1s s gμ μ= − , where the g value is assumed to 

equal 0.90. The total absorption coefficient is modeled as 

 ( ) ( ) ( ) ( ) ( ), , ,1 ,a a oxy a deoxy a waterBS B S Wμ λ μ λ μ λ μ λ= + − +  (2) 

where S is the hemoglobin (HGb) oxygen saturation of the mixed arterio-venous vasculature, 
B is the average blood volume fraction, and W is water content. Each tissue type is specified 
by characteristic values of B, S, W, a and b. A choice of wavelength (λ) is made for a 
particular Monte Carlo simulation. The absorption spectrum for each absorber can be found at 
the Oregon Medical Laser Center website (http://omlc.org/). 

For the generic reduced scatting properties of GM and WM, the optical parameters were 
inferred from previous measurements [35] by a least-square fitting approach with g set to be 
0.9. Two typical sets of the average reduced scattering coefficient μs' were extracted from a 
coronal slice and dorsal slice, respectively, at the wavelengths of 405nm, 532nm and 635nm 
by registering the optical properties map into the bright field slice image, and then manually 
segmenting the gray matter and white matter based on the image intensity as measured with 
MATLAB and Fiji [40]. 

To properly mimic the blood of in vivo GM and WM tissues, the mean blood content (B) 
and oxygen saturation (S), from Table 3 in the review [17] were used for the absorption 
model. The water content (W) was assumed to be 0.65. 

The values for the average generic models are summarized in Table 1. For the CSF, its 
absorber was simplified as only water. Its reduced scattering coefficient at 500nm was set to 
0.24 mm−1 with g set to 0.9. The region outside the brain is non-scattering ~non-absorbing 
medium with wavelength-independent optical properties of µa = 0.01mm−1, µs = 1mm−1, 
anisotropy of scattering, g = 1.0. The g value of 1.0 avoids any scatter. The very low µa value 
allows negligible photon weight deposition, which is sufficient to later allow calculation of 
the fluence rate escaping the tissue, φ = (absorbed density)/μa. The model in its current 
version does not include skull or skin, which will be incorporated in a future version. This 
version is appropriate for modeling the φ in the tissue around an implanted optical fiber. 
Figure 1 shows the optical properties of gray matter and white matter from the generic models 
and the ex vivo measurements from both our previous study [35] and others [14,41]. 

Table 1. Parameters of generic brain tissue models. 

Parameters Gray matter White matter CSF 
B 0.028 0.028 0 
S 0.62 0.62 0 
W 0.65 0.65 1.0 
a 2.37 mm−1 5.05 mm−1 0.24 mm−1 
b 1.15 0.7 1.0 
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Fig. 1. Optical properties of gray matter and white matter of brain tissue from generic model 
and literatures. Solid lines are model (see Table 1). Symbols are experimental data. (A) 
Reduced scattering coefficient shows a significant difference between gray matter(GM) and 
white matter(WM); (B) Absorption coefficient of model assumes an in vivo blood content 
(cyan curve), which differs from literature values based on ex vivo samples (symbols). 

2.2 Investigate light delivery strategy 

In this paper, the light delivery approaches were evaluated by creating the light density 
distribution in terms of fluence rate map, contour, and attenuation relative to the position of 
the optical fiber. First, the impact of tissue heterogeneity was simulated by launching photons 
at locations where photons will most likely transport across more than one tissue types and 
the results were compared with a homogeneous tissue model (gray matter). Second, the light 
distribution was compared to that yielded by launching photons at an adjacent position by 
stimulating areas close to or within the neocortex. Then, an application of the simulation 
platform was demonstrated to show its potential uses in practice by using different 
stimulating parameters. 

3. Results 

3.1 Investigate impact of brain heterogeneity 

Two demonstrations are presented to show that the brain heterogeneity can affect the light 
distribution. The first demonstration in Fig. 2 shows that the heterogeneous brain model has a 
different light distribution pattern than the homogeneous brain model if the fiber is implanted 
near the boundary of gray matter and white matter. The second demonstration in Fig. 3 shows 
the fluence change within a heterogeneous brain by implanting the light delivery fiber at two 
adjacent positions. 
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Fig. 2. Brain tissue heterogeneity affects the light distribution (demonstration 1). The fluence 
rate map φ, the iso-φ contours, and the attenuation show the change of the light distribution 
pattern between heterogeneous brain tissue and homogeneous brain gray matter. (A) coronal 
slice of the original atlas, (B) heterogeneous tissue type atlas on OptogenSIM, (C) artificial 
homogeneous gray matter volume, (D,E) shows the fluence map and contours in the 
heterogeneous brain model, (G, H) shows the fluence map and contours in the homogeneous 
gray matter. A collimated flat beam from a 200-μm-diameter optical fiber was used with its 
center located at (0, 0, 0.2467) indicated as red star “*” in (A, B, C). The fluence contour maps 
(E), (H) show iso-fluence rate lines at 50%, 10%, 5% and 1% of the maximum fluence. (F) 
The axial fluence distribution from the fiber tip. (I) The ratio of axial fluences between 
homogeneous tissue and heterogeneous tissue, φHom/φHet. For the color map in (B), Magenta = 
CSF; Grey = gray matter; cyan = white matter; black = background. The light wavelength was 
set to 473nm and the simulation time was 10 minutes and ~1x106 photons were launched. The 
optical properties at the wavelength of 473nm can be calculated based on the tissue models 
listed in Table 1. 
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Fig. 3. Brain tissue heterogeneity affects the light distribution (demonstration 2). (A, B, C) 
show a coronal slice of the original atlas, annotation atlas (B) and tissue type atlas (C) on the 
simulation platform, respectively; (D, E, F) show light fluence φ for fiber position 1 (P1), fiber 
position 2(P2), and the fluence attenuation for both P1 and P2 in this heterogeneous brain, 
respectively. P1 is at (0.087, 0.024, 0.2347) illustrated in red “o” in 3A-C, P2 is at (0, 0.024, 
0.2112) in blue “o” implanted to a nearby position. The curves in F show the fluence rate along 
the axial direction as a function of the distance from the fiber tip. Other simulation parameters 
were set identical to those in Fig. 3. There are 20 different brain regions in (B) which are 
represented by different colors (the color map is not shown here). The simulation time was 10 
minutes and ~1x106 photons were launched. 

3.2 Demonstration of the application case 

Figure 4 shows the application of OptogenSIM to study the effect of different stimulation 
parameters. The parameters can be set from the user graphic interface, including wavelength, 
fiber position, fiber diameter, fiber NA, beam profile type, etc. Four built-in iso-fluence 
contours or a single contour with a specified value can be chosen to be overlaid on the 
original brain atlas. The fluence rate at any 3D position of the brain can be checked by 
moving the mouse icon. The output window can show three views (zy, zx, and yx planes) 
with iso-fluence contours, and these views can be either the original atlas, or the segmented 
tissue type atlas (GM, WM, CSF). The display of iso-φ contours allows the user to see the 
region of brain that receives a fluence rate equal to or greater than that particular φ. The user 
can adjust the power, which rescales the Monte Carlo simulation, and redisplays the iso-φ 
contours until only the desired target region of brain is contained within the iso-φ contour. In 
this way, the user can determine the proper amount of power to deliver through the optical 
fiber. Other output files include a .csv file (comma-separated values) as well as a Matlab .mat 
file that the user can use for further post-processing of the fluence distribution. 
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Fig. 4. Use of OptogenSIM for a deep brain stimulation with a 10-mW light source delivered 
by an optical fiber with varying stimulation parameters. (A) An example output window shows 
four build-in iso-fluence contours with the values of 0.1, 1, 10 and 100 mW/mm2 overlaid on 
the original atlas in three views (the red line shows the fiber position); (B-E) show the fluence 
for different wavelength (B), fiber diameter (C), fiber NA (D), and beam profile (E), 
respectively. Unless explicitly stated, the default stimulation parameters were set as 
wavelength = 473nm, fiber diameter = 200 mμ , NA = 0, and beam profile type = uniform 

beam. 
6

1 10× photons were launched in the simulations. 

4. Discussion 

The significant difference in the optical scattering properties of gray matter and white matter 
is shown in Fig. 1. This key difference was the initial motivation for developing optogenSIM 
to estimate light distribution in a heterogeneous brain model in order to assist the optimal 
light delivery design in optogenetics applications. 

The generic models presented here can be used to estimate the optical properties of brain 
gray matter and brain white matter at any wavelength between 400 and 1000 nm. The models 
use scattering properties consistent with the literature and absorption properties consistent 
with estimates of in vivo tissue blood contents. The reported optical properties of brain tissue 
have a large variation, which can be due to measurement artifacts, variation in tissue 
constitution, variable tissue preparation, experimental technique, and inaccuracy of 
calculation models [12,17]. We assume the same B and S values for gray matter and white 
matter, as it is difficult to infer the in vivo blood content from ex vivo experiments. Certainly, 
there is a need for more experimental work on in vivo measurements of brain tissue optical 
properties, and the results can be readily incorporated in the OptogenSIM platform. 

The simulations in Fig. 2 show an up to ~2 fold difference in the fluence rate of the 
heterogeneous model compared to the homogeneous model. The maximum difference occurs 
distant from the fiber tip where the fluence rate φ has dropped below 5% of the maximum φ 
near the tip. If the light source power is set such that the target region within a specific iso-φ 
is close to the fiber tip (i.e., φ/φmax > 5%), the effect of heterogeneity may become less 
important. However, Fig. 3 indicates that a slight movement of the fiber position can cause a 
significant change in the axial profile of φ. The absolute value of φ near the fiber tip can be 
significantly affected by the local heterogeneity. For example, the maximum fluence is 
4246/cm2 for P1, while only 3642/cm2 for P2 and fluence rate drops faster versus distance 
from the fiber tip when the fiber is implanted at P1 than at P2. The maximum fluence rate 
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difference is due to the average mean free path which leads to different energy loss before the 
fluence reaches its maximum value [42]. The position of the implanted optical fiber and the 
light wavelength used for the stimulation could significantly affect how much light reaches 
the target. In addition, the fluence rate attenuates very rapidly, for example by 95% within 
500-800µm from the fiber tip. The fluence change due to the heterogeneity is dependent on 
the distance from the photon launching position. Combining the fact that the difference 
between white matter and gray matter is also wavelength dependent, the effect of tissue 
heterogeneity is also wavelength dependent. 

Other atlases can be incorporated into OptogenSIM. We have tested the simulation on an 
average mouse brain atlas [38] and an average rat brain atlas [43] but due to copyright issues 
for direct distribution of the atlases with our tool, these atlases have not been included in the 
current OptogenSIM platform. For other 3D volumes or 3D atlases not designed for Monte 
Carlo simulations, segmenting the 3D volume into the tissue types that are included in the 
tissue library of the platform is needed. There are a number of options to segment the 
customized 3D volume. Most of the segmentation methods are intensity based statistical 
classification methods [44–46]. One of the most popular atlases, Allen mouse brain 
“reference atlas” was segmented into GM, WM, and CSF for other purposes [47]. There are 
also software packages available to help the 3D segmentation. For example the prior atlases 
discussed earlier can be used as the template for SPM software [37,48] to do the 3D 
segmentation. 

Even though tissue heterogeneity is taken into account here by using the atlases with the 
segmented GM, WM, and CSF regions, finer structure segmentation would help improve the 
accuracy of the light density estimation. If the tissue optical properties at regions of interest 
are known, it would be beneficial to replace the tissue properties of this region by the known 
properties based on the associated tissue segmentation. For example, generic models of 
reduced scattering coefficient for cortex (frontal lobe), cortex (temporal lobe), astrocytoma of 
optic nerve, normal optic nerve, cerebellar white matter, medulloblastoma can be found in 
[17], and if these brain structures can be located in the 3D volume, the simulation would yield 
a more accurate prediction. The measured map of the optical properties from our previous 
study [35] was used to conduct the simulation because of its high spatial resolution. However, 
so far, the voxel resolution of the measured volume is limited and it is hard to apply this map 
to other popular 3D atlases without further processing. We are planning to make full use of 
the measurements by developing a robust 3D reconstruction, registration, and segmentation 
approach in the future. 

Figure 4 shows that light source wavelength, optical fiber diameter, numerical aperture 
(NA), and light source beam profile all play a role in light transport. Light at longer 
wavelength can penetrate deeper (Fig. 4(B)), larger fiber diameter significantly reduces the 
maximum fluence (Fig. 4(C)), smaller NA seems to help light transport in the axial direction 
but its effect is moderate (Fig. 4(D)), and beam profile type could dramatically affect the 
maximum fluence (Fig. 4(E)). However, the effect of each parameter should be evaluated by 
taking into account other parameters and what really matters is the combined effect of all the 
parameters. 

This platform can potentially be adapted to characterize the light stimulation of high 
spatial precision methods including multi-site deep brain stimulation devices, such as 3D-
micro LED [9,50,] multi-array silicon probes [50], and 3D glass optrode arrays [51].The 
anisotropic light diffusion may occur in some anisotropic brain tissue structures [52] and our 
future versions may address this issue to yield more accurate fluence calculation. 

5. Conclusion 

A 3D Monte Carlo simulation platform has been developed that integrates a novel 3D Monte 
Carlo model, generic brain tissue models, and a 3D brain tissue atlas to assist in designing 
proper light delivery strategy. The 3D simulation platform can handle tissue heterogeneity 
and yields the light density distribution throughout the brain. Future work will (1) construct 
more high-resolution mammalian brain tissue atlases and generic tissue models based on 
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direct measurements and/or publically available neuron anatomy atlases, (2) model light 
delivery strategies in advanced light stimulation such as multi-site multi-wavelength 
stimulation, time-sensitive stimulation, (3) quantitatively analyze light delivery under more 
specific optogenetic stimulation conditions such as mismatched tissue boundary, (4) address 
the issue of anisotropic tissue structure, and (5) accelerate the computation speed for large-
scale simulation. This 3D simulation platform is freely available to the public on the LOCI 
website for non-commercial use. 

6. Appendix: fundamentals of 3D Monte Carlo implementation for Optogenetics 
application (gomxzyzOGS.c) 

gomcxyzOGS.c was adapted from mcxyz.c for optogenetics application, specifically for 
OptogenSIM software by adding fiber based beam modelling as well as other custom 
simulation parameters. 

mcxyz.c implements a voxel-based 3D Monte Carlo based on gold standard multi-layered 
MCML code. During the photon transport in the 3D voxels, mcxyz uses an algorithm to 
determine whether a photon is still within the same voxel after taking a step. If it is still 
within the same voxel, then it drops some of its weight. If not within the same voxel, the 
photon has crossed the voxel boundary, and an algorithm finds the face of the voxel where the 
photon is crossing, and calculates the distance that the photon travels immediately after it 
enters into the new voxel. The photon will drop partial weight based on the absorption along 
the above travel distance and then update the remaining step. Three boundary conditions are 
designed after the photon hits the volume boundary including no boundary (infinite medium 
assumption), escaping at boundaries, and only escaping at the top surface (i.e. z boundaries). 

For the fiber-based light source, both de-focused uniformly distributed beam and two 
types of de-focused Gaussian beams were implemented to estimate the photo trajectory after 
it exits from the fiber. The half angle of the fiber is associated with NA using the 

( )1
max sin / tissueNA nθ −= , where tissuen is the refractive index of the brain tissue, setting to 1.36. 

Photon elevation angle at launching point was modeled as maxRNDθ θ= , where RND  is a 
uniformly distributed random number. The 3D coordinate of the photon launching position (x, 
y, z) is ( )sin ,sx x r ϕ= + ( )cos ,sy y r ϕ= +  ,sz z=  where ( ), ,s s sx y z  is the position of the 

fiber tip center, r is the distance of the photon from the launch center, ϕ is the azimuthal 

angle. For the uniform beam, r radius RND= , where fiber radius is the radius of the beam 

at the launch point. For one Gaussian beam, ( )lnr radius RND= − ,where fiber radius is the 

1 e  radius of beam at the launching point. For another Gaussian beam, 

( )2 lnr radius RND= − ,where fiber radius is the 21 e  radius of beam at the launching 

point. Azimuthal angle was modeled as 2RNDφ π= . 
The refractive index is assumed to be identical for all voxels, i.e., mismatched voxel 

boundaries have not yet considered in the current implementation. However, we are planning 
to implement this in the future by adapting the strategy of MCML for handling air-tissue 
mismatched boundary. In addition, a future version of the program will allow the angle of 
orientation of the optical fiber delivering light to be changed. 
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