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Abstract

This paper addresses the automated segmentation of multiple organs in upper abdominal 

computed tomography (CT) data. The aim of our study is to develop methods to effectively 

construct the conditional priors and use their prediction power for more accurate segmentation as 

well as easy adaptation to various imaging conditions in CT images, as observed in clinical 

practice. We propose a general framework of multi-organ segmentation which effectively 

incorporates interrelations among multiple organs and easily adapts to various imaging conditions 

without the need for supervised intensity information. The features of the framework are as 

follows: (1) A method for modeling conditional shape and location (shape–location) priors, which 

we call prediction-based priors, is developed to derive accurate priors specific to each subject, 

which enables the estimation of intensity priors without the need for supervised intensity 

information. (2) Organ correlation graph is introduced, which defines how the conditional priors 

are constructed and segmentation processes of multiple organs are executed. In our framework, 

predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ 

segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented 
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using conditional shape–location priors. The proposed framework was evaluated through the 

segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, 

gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six 

imaging conditions at two hospitals. The experimental results show the effectiveness of the 

proposed prediction-based priors and the applicability to various imaging conditions without the 

need for supervised intensity information. Average Dice coefficients for the liver, spleen, and 

kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, 

respectively.
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1. Introduction

Organ segmentation from medical images is an important preprocess for computer-aided 

diagnosis and therapy. In recent literature, several approaches to multiple organ 

segmentation from 3D medical images have been proposed. These approaches commonly 

utilize a number of radiological images with manual tracing of organs, called atlases, as 

training data, and can be classified as multi-atlas label fusion, machine learning, and 

statistical atlas approaches. In this paper, we address segmentation of multiple organs in 

upper-abdominal CT images. The upper abdominal organs are not only spatially but also 

functionally and physically interrelated, and thus their patient-specific shape anatomy has 

potentially wide applications in diagnostic and therapeutic assistance, including one-stop 

shop diagnosis, radiotherapy planning, patient-specific surgical simulation, and so on.

Multi-atlas label fusion is generally applicable to the segmentation of various organs 

through the preparation of a sufficient number of atlases (Aljabar et al., 2009; Isgum et al., 

2009). It consists of intensity-based nonrigid registration between a target image and the 

original image in each of the atlases, and subsequent label fusion. Its applications to 

abdominal multi-organ segmentation have been addressed by establishing hierarchies that 

accommodate large inter-subject variability (Wolz et al., 2013; Chu et al., 2013). However, 

these works used the sum of squared differences (SSD) in intensity-based nonrigid 

registration, which means that the target images will be required to have similar contrast 

patterns to original computed tomography (CT) images in the atlases. Therefore, their 

performance for CT data acquired by different imaging conditions (ICs) may be limited. 

While multi-atlas label fusion can deal with contrast variations due to different ICs by using, 

for example, mutual information as a similarity measure instead of SSD, it may cause 

instability in nonrigid registration. Although a recent work addressed cross-modality multi-

atlas segmentation (Iglesias et al., 2013), its usefulness was shown only to brain magnetic 

resonance (MR) images and it was not applied to abdominal organs.

Machine learning approaches, such as decision forests, also provide general segmentation 

frameworks (Seifert et al., 2009; Montillo et al., 2011; Glocker et al., 2012; Criminisi et al., 

2013). While these methods were validated for various abdominal organs, such as the liver, 
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spleen, kidneys, and aorta, they were not evaluated for organs with large inter-subject 

variations in shape and location, such as the pancreas and gallbladder (GB). In addition, the 

dependence of the performance to ICs is not clear.

Statistical atlas approaches have been most commonly applied to abdominal organ 

segmentation. Explicit prior models constructed from atlases, such as the probabilistic atlas 

(PA) (Park et al., 2003; Zhou et al., 2006) and statistical shape models (SSMs) (Lamecker et 

al., 2004; Heimann and Meinzer, 2009), are used in these approaches. In an early study, Park 

et al. (2003) used PA for abdominal organ segmentation. Their original formulation assumed 

unknown ICs, and intensity priors were estimated from the target data to be segmented. 

However, manual specification of control points was required. In addition, organs with large 

inter-subject variations were not evaluated. Regarding single-organ segmentation, recent 

works on statistical atlas have proved that segmentation of the liver is stable and accurate 

even for unknown ICs, where intensity priors are constructed from target data only without 

the need for intensity information obtained from manually traced training data, which we 

call supervised intensity information (Zhou et al., 2006; Okada et al., 2008; Linguraru et al., 

2012b,a). Freiman et al. (2010) addressed kidney segmentation, for which the estimation of 

both shape and intensity priors was performed by EM algorithm. In initialization for the 

estimation of the intensity prior, intensity-based nonrigid registration between target and CT 

data in atlases was required (although only target data was used without atlases after the 

initialization). That means that it may partly depend on supervised intensity information and 

cause a limitation in its generalization. A framework for adapting to contrast-enhancements 

was also proposed by Linguraru et al. (2010), but only for arterial and portal venous 

protocols in the liver and spleen.

There have been two main statistical atlas approaches to multi-organ segmentation. One 

approach is joint modeling of multiple structures. Linguraru et al. (2012b) addressed joint 

modeling of the liver, spleen, and kidneys, which are relatively stable in shape and location. 

Shimizu et al. (2007) studied 12 organs in the abdomen, but the segmentation accuracy 

required further improvement. Other works on joint modeling addressed multi-organ 

interrelations and multi-resolution hierarchy. Uzunbaş et al. (2010) and Yang et al. (2004) 

improved segmentation accuracy by modeling not only the shape of each structure but also 

the interrelation between structures. Cerrolaza et al. (2012, 2013) and Bagci et al. (2012) 

proposed multi-resolution modeling approaches, in which segmentation stability was 

improved by combining multiple structures into one structure at low resolution levels. In 

contrast, the other approach is conditional modeling of multiple structures. Conditional 

modeling of the target structure, given pre-segmented other structures, will be also regarded 

as one method for embedding multi-organ relations. This approach was shown to be 

effective for pancreas segmentation from CT images (Shimizu et al., 2010; Hammon et al., 

2013). In this approach, the constraints provided by pre-segmented structures were 

incorporated in shape and location priors (hereafter, we call it shape– location priors). 

However, these existing methods were designed specific to the pancreas imaged with 

particular ICs.

Overall, general frameworks of multi-organ segmentation suitable for abdominal CT data 

with various ICs, as seen in routine clinical practice, have not been established so far. 
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Therefore, we propose a framework of conditional multi-organ segmentation which is 

adaptable to the large inter-subject variability and various ICs without supervised intensity 

information. The novel features of the framework are as follows:

1. A method for modeling conditional shape–location priors, which we call 

prediction-based priors, is developed. We utilize partial least squares (PLS) 

prediction of target organs from pre-segmented predictor organs to derive more 

accurate priors specific to each subject. This approach enables estimation of 

intensity priors from only target data and optionally a number of untraced CT data 

of the same IC as the target data, that is, from unsupervised intensity information.

2. An organ correlation graph (OCG) is introduced, which embeds the spatial 

correlations among organs inherent in human anatomy. The graph defines how the 

predictor organs in the prediction-based priors are related to the target organ, and 

how the conditional segmentation processes of multiple organs are executed. We 

describe a method for systematic construction and utilization of OCG.

Although our preliminary reports have been presented (Okada et al., 2012b,a, 2013), this 

paper extends them with respect to the following points: (1) Detailed formulations of single-

organ segmentation, prediction-based prior construction, unsupervised intensity model 

estimation, and OCG construction are provided. (2) Descriptions of parameter optimizations 

involved in the methods are provided. (3) More detailed experimental results are shown 

including the use of additional CT data with another IC.

The organization of the paper is as follows. In Section 2, a method for single-organ 

segmentation as a combination of conventional methods is firstly described, which is 

extended to accommodate multiple organs by replacing shape–location priors. Then, our 

proposed methods are described, including prediction-based shape–location priors, 

unsupervised intensity priors, and multi-organ segmentation formulations using OCG. In 

Section 3, we evaluated the proposed methods through the segmentation of eight abdominal 

organs (liver, spleen, left kidney (L-kidney), right kidney (R-kidney), pancreas, GB, aorta, 

and inferior vena cava (IVC)) using 134 abdominal CT datasets obtained from 86 patients 

using six ICs at two hospitals. We discuss the work in Section 4 and conclude it in Section 

5.

2. Methods

The fundamental idea is to incorporate inter-organ spatial correlations to attain stable and 

accurate segmentation of target organs. We first perform the segmentation of relatively 

stable organs in their position and shape (that is, predictor organs), and then hierarchically 

segment other less stable organs whose positions and shapes are expected to be well-

predicted by pre-segmented predictor organs. In order to realize this concept, the liver is 

regarded as an anchor organ and assumed to be initially segmented. Given the segmented 

liver region, the prediction-based priors of the remaining organs are obtained by 

incorporating the constraints on shape and location provided by partial least squares (PLS) 

prediction from the liver region. The prediction-based prior of each organ in the reference 

space is constructed from training dataset of the predictor and target organs in the training 
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phase, and mapped to the patient space during segmentation processes using the segmented 

regions of the predictor organs. At the first stage of multi-organ segmentation, each of the 

remaining organs is segmented using the prediction-based shape–location prior. Once the 

segmented regions of these organs are available, stronger constraints are provided from the 

multiple organs in addition to the liver. The multi-organ interrelations optimizing the PLS 

prediction are embedded in the organ correlation graph (OCG), which is done in the training 

phase. At later stages, segmentation of each organ is performed using the improved 

prediction-based priors based on the multi-organ interrelations. As a result, we can expect 

improvement of segmentation accuracy as the stage is progressing. In the following 

subsections, details of method formulations are described. Commonly used acronyms and 

notations in the formulations are given in Tables 1 and 2, respectively.

2.1. Single-organ segmentation method

We utilize SSM and PA for shape–location priors (Okada et al., 2008), and an intensity 

model (IM) represented as a histogram of the intensity distribution for intensity prior. We 

assume that our target CT data cover upper abdominal organs. Figure 1(a) shows an example 

of a coronal view of our target CT data. First of all, CT data is spatially transformed to the 

normalized space defined by the liver dome top and the circumscribing planes of bone tissue 

regions (Okada et al, 2008). Figure 1(b) shows our definition of the abdominal normalized 

space. Given an abdominal CT data, the abdominal normalized space is determined using 

the axial reference plane tangential to the top of the liver dome and the bounding coronal 

and sagittal reference planes of the bone tissue regions. We adjust the xyz-translation and 

xy-scaling so that these reference planes are aligned among all the CT data. See Appendix A 

for an automated method for the above-described spatial normalization of upper abdominal 

CT data.

Let I(x) be the target CT image data after spatial normalization. That is, I(x) denotes the CT 

value (intensity) at 3D coordinates x. Let k be organ index, and Lk(x) be the segmented label 

image of organ k, where Lk(x) = l ∈ {0, 1}, in which l = 1 denotes object, l = 0 background. 

A set of shape–location and intensity priors for organ k are given by

(1)

where Pk(x) denotes a PA, sk(b) = s̄k + Φkb a SSM, and Hk(I) = {HOk(I), HBk(I)} an IM for 

organ k, in which b = (b1 b2 ⋯ bm)t is the shape parameter vector, s̄k and Φk the average 

shape and the m eigenvectors of the SSM of organ k, respectively, and HOk(I) and HBk(I) the 

normalized histograms of organ k and its background regions, respectively. HOk(I) and 

HBk(I) are normalized so that their integral is 1. Given Ak, segmentation of organ k from I(x) 

is denoted by

(2)

where S eg(·) denotes the segmentation operation.

The single-organ segmentation method consists of three sub-modules as follows:
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1. PA-based maximum a posteriori (MAP) segmentation

2. SSM-based refinement

3. Graph-cut refinement

Figure 2 shows the block diagram of the single-organ segmentation method. Details of the 

above three submodules of single organ segmentation are described in Appendix B.

2.2. Prediction-based shape–location priors

2.2.1. Statistical shape prediction using PLS regression (PLSR)—Let s0 and sk (k 

= 1,…, n) be the surface shape vectors of the target organ and its predictor organs, 

respectively, which are represented by the concatenation of the 3D coordinates on the 

surface of the organ, where n is the number of organs used to predict a target (For example, 

the target organ is the pancreas while the predictor organs are the liver and spleen as 

explained in Figs. 3 and 4.). Given the shape vectors of n + 1 organs of N cases (subjects) 

{ski} (k = 0,…, n, i = 1,…, N) as training datasets, the regression model predicting the shape 

vector of the target organ from n predictor organs is calculated using PLSR (Geladi and 

Kowalski, 1986). Unlike other standard least squares methods, PLSR works even when the 

predictor dataset is highly collinear. Yang et al. (2008) successfully applied PLSR to shape 

prediction of anatomical structures. Let  be the predictor vector of case i. 

Given training datasets Tp = (s̃1 s̃2 ⋯ s̃N)t and Tt = (s01 s02 ⋯ s0N)t, the PLSR model to 

predict target vector ŝ0 from predictor vector s̃ is given by

(3)

where s̃ is the predictor vector for a data not included in the training dataset. The details of 

the training of the prediction model PLS R(s̃; Tp, Tt) are described in Appendix C.

2.2.2. Construction of prediction-based shape–location priors—Let (k = 1,

…,n) be the segmented shape vectors of n predictor organs and  be the 

predictor vector, where the shape vector with superscript *, e.g. , denotes the automatically 

segmented shape vector for target data, while the shape vector without superscript *, e.g. sk, 

denotes the shape vector for manual tracing of the training dataset.  is obtained by fitting 

the SSM of organ k to the segmentation result Lk(x). The prediction function is defined as

(4)

where

(5)

and r denotes the residual after the prediction which is the difference between predicted and 

true shapes. In this work, the residual r is represented using PA and SSM as prediction-

based shape–location priors.
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Figure 3 shows the construction process for the prediction-based shape–location priors. To 

obtain PA and SSM of r, we perform the shape prediction of the target organ within the 

training dataset in a leave-one-out manner, and use the average shape of Tt as the reference 

shape . Let ri = s0i − ŝ0i be the residual of case i in the prediction whose model is trained 

without data of case i, where s0i and ŝ0i are the true and predicted target organs of case i, 

respectively. The dense 3D deformation field from the original space to the reference space 

is determined by thin-plate spline interpolation using correspondences from ŝ0i to . These 

correspondences are known because they are represented by the same SSM. The true shape 

s0i in the original space is mapped to the reference space using the determined deformation 

field, and the mapped version  of the true shape s0i is given by , where 

F(· ; a, b) denotes the mapping function defined by the deformation field determined by 

thin-plate spline interpolation from shape vectors a to b. The difference between predicted 

and true shapes in the original space can be represented in the reference space by this 

mapping.

Now, the residuals  in the reference space are given by . SSM and 

PA of  are constructed in the reference space. Let  be a label image which is 

voxelized from the surface of shape vector . PA  and SSM  in the 

reference space are given by

(6)

(7)

where Φres denotes the principal components of the residual and bres their coefficients. 

Because  is the label image of the predicted organ shape of each case and regarded as 

the composition of reference shape  and residual , smaller residuals result in less 

ambiguous PA.

Figure 4 shows the generation process of subject-specific shape–location priors. When 

prediction-based priors are utilized for segmentation of a target data, their subject-specific 

versions are obtained as follows. By using the mapping through the deformation field from 

the reference space to the target data space, , the prediction-based priors in the 

target data space are given by

(8)

(9)
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where F−1(·) indicates the inverse mapping of F(·). In Eq. (8), it is necessary to use the 

inverse mapping F−1(·) in order to obtain the coordinates in the reference space 

corresponding to x since x is the coordinates in the target data space.

Given the set of segmented shape vectors of the predictor organs, , the set of 

shape–location and intensity priors is given by

(10)

Segmentation is performed using the method described in Section 2.1 by replacing Ak with 

Ak(S*) in Eq. (2). That is, the generated subject-specific versions of the prediction-based PA 

and SSM are utilized for segmentation by replacing the conventional PA and SSM in Fig. 2 

with them.

Figure 5 shows prediction-based PAs for the R-kidney, GB, and pancreas (in comparison 

with conventional ones), which demonstrates that the prediction-based PA varies depending 

on the shapes of predictor organs. In Fig. 5, the predictor organs of the R-kidney, the GB, 

and the pancreas are the liver, the liver, and the liver and spleen, respectively. These 

relationships can be represented using directed graphs. The organs are represented as nodes 

of a graph, and predictor-target relations as directed edges. Using this graph representation, 

Figs. 5(a), (b), and (c) are represented as Figs. 5(d), (e), and (f), respectively. In Section 2.4, 

we formulate this graph representation as OCG.

2.3. Estimating intensity model (IM) from untraced CT data

Segmentation is performed using the methods described in Section 2.1 by replacing HOk(I) 

and HBk(I) with the IMs described below. Three types of IMs are constructed as follows:

1. Target-data specific IM (TD-IM): Only one CT data, which is the segmentation 

target, is used. Preparation of any training data is unnecessary for intensity 

modeling. Therefore, this model is immediately adaptable to any unknown imaging 

condition (IC) as far as shape–location priors are available.

2. Imaging-condition specific IM from untraced CT data (unsupervised IC-IM): In 

addition to the target CT data to be segmented, a sufficient number of CT data from 

different patients acquired by the same IC (protocol) as the target data are used. 

Laborious manual tracings are not required for intensity modeling of different ICs, 

and just original CT data are required for training. These training data are easy to 

collect from clinical image repositories.

3. Imaging-condition specific IM from traced CT data (supervised IC-IM): A 

sufficient number of CT data, which were acquired using the same IC as the target 

data and associated with manual tracings of the target organ, are used (Linguraru et 

al., 2012b; Okada et al., 2012a). This model requires a sufficient number of manual 

tracings for each different IC.

2.3.1. TD-IM—TD-IM is constructed as follows. Let I0(x) be the target CT data and P(x) 

the PA. Figure 6 shows the construction processes for TD-IM. First, P(x) is binarized using 
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the threshold value determined by the 1st percentile in the probability distribution of P(x). 

Let the binarized region be RPA(x), which is used as the initial region for intensity modeling. 

Because the initial region RPA(x) should be highly likely to belong to the target organ 

region, only the 1st percentile is used. The initial histogram HO0 is obtained from the 

intensity distribution of I0(x) within RPA(x), and HO0 is normalized so that its integral is 1. 

The refined region R(x) is then obtained by applying the MAP segmentation (described in 

Appendix B.1) to I0(x) using P(x), HO0, and HB0, where HB0 is the histogram for 

background, which is obtained from I0(x) within the region where the probability value of 

P(x) is less than 5%. The processes obtaining HO0 with R(x) and updating R(x) by MAP 

segmentation are iterated three times. Finally, TD-IM HO and HB are obtained as HO0 and 

HB0, respectively, after the iterations. The prediction-based PA can be used as P(x) if the 

pre-segmented organ regions are available.

2.3.2. IC specific IM from untraced CT data (unsupervised IC-IM)—The 

unsupervised IC-IM is constructed as follows. Let I = {Ii}(i = 1,…, N) be N additional CT 

data from different patients acquired using the same IC as I0 with the assumption that 

manual tracings are unavailable for these CT data. TD-IM is obtained for each Ii(i = 0,1,…, 

N). Note that segmentation target data I0 is also involved in intensity modeling. Let HO = 

{HOi} and HB = {HBi} (i = 0,1, …, N) be the histograms for object and background, 

respectively. Unsupervised IC-IM H̄ = {H̄
O, H̄

B} are calculated as

(11)

(12)

where ZO and ZB are normalization factors so that integral is 1.

2.3.3. IC specific IM from traced CT data (supervised IC-IM)—The supervised IC-

IM is a conventional IM based on manual tracings in the training data, and is constructed as 

follows. Given I = {Ii}, which are acquired using the same IC as I0, with their corresponding 

manual tracings L = {Li} (i = 1,…, N), the supervised IC-IM H̄
L = {H̄

O,L, H̄
B,L} are given by

(13)

(14)

where H(I; Ii, Li) is the histograms of intensity distributions of Ii within Li and  the 

complement of Li.

Okada et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4. Multi-organ segmentation based on organ correlation graph (OCG)

In this section, we formulate the predictor-target relations among the abdominal organs 

described in Section 2.2, by which the prediction-based priors are constructed, as the OCG. 

The OCG is defined as a set of nodes and directed edges. Each node corresponds to an organ 

and each directed edge denotes the correlation between one organ and another. Examples of 

simple OCGs are shown in Figs. 5(d), (e), and (f). The basic assumption is that automated 

segmentation of organs with out-edges in the OCG is sufficiently stable for use of these 

organs as predictors, while the organs with in-edges are effectively predicted by organs with 

out-edges. In the following, we describe how the predictor-target relations among the eight 

organs which we consider, that is, the liver, spleen, L-kidney, R-kidney, GB, aorta, IVC, and 

pancreas, are embedded into one OCG and how the conditional segmentation procedures are 

derived from the OCG.

Among the eight organs, segmentation of the liver has been studied intensively, and is now 

sufficiently accurate and stable by itself (Bagci et al., 2012; Linguraru et al., 2012b; Wolz et 

al., 2013; Montillo et al., 2011; Suzuki et al., 2012a; Seifert et al., 2009; Ling et al, 2008; 

Kohlberger et al., 2009; Okada et al., 2008; Zhang et al, 2010; Kainmüller et al., 2007; 

Massoptier and Casciaro, 2007; Shimizu et al, 2007; Lamecker et al., 2004; Park et al, 2003; 

Camara et al., 2004; Glocker et al., 2012). Segmentation of the spleen and kidneys has also 

been studied by a sufficient number of works, which showed sufficient accuracy (Bagci et 

al., 2012; Linguraru et al., 2012b; Wolz et al., 2013; Suzuki et al., 2012a; Montillo et al, 

2011; Seifert et al., 2009; Shimizu et al, 2007; Glocker et al, 2012; Cuingnet et al., 2012; 

Freiman et al, 2010; Khalifa et al., 2011; Chen et al., 2012; Park et al, 2003; Camara et al, 

2004). Finally, segmentation of other organs has not been well-established or shown to be 

accurate enough (Hammon et al., 2013; Wolz et al, 2013; Suzuki et al., 2012a; Shimizu et 

al., 2010, 2007; Zhou et al., 2010; Yoshida et al., 2011; Kurkure et al., 2008; Duquette et al., 

2012; Montillo et al., 2011; Sanchez-Castro et al, 2010). Based on the above observations, 

we classify the eight organs or nodes into the following three types:

Type 1: Only out-edges are defined. Because no in-edges are defined, the segmentation 

of this type of organs is performed unconditionally. The liver is assigned to this type. 

The liver is particularly large compared with other abdominal organs. Especially in the 

prediction of small organs, only the local shape of the liver may be closely related to 

them. Thus, for effective prediction, we divide the liver surface into four sub-shapes. 

Figure 7 shows the four sub-shapes of the average liver, and three different patient liver 

shapes. The division method based on canonical correlation analysis developed by 

Yokota et al. (2013) was used for dividing the liver surface. The division method is 

detailed in Appendix D. The set of (sub-)organs of Type 1 is denoted as V1 = {liver1, 

liver2, liver3, liver4}.

Type 2: Both in- and out-edges are defined. Analysis of these organs is performed under 

the condition that the segmentation is completed for at least one node connected by an 

in-edge. In addition, the organ can be a predictor for nodes connected by out-edges. The 

set of organs of Type 2 is denoted as V2 = {spleen, R-kidney, L-kidney}.
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Type 3: Only in-edges are defined. Segmentation of these organs is performed 

conditionally like for V2. This type cannot be a predictor. The set of organs of Type 3 is 

denoted as V3 = {pancreas, GB, aorta, IVC}.

Table 3 summarizes the organ classification described above.

Given the constraints on the above three types of nodes, edge connections representing 

organ correlations are automatically defined based on shape predictability by PLSR 

described in Section 2.2.1. Let Vp = V1 ∪ V2 be a set of nodes for predictors, Vt = V2 ∪ V3 be 

a set of nodes for target organs, and Vp(vt) be the set of predictors of target organ vt ∈ Vt. 

Vp(vt) is determined by selecting the set of predictors which minimize the prediction error 

for vt among all possible combinations of nodes in Vp. Let  be all 

possible combinations of nodes in Vp, where  denotes the set of all k-combinations in 

Vp. Let TV and Tvt be the training data of organ shapes of V ∈ Vall and vt ∈ V t, respectively, 

and ε(V; vt) be the prediction error of vt using the prediction model PLS R(s̃; TV, Tvt) (see 

Appendix C). Then the set of predictor nodes Vp(vt) for vt is defined as

(15)

The OCG is defined as OCG =< V, E > with

(16)

(17)

where

(18)

denotes a set of directed edges toward vt. The relations between each target and its 

predictors in PLSR that minimizes the prediction error are associated with the edges of 

OCG. Figure 8(a) shows the OCG of the eight organs constructed from our training data.

The synchronized processes of multi-stage updating in multi-organ segmentation based on 

OCG are formulated in Algorithm 1. Let v be a node (that is, an organ) to be segmented, 

Vout(v) be a set of nodes with the edge from v, and Vin(v) be a set of nodes with the edge 

toward v. Figure 8(b) shows examples of Vout(v) and Vin(v). Here, we assume that one or 

more nodes in Vin(v) have already been segmented at the current stage. Segmentation of 

node v is performed using prediction-based shape–location priors constructed from 

segmented nodes in Vin(v). Note that the segmentation result of a target organ is not directly 

used as the initial region in its segmentation processes at the next stage. It is used only for 
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updating prediction-based priors at the next stage. After segmentation of v, all nodes in 

Vout(v) become ready for segmentation at the next stage. Let j be the index of the 

segmentation stage. Node v is ready for segmentation at stage j after at least one node in 

Vin(v) has been segmented during stage j − 1. If Vin(v) is empty, e.g. V1 (the liver in this 

study) does not have in-edges, segmentation of v is completed using conventional shape–

location priors without predictor organs. That is, segmentation of organ v in V1 can be 

performed at the initial stage (Stage 0) of the segmentation processes. Figure 9 shows the 

states of OCG at different stages in multi-organ segmentation processes. Let jmax be the 

maximum number of stages of the segmentation processes,  be a set of nodes ready for 

segmentation at Stage j, and Vsegmented be a set of segmented nodes. Multi-stage updating of 

the segmentation processes is repeated at least until  is unchanged. Figure 10 shows 

examples of prediction-based PAs at different stages in multi-organ segmentation processes 

for three cases.

Algorithm 1 Multi-organ segmentation based on OCG

Input: Target image I(x), OCG =< V, E >, number of stages jmax

Output: Label images of each organ {Lv(x) | v ∈ V}

1: Vsegmented ← ∅

2:

3: for j = 0 to jmax do

4:

 for all  do

5:
   

6:   Lv(x) = S eg(I(x); A(S*))

7:
    ← shape vector calculated by fitting SSM to Lv(x)

8:  end for

9:

  

10:

  

11: end for

3. Experimental Results

3.1. Dataset

We tested the proposed methods using 134 abdominal CT data from 86 patients (cases) 

obtained under six different ICs at two hospitals: Osaka University Hospital, Japan (OUH) 

and National Institutes of Health, USA (NIH). Table 4 shows the details of six ICs. Figure 

11 shows examples of CT data of six ICs. CT data obtained at OUH were two-phase CT 

data of 49 cases. The contrast phases used in image acquisition were early and late arterial 

phases (which were Datasets A and B, respectively). Data for 10 cases (Datasets A-1 and 
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B-1) were acquired using a 4-slice Light Speed QX/i (GE Healthcare) scanner while data for 

the other 39 cases (Datasets A-2 and B-2) were acquired using a 64-slice Light Speed VCT 

(GE Healthcare) scanner, among which only the late arterial phase was available for one 

case. CT data obtained at NIH included 25 cases from the portal venous phase (Dataset C) 

and 12 cases from the non-contrast CT data (Dataset D). These data were acquired using a 4-

slice HighSpeed QX/I (GE Healthcare), an 8-slice Light-Speed Ultra (GE Healthcare), a 64-

slice Brilliance 64 (Philips Healthcare), a 16-slice Mx8000 IDT 16 (Philips Healthcare), and 

a dual source 256-slice Definition Flash (Siemens Healthcare). Eight organs (the liver, 

spleen, L-kidney, R-kidney, GB, aorta, IVC, and pancreas) were manually segmented from 

all data under the supervision of experienced radiologists.

Because the liver was segmented using only the conventional single-organ segmentation 

method, the descriptions of results focuses on the other seven organs.

3.2. Experimental method

Two-fold cross validation was performed. The datasets from each IC was randomly 

separated into two datasets, that is, training and test datasets. Shape–location priors were 

constructed using the training dataset from all ICs. Note the unsupervised IC-IM was 

estimated using the test dataset from each IC, and thus was not based on any intensity 

information combined with manual tracings.

Segmentation using conventional shape–location priors and/or supervised IC-IM were also 

performed for comparison purpose. We did not use the training dataset but used the test 

dataset for constructing the supervised IC-IM, which was also used for the unsupervised IC-

IM, because the difference in performance due to the method of IM construction will not be 

properly evaluated if the different datasets were used for constructing IM. Optimization of 

segmentation parameters was performed using only the training dataset. Note that the test 

dataset was totally separated from parameter optimization. The details of the parameter 

optimization are described in the next sub-section. Initially, segmentation of the liver was 

performed using conventional shape–location priors and TD-IM (Okada et al., 2008). 

Subsequent segmentations of other organs were performed using three IMs (TD-IM, 

unsupervised IC-IM, and supervised IC-IM). The maximum number of stages of multi-organ 

segmentation was jmax = 4. Two-fold cross validation was performed for five different 

patterns of two-fold separations of the dataset, which were randomly generated, and the 

results were averaged. Dice Coefficient (DC) (Dice, 1945), Jaccard Index (JI) (Jaccard, 

1901), and Average Symmetric Surface Distance (ASD) (Heimann et al., 2009) were used 

for quantitative evaluation.

3.3. Parameter optimization

Parameter optimization was performed using leave-one-out cross validation only within a 

subset of the training dataset for each organ. In order to avoid over-tuning in the parameter 

optimization, we selected the training data so as to exclude CT data of the same IC as the 

test data. Because CT data acquired from OUH did not include the same ICs as those from 

NIH, and vice versa, parameter optimization was performed for one institution using 

training dataset from the other institution. Segmentation using conventional shape–location 
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priors (described in Section 2.1) was performed, and the set of parameter values with which 

the best segmentation accuracy achieved were selected as follows (Details of the algorithms 

including these parameters are described in Appendix B.):

• Radius ρ of the structuring element in opening and closing at the final step of PA-

based segmentation: The optimal value of ρ was selected so as to maximize the PA-

based segmentation accuracy.

• Weight parameter λ in SSM-based refinement: The optimal value λ was selected so 

as to maximize the SSM-based refinement accuracy, given PA-based segmentation 

results using the optimal ρ.

• Threshold values pO and pB to determine regions of hard constraint in graph-cut 

refinement: Optimal values of pO and pB were selected so as to maximize the 

graph-cut refinement accuracy, given the segmentation results obtained using PA-

based segmentation with the optimal ρ followed by SSM-based refinement with the 

optimal λ.

We used Jaccard index (JI) as the segmentation accuracy measure in the above procedures.

During cross-validations for parameter optimization, the most frequently selected values for 

radius ρ in PA-based segmentation, weight parameter λ in SSM-based refinement, values pO 

and pB in graph-cut refinement were ρ = 1, λ = 0.5, pO = 0.1, and pB = 2, respectively.

3.4. Results

Figure 12 summarizes the results of comparisons of segmentation accuracy between 

methods using the proposed prediction-based and conventional shape–location priors. In 

these comparisons, the unsupervised IC-IM was used for intensity modeling. As shown in 

Fig. 12, significant accuracy improvement by using the proposed priors was observed for all 

seven organs in comparison with the conventional priors. Significance was determined using 

paired T-test with significance levels of 0.01 and 0.05. For most organs and evaluation 

measures, significant improvements in accuracy with a significant level of 0.01 were 

observed, excepting that the R-kidney in DC and the spleen in ASD showed a significance 

level of 0.05.

Figure 13 shows the accuracy improvement of each segmentation submodule, which 

corresponds to each block of Fig. 2. The shape-location and intensity priors were the same 

as used in the proposed method in Fig. 12. The average shape of the prediction-based SSM 

(conventional SSM only for the liver) was used to evaluate the accuracy of the spatial 

normalization. The segmentation accuracy was monotonically increased as subsequent 

submodules were combined. Significant accuracy improvements were observed among all 

submodules for all organs (p < 0.01).

Figure 14 shows the effects of the multi-stage updating in the proposed multi-organ 

segmentation based on OCG, where average DC at each stage was plotted for each organ. 

Our multistage updating method does not guarantee the convergence. To confirm the 

behavior of multi-stage updating, we performed experiments up to Stage 8. Because similar 

results were obtained in Stage 4 or later, the results up to Stage 4 are shown in Fig. 14. The 
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accuracies at Stage 3 or later (using all available predictor organs) were significantly 

improved in comparison with Stage 1 (using only the liver as the predictor organ) for the L-

kidney (p < 0.05). The accuracies at Stage 2 or later were significantly improved in 

comparison with Stage 1 for the pancreas (p < 0.05) and aorta (p < 0.01). For the IVC, 

significant improvement was observed between Stage 1 and Stage 2 (p < 0.05). For the 

spleen, however, no significant improvement in accuracy was observed (the range of p-value 

was from 0.084 to 0.337 among Stage 1 and later stages). For the R-kidney and GB, 

segmentation accuracy was not changed through Stages 1 to 8 because only the liver was 

used as the predictor organ. The accuracy variations from Stages 3 to 8 were calculated as 

the difference of the maximum and minimum DCs. The maximum variation was 0.32%, 

which was observed in L-kidney.

The proposed method assumes that the liver is initially segmented. Hence, failure of liver 

segmentation may affect subsequent predictions and segmentation of other organs. In order 

to examine the effects of segmentation accuracy of the liver on other organs, the datasets 

used in the experiments were divided into two groups based on the accuracy of liver 

segmentation, that is, those below and above the lower quartile of DC of liver segmentation. 

Table 5 shows average DCs of the seven organs for the two groups. Although significant 

difference was not observed in all seven organs between the two groups, the average DCs of 

R-kidney, GB, and IVC, which are adjacent to the liver, decreased by 11.0, 19.3, and 9.7 

percentage points, respectively, in the group below the lower quartile. For other organs, the 

accuracy decrease was 0 to 5 percentage points.

In order to evaluate the accuracy of the unsupervised IC-IM estimation rather than final 

segmentation accuracy, similarities between unsupervised and supervised IC-IMs were 

calculated using normalized cross correlation (NCC). Figure 15 shows average NCCs of the 

six ICs for each organ. The average NCCs were improved and greater than 0.9 for all organs 

except for the GB by using the prediction-based PA, while the improvement was prominent 

especially in the GB.

Figure 16 summarizes segmentation accuracies for the three IMs using the proposed 

prediction-based shape–location priors. We first focus on the results in DC in this paragraph. 

The average DC of the liver, in which only TD-IM was used, was 94.1%. Average DCs of 

the spleen, R-kidney, and L-kidney were more than 90% for all three IMs. For the spleen 

and R-kidney, statistical significance was not observed among three IMs, although the 

standard deviation (SD) of TD-IM in the R-kidney was larger than the other two IMs. For 

the L-kidney, statistical significance was observed between TD-IM and supervised IC-IM (p 

< 0.05). Nevertheless, the decrease in accuracy was not obvious. The average DC of the 

pancreas was around 73% for all three IMs and statistical significance was not observed 

among them. However, the SD of TD-IM was slightly larger than other IMs. For the GB, the 

unsupervised IC-IM was significantly more accurate than TD-IM (p < 0.01). Furthermore, 

the supervised IC-IM was significantly more accurate than unsupervised IC-IM (p < 0.01). 

As shown in Fig. 15, the similarity of the estimated IMs between the supervised and 

unsupervised IC-IMs was lower in the GB than in other organs. Note that the GB is small 

and has large inter-subject location variability, which makes it difficult to ensure a sufficient 

amount of high probability area even in the prediction-based PA. For the aorta, TD-IM was 
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significantly less accurate than unsupervised and supervised IC-IMs (p < 0.05 and p < 0.01, 

respectively), and the SD of TD-IM was larger than other IMs. However, statistical 

significance was not observed between unsupervised and supervised IC-IMs. For the IVC, 

statistical significance was not observed among three IMs.

Similar results were obtained for evaluations by JI and ASD in Fig. 16. For the kidneys, 

accuracy in the TD-IM was significantly decreased in comparison with unsupervised and 

supervised IC-IMs in ASD (p < 0.05). However, statistical significance was not observed 

between unsupervised and supervised IC-IMs in ASD. For the aorta, supervised IC-IM was 

significantly more accurate than TD-IM and unsupervised IC-IM in ASD (p < 0.05). The 

results in Fig. 16 are summarized as follows. Unsupervised IC-IM was regarded as mostly 

comparable to supervised IC-IM excepting the GB. TD-IM was regarded as less accurate in 

the kidneys, aorta, and GB, but the accuracy decrease in the kidneys and aorta was not large.

Figure 17 shows illustrative three examples of segmentation results, which effectively 

demonstrate usefulness of the proposed methods. DC of each organ in these three cases is 

plotted in Fig. 12. In Fig. 17, the failed regions by the conventional prior are indicated by 

white arrows. In Fig. 17(a), the pancreas and IVC were better segmented by using the 

proposed prediction-based prior with different IMs. In the pancreas, the head of the pancreas 

was better segmented by using TD-IM than the other IMs (the improved part in TD-IM is 

shown by a black arrow). In Fig. 17(b), the pancreas, GB, aorta, and IVC were missed by the 

conventional prior while the prediction-based priors were effective. The segmentation result 

of the R-kidney was leaked into the liver by the conventional prior. In this case, the 

segmented liver region was leaked into the R-kidney, GB, and IVC. However, these organs 

were successfully segmented by using the prediction-based priors even when the leaked 

liver was used for the predictor organ. The regions of the liver leakage are indicated by 

white arrow heads in Fig. 17(b). In Fig. 17(c), the spleen, L-kidney, pancreas, GB, aorta, and 

IVC were better segmented by using the proposed prediction-based priors. For the GB, 

unsupervised IC-IM was worse than TD-IM and supervised IC-IM by the prediction-based 

prior (the failed part in unsupervised IC-IM is shown by a black arrow). In TD-IM, the 

pancreas was largely missed by the prediction-based prior while the other IMs were 

effective. As shown in Fig. 16, the SD of TD-IM for the pancreas was larger than other IMs. 

Figs. 17(a) and (c) indicate typical results which caused higher SD in TD-IM. In the 

illustrated three cases, the unsupervised IM combined with the prediction-based priors was 

superior or equivalent to the conventional priors for the segmentation of all seven organs.

4. Discussion

4.1. Summary of the proposed method

In this paper, we have described a general framework of multi-organ segmentation which 

effectively incorporates interrelations among multiple organs. The main contribution of this 

paper is that a method for modeling prediction-based conditional shape–location priors 

based on OCG is developed. In our framework, predictor organs, such as the liver, whose 

segmentation is sufficiently accurate by using conventional single-organ segmentation 

methods, are pre-segmented, and the remaining organs are hierarchically segmented using 

conditional shape–location priors. The prediction-based priors enabled sufficiently accurate 
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estimation of intensity priors without using supervised intensity information. As shown in 

Fig. 12, the prediction-based priors were a significantly more effective way to estimate 

intensity priors and use them for segmentation without supervised intensity information in 

comparison to conventional priors.

As shown in Fig. 16, segmentation accuracy using TD-IM was slightly but significantly less 

accurate than supervised IC-IM in DC for the L-kidney and aorta. However, it became 

comparable by using unsupervised IC-IM for these organs. For the GB, the proposed IMs 

(TD-IM and unsupervised IC-IM) were significantly less accurate than supervised IC-IM, 

but unsupervised IC-IM was significantly more accurate than TD-IM. From these results 

that significant improvements were observed in GB (in DC, JI, and ASD), kidneys (in 

ASD), and aorta (in DC and JI) for unsupervised IC-IM compared to TD-IM, unsupervised 

IC-IM is considered to be a reasonable way of intensity modeling from a number of untraced 

CT data. In contrast, significant difference was not observed in the spleen, pancreas, and 

IVC among the three intensity models (in all of DC, JI, and ASD). Intensity variations are 

considered to be fairly large in these organs even within the same IC. Therefore, 

unsupervised and supervised IC-IMs were not so effective in these organs and TD-IM was 

comparable to them.

4.2. Effectiveness of the proposed method

As shown in Fig. 12, the largest improvement by using the proposed prediction-based priors 

was observed in the GB. Although the GB is a small organ and its inter-subject variation in 

location is relatively large, it is in contact with the liver. Therefore, the effect of the 

prediction of the GB from the segmented liver region was substantial. The improvement of 

unsupervised IC-IM estimation (Fig. 15) by the proposed prediction-based priors was 

particularly prominent for the GB.

As shown in Fig. 13, significant accuracy improvements were observed among all 

submodules for all organs. Among the submodules, improvements due to SSM-based 

refinement look relatively small (although statistical significance was observed). Therefore, 

additional experiments were conducted, in which graph-cut refinement was performed 

directly after PA-based MAP segmentation (without SSM-based refinement). The 

experimental results showed that the segmentation accuracy without SSM-based refinement 

was significantly decreased in comparison with that with SSM-based refinement (p < 0.01 

for all organs). Therefore, all segmentation submodules were effective.

As shown in Table 5, the segmentation accuracy of the liver affected the accuracy of organs 

adjacent to the liver. In the experiments, the segmented liver region was often leaked into 

the GB and IVC. However, segmentation accuracy using prediction-based shape–location 

priors was improved in comparison with conventional ones even when this leakage 

occurred. In Fig. 17(b), the R-kidney, GB, and IVC were successfully segmented by using 

the proposed prediction-based priors although the segmented liver was leaked into them. 

Even when SSM fitting was performed to mis-segmented liver shape due to leakage in order 

to generate subject-specific versions of the prediction-based shape–location priors, 

sufficiently well-approximated liver shape for the predictor organ was recovered since SSM 

of the liver has specificity for the liver shape. Thus, appropriate predicted shapes of target 
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organs and their prediction-based PAs were obtained (GB and IVC in Fig. 17(b)). 

Subsequent SSM-based and graph-cut refinements also contributed to the recovery from the 

failure in PA-based MAP segmentation (R-kidney in Fig. 17(b)). The behaviors of the 

proposed method as described above were observed in a few cases. The liver segmentation 

method used in this work was based on our previous work (Okada et al., 2008). It can be 

replaced by recently developed improved methods (Tomoshige et al., 2014; Umetsu et al., 

2014), which showed good performance even for pathological and largely deformed livers. 

Therefore, improvement of liver segmentation accuracy would be expected.

Multi-stage updating in the proposed method was demonstrated to be useful (Fig. 14). 

Significant accuracy improvement in most of organs interrelated with multiple predictor 

organs was attained at Stage 4 (using multiple organs as the predictors) in comparison with 

Stage 1 (using only the liver), as described in the second paragraph of Section 3.4. Only in 

the spleen, significant improvement was not observed (although average accuracy 

increased). In addition, the accuracy decreased from Stage 3 to Stage 4 in the spleen. Our 

multi-stage updating method does not guarantee the convergence. Therefore, instability may 

be caused during the iteration. However, accuracy variations were within 0.32% in DC after 

Stage 3 and did not affect the results of significance test. Regarding the number of iterations, 

we consider that additional one or two iterations will be sufficient after the OCG reaches a 

steady state shown in Fig. 9(d). Accuracy variations during the iteration were mainly 

observed in the spleen and left kidney. Its potential cause is that these organs are the 

predictor and target organs each other (as shown in Fig. 9) and oscillation phenomena 

occurred in a few cases. When the OCG is constructed, the constraint to avoid such relations 

may be effective.

Among the eight organs, the GB was the organ for which supervised intensity information 

was significantly useful. However, if CT cholangiography data are given, in which the fluid 

in the GB is contrast-enhanced, our method may be easily adaptable while the conventional 

method requires a number of manual tracings to obtain supervised intensity information. 

With respect to the GB, its supervised IC-IM in non-contrast CT data will be generally 

applicable to most contrast-enhancement protocols and phases excepting CT 

cholangiography because the GB is usually unaffected by contrast media via blood vessels. 

Therefore, its supervised IC-IM will be worth being constructed through time-consuming 

efforts.

The experimental results show the effectiveness of the proposed unsupervised IC-IM 

although the number of input CT datasets for constructing IMs were about 20 at most. It is 

considered that collecting 20 or more CT datasets without manual tracing is easy in clinical 

practice. In the construction of the unsupervised IM, threshold value determined by the 1st 

percentile in the probability distribution of PA were used for binarization of PA. The 

number of voxels of the region determined by the 1st percentile were more than several 

thousand voxels by using prediction-based PA. It is considered that it was sufficient for the 

estimation of the initial histogram to be used for further MAP segmentation. Once core 

datasets with manual tracing are prepared for constructing shape–location priors, the 

proposed method can be applied to CT data of various ICs by collecting untraced CT 

datasets for the required IC. This feature is important for use in routine clinical practice. The 
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number of training data for shape–location priors was 43 in our two-fold cross validation. It 

is expected that the segmentation accuracy will be improved by increasing the number of 

training data. Investigation of the effects of the number of training data on segmentation 

accuracy will be a future work.

4.3. Comparison with existing methods

We compare the segmentation accuracy of the proposed method with those reported in the 

previous literatures (Wolz et al., 2013; Linguraru et al., 2012b; Shimizu et al., 2010; 

Hammon et al., 2013) although the datasets used for evaluation were different. These 

previous works used supervised intensity information and were tested for one contrast-

enhancement pattern of CT data. In the spleen and kidneys, the segmentation accuracy of the 

proposed method (92.7 to 93.8% in DC) was comparable to or slightly better than state-of-

the-art methods using one phase of the contrast-enhanced CT data with supervised intensity 

information (92.0 to 92.5%, 150 cases (Wolz et al., 2013) and 90.9 to 92.9%, 28 cases 

(Linguraru et al., 2012b) in DC). In the pancreas, the proposed method (60.0% in JI) was 

also comparable to or slightly better than the methods using supervised intensity information 

(55.5%, 150 cases (Wolz et al., 2013), 57.9%, 20 cases (Shimizu et al., 2010), 61.2%, 40 

cases (Hammon et al., 2013) in JI from contrast enhanced CT data) in spite that supervised 

intensity information was not used in the proposed methods. In the GB, the segmentation 

accuracy of the supervised IC-IM (69.4% in JI) was slightly better and that of unsupervised 

IC-IM (57.9% in JI) was slightly worse than the multi-organ segmentation method 

developed by Shimizu et al. (2007) (around 62% in JI), which utilized supervised intensity 

information inherent in non-contrast CT data and was tested only for 10 cases. Average JIs 

of the aorta (80.4%) and IVC (50.1%) in the proposed method with unsupervised IC-IM 

were comparable to or slightly better than the Shimizu's method (around 77% in aorta and 

48% in IVC) (Shimizu et al., 2007). From the literatures, segmentation accuracy of the 

proposed method was summarized as mostly comparable to or slightly better than the state-

of-the-art methods in spite that supervised intensity information was not used in it as well as 

mixture sets of contrast-enhanced and non-contrast CT data were tested.

From the methodological viewpoints, a particular feature which differentiates the proposed 

method from existing methods is explicit modeling and utilization of spatial interrelations 

among multiple organ shapes for prediction of the target organ regions. That is, the targets 

are predicted from neighboring organ regions. In contrast, the machine-learning approaches 

have typically used low-level image features such as anatomical landmarks for the 

prediction (Seifert et al., 2009; Montillo et al., 2011; Glocker et al., 2012; Criminisi et al., 

2013). Its advantages would be that the salient features are automatically determined during 

learning processes. That is, the targets are predicted from low-level features. In the statistical 

and multi-atlas approaches, multi-resolution modeling of multiple organs has been mainly 

used for the prediction in order to gradually increase the prediction accuracy in a robust 

manner (Wolz et al., 2013; Iglesias et al., 2013; Cerrolaza et al., 2012, 2013; Bagci et al., 

2012). That is, the targets are predicted from lower-resolution organ regions. Overall, each 

approach uses different context information for the prediction, which is suitable for its 

methodological characteristics. The proposed method provides a different source of the 
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context information. Approaches to integrate different context information sources will be 

an important future work, one example of which is described next in Section 4.4.

4.4. Limitations and future work

In this method, spatial normalization is performed based on bone detection by simple 

thresholding and liver top detection by rough segmentation of the lung. Therefore, our 

current method for spatial normalization requires that these features and regions are imaged 

in the field of view (FOV) of input CT data, that is, the whole liver is included in the FOV. 

One possible method to overcome this limitation would be to use anatomical landmarks 

(Seifert et al., 2009; Hanaoka et al., 2011). We are currently considering a machine learning 

approach to perform spatial normalization based on detected anatomical landmarks.

As future work, it is desirable that the method is applicable to CT data with pathologies or 

missing organs. We are now extending the proposed method in the following points; (1) 

adding other abdominal organs, such as the gastrointestinal tract, to OCG (Hirayama et al., 

2013), and (2) application to organ segmentation under pathological conditions (Fukuda et 

al., 2013). In addition, the proposed method obviously faces a problem when an organ is 

missing. A method for detecting missing organs, as proposed in Suzuki et al. (2012a), needs 

to be incorporated. Because specific patterns of organ shifts are statistically modeled after 

surgical removal of organs, as shown in Suzuki et al. (2012b), prediction-based shape–

location priors would be constructed for each pattern of missing organs in order to reduce 

instability. With respect to intensity priors, our intensity modeling is currently based on 

intensity histograms of the organ and background regions. Incorporation of texture 

information inside the organ regions will improve the segmentation accuracy when 

neighboring organs have similar intensity histograms but different textures.

5. Conclusion

We have presented a general framework for multi-organ segmentation which is adaptable to 

various ICs without the need for supervised intensity information. In this paper, an OCG, 

which encodes the spatial correlations among organs, was introduced. By constructing and 

utilizing subject-specific shape– location priors based on shape prediction from pre-

segmented organs, the segmentation accuracy of abdominal organs was largely improved. 

The initialization of organ locations and shapes becomes accurate enough to estimate IM in 

an unsupervised manner by using prediction-based shape–location priors. Average DCs of 

the liver, spleen, and kidneys were more than 92%. Average DCs of the pancreas, GB, and 

IVC were around 73%, 67%, and 65%, respectively. These results were comparable to state-

of-the-art segmentation methods using supervised intensity information.
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Appendix A. Automated transformation of upper abdominal CT data to the 

abdominal normalized space

Figure A.1 shows the processes of automated abdominal spatial normalization. First, bone 

tissue regions and the liver dome (right lobe) are automatically extracted from the target CT 

data, and then spatial normalization is performed based on them. The procedure is as 

follows. Step 1: Bone tissue regions are extracted by thresholding the CT data within a fixed 

range along the caudal direction from the top axial plane of the 3D field of view of the CT 

data. The fixed range was the average z-length of the bounding box of the liver in the 

training data. The bone tissue regions determine their circumscribed two coronal and two 

sagittal planes of the abdominal space. Step 2: The top of the liver dome is determined by 

fitting SSM of the lung bases, which is spatially normalized by the liver top axial plane as 

well as the circumscribed coronal and sagittal planes, to the lung tissue regions extracted by 

thresholding. In this SSM fitting, the z-coordinate is also variable (in addition to the shape 

parameter vector of the SSM) and its estimated value is used to determine the liver top axial 

plane. Step 3: The determined axial, two sagittal, and two coronal reference planes are used 

to align the target CT data to the normalized space, in which the PAs and SSMs of all the 

eight organs are defined.

Figure A.1. 
Processes of automated abdominal spatial normalization.

Appendix B. Details of three submodules in single organ segmentation

For simplicity, the organ index k is omitted in the following descriptions.
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1. PA-based MAP segmentation

Given target image data I(x), L̂(x) maximizing the posterior probability Prob(L | I) is 

calculated using PA P(x) and IM H(I) = {HO(I), HB(I)}. The problem is formulated as 

binary MAP estimation for the target organ and background regions. Using Bayes' theorem, 

the posterior probability Prob(L | I) is proportional to the product of likelihood Prob(I | L) 

and the prior probability Prob(L). Using P(x), Prob(L) is defined as

(B.1)

We assume that each I(x) is conditionally independent. The likelihood Prob(I(x) | L(x)) is 

defined as

(B.2)

L̂(x)is calculated by

(B.

3)

After opening and closing using spherical structuring element of radius ρ are applied to L̂(x), 

we obtain the PA-based segmentation result, which is denoted as LPA(x). Optimization of 

radius ρ is described in Section 3.3.

2. SSM-based refinement

SSM-based refinement of LPA(x) is performed by repeating edge point detection on the 

binarized likelihood image and fitting SSM to the detected edge points (Okada et al., 2008). 

As a threshold value of the likelihood image, the value was calculated to satisfy the 

following: the intensity distribution within the region of binarized likelihood image include 

the intensity distribution of target organ and not include that of the background region as 

possible. To do so, the threshold value of likelihood image is determined by following way. 

Figure B.2 shows the method for determining the threshold value for the likelihood image. 

Let p be the probability value of HO(I). The true positive fraction TPF(p) and false positive 

fraction FPF(p) of HO(I) at the probability p are defined as TPF(p) = Σi HO(I = i) [HO(I = i) 

≥ p] and FPF(p) = Σi HB(I = i)[HO(I = i) ≥ p], respectively, where [·] denotes an Iverson 

bracket, which is equal to 1 when the logical condition enclosed is true and 0 otherwise (Fig. 

B.2). The threshold value for the likelihood image p̂ is defined as

(B.4)
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where Youden's index (TPF(p) − FPF(p)) (Youden, 1950) is maximized.

Figure B.2. 
Determination of threshold value p̂ for likelihood image. Red and green plots are the 

histograms of object HO(I) and background HB(I), respectively. Given a probability value p, 

TPF(p), FPF(p), and Youden's index can be calculated. The threshold value for likelihood 

image p̂ is determined so that Youden's index is maximized.

Let M(b) be the surface model generated by SSM s(b) and Xlikelihood the contour points of 

the binarized likelihood image by the threshold value p̂. We define edge points Xj detected at 

the j-th iteration as

(B.5)

where D(x; M) is the Euclidean distance between point x and the nearest point of x on the 

surface M, bj−1 is the shape parameter vector of SSM at the (j − 1)-th iteration, and dmax is 

the maximum distance to limit the search area for edges. In this paper, we used dmax = 20 

mm. The maximum distance to limit the search area was also used by Lamecker et al. (2004) 

to reduce the influence of outliers. The contour points of LPA(x) are used for X1.

Given edge points Xj, the shape parameter vector bj of SSM is defined as

(B.6)

where λ is a weight parameter, and CD(b; M(b), Xj) and CM(b) are defined as
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(B.7)

and

(B.8)

respectively, in which |M| denotes the number of vertices of surface M, ‖v‖ the Euclidean 

norm of vector v, and m the number of principal modes of SSM. The Levenberg-Marquardt 

algorithm is used for minimization in Eq. (B.6). Optimization of weight parameter λ is 

described in Section 3.3. The segmentation result of SSM refinement LSSM(x) is obtained by 

voxelization of the shape model, which is obtained by a fixed number of iterations of edge 

point detection and fitting to the detected points.

3. Graph-cut refinement

Graph-cut refinement (Boykov and Jolly, 2001) is performed for LSSM. The boundary term 

and hard constraint in the original formulation (Boykov and Jolly, 2001) are used while the 

regional term is not used. Let R = {x | LSSM(x) = 1} be the extracted region in LSSM(x). The 

boundary term B{x,y} is defined as

(B.9)

where  is the variance of the intensity value 

between adjacent voxels, np the total number of pairs of adjacent voxels within R, and N(x) a 

neighborhood of x. Hard constraint regions for object and background are automatically 

determined based on segmented region R (while they are manually specified by a user in the 

original method developed by Boykov and Jolly (2001)). Let H(I; R) be the probability 

distribution of the intensity histogram within R. The hard constraint regions for object and 

background  and ℬ are respectively defined as

(B.10)

(B.11)

where Rc is the complement of R, pO and pB the values to determine the hard constraint 

regions for object and background, respectively, and t(p; H(I; R)) = maxt{t | Σi H(I = i; R)

[H(I = i; R) ≥ t] ≥ Z(p)}, in which Z(p) is the probability of a random variable with standard 

normal distribution (0, 1) falling in the range [−p, p]. Optimization of pO and pB is 

described in Section 3.3.
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Appendix C. Training of prediction model using PLSR

Let Xc and Yc be the mean centered matrices of X and Y, respectively. Using PLSR, Yc can 

be written as

(C.1)

where Bpls is the regression coefficient matrix. This matrix can be calculated using the 

NIPALS algorithm (Yang et al., 2008; Geladi and Kowalski, 1986). The target vector ŷ 
predicted from the predictor vector x is defined as

(C.2)

where μX and μY are the mean vectors of X and Y, respectively. Let X̃
i and Ỹi be the datasets 

except for case i,  be the regression coefficient matrix constructed from X̃
i and Ỹi, and 

Bpls,m be the matrix using the first m columns of Bpls. The prediction error εm is defined as

(C.3)

where

(C.4)

The optimal number of factors of Bpls is defined as

(C.5)

Given the predictor vector x, the predicted target vector ŷ is defined as

(C.6)

Appendix D. Automated surface subdivision based on canonical 

correlation analysis

Organ surfaces are recursively subdivided based on a significance level of point-pair 

correlation within the surface. We use canonical correlation analysis (CCA) to calculate the 

significance of correlations between two points (Fillard et al, 2007).
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Let V0 = {vi} be the vertices of the surface S to be divided and p(u, v) be the significance of 

correlations between the two points u and v based on CCA. Given the maximum level of 

division kmax, the processes of the automated surface subdivision are as follows:

1. p(vi, vj) is calculated among all possible pairs of points (vi, vj)(i ≠ j)in V0.

2. The level of division k ← 0

3. The most uncorrelated point-pair (vV1, vV2) is selected as

(D.1)

4. All vertices in V0 are separated into the two sets of vertices V1 and V2 based on the 

significance of the correlations with vV1 and vV2 as follows:

(D.2)

(D.3)

5. The sub-shapes S1 and S2 containing only the vertices inV1 and V2 are extracted 

from S, respectively.

6. k ← k + 1

7. The processes 3. to 6. are recursively applied to Si(i = 1, 2) until the level of 

division reaches kmax.

Once the surface subdivision is performed for the average shape, the surface model 

represented by SSM can be automatically subdivided using known correspondences.
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Highlights

• Multiple abdominal organs were automatically segmented from CT images.

• A method for modeling prediction-based conditional shape-location priors is 

developed.

• Organ correlation graph is introduced, which embeds the spatial correlations 

among organs.

• Proposed priors enables the estimation of intensity priors from unsupervised 

intensity information.

• The results were comparable to state-of-the-art methods using supervised 

intensity information
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Figure 1. 
Spatial normalization. (a) Coronal view of typical our CT data. (b) Definition of the 

abdominal normalized space. In spatial normalization, the xyz-translation and xy-scaling are 

adjusted so that the reference planes are aligned among all the CT data. The z-scaling is not 

performed because stable image features were not available for the z-scale determination. In 

addition, strong correlation was not found between the xy- and z-scaling at least for the liver 

shape. Although only sagittal planes are shown in the figures, coronal planes are similarly 

defined. See Appendix A for an automated method for the spatial normalization.
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Figure 2. 
Block diagram of single-organ segmentation method. As an example, the segmentation 

target is R-kidney here. This is utilized as a basic module for multi-organ segmentation, 

where (conventional) PA and SSM will be replaced by prediction-based conditional ones 

described in Section 2.2. Three methods for constructing intensity models will be considered 

in Section 2.3.
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Figure 3. 
Construction of prediction-based shape–location priors in reference space. Green shapes in 

training dataset and reference space indicate the predicted and reference shapes of the target 

organ (which is the pancreas in this figure), respectively. Pink shapes in training dataset and 

reference space indicate the true shapes and transformed true shapes of the target organ, 

respectively. White shapes indicate the predictor organs, which are the liver and spleen in 

this case. After predicting the target organ shape from predictor organs, true shapes are 

transformed to reference space. Then SSM and PA of the residuals are constructed in the 

reference space.
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Figure 4. 
Generating prediction-based shape–location priors for segmentation of target data. Given 

segmented predictor organs of the target data, the target organ shape ŝ0t is predicted. The 

mapping defined by the deformation field from reference shape  to predicted shape, 

, is applied to the prediction-based SSM and PA in the reference space to 

obtain those in the target data space.
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Figure 5. 
Conventional and proposed prediction-based PAs. (a) R-kidney. (b) GB. (c) Pancreas. Left: 

Conventional PA. Right: Proposed prediction-based PA using the predictor organs (the liver 

for R-kidney and GB, and the liver & spleen for the pancreas). The variations of the 

prediction-based PA due to the deformations of the predictor organs are shown. (d), (e), and 

(f) Graph representations of (a), (b), and (c), respectively.
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Figure 6. 
Process of construction of target-data specific intensity model (TD-IM). TD-IM HO and HB 

are obtained by iterating the processes obtaining HO0 with R(x) and updating R(x) by MAP 

segmentation.
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Figure 7. 
Four sub-shapes of the liver shape. (a) Average shape. (b) Three different patient liver 

shapes. Red, green, blue, and yellow sub-shapes are liver1, liver2, liver3, and liver4, 

respectively.
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Figure 8. 
Organ correlation graph (OCG). (a) OCG constructed from eight abdominal organs. Blue 

and red edges indicate the edges from nodes of Types 1 and 2, respectively. For simplicity, 

the multiple edges from the sub-shapes of the liver to a target organ are indicated by one 

edge from the liver to it and the identifiers of sub-shapes are indicated by the labels on the 

edges. In the graph, a node having in-edges is predicted from nodes having out-edges. (b) 

Examples of Vout(v) and Vin(v). As shown in this figure, some nodes can be included in both 

Vout(v) and Vin(v).
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Figure 9. 
Processes of multi-stage updating in multi-organ segmentation based on OCG. Red 

contoured nodes indicate those to be segmented. Green-colored nodes indicate those that 

have already been segmented. (a) Stage 0. The liver (only one organ in V1) is firstly 

segmented. (b) Stage 1. The organs connected from the sub-shapes of the liver are 

segmented. (c) Stage 2. The organs connected from those segmented at the previous stage 

are segmented. Note that the R-kidney and GB are not segmented at this stage because the 

segmentation results of predictors (only the liver in this case) do not change. (d) Stage 3 or 

later. Further segmentations are performed using updated results of the predictors.
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Figure 10. 
Examples of prediction-based PAs at different stages of multi-organ segmentation. (a) Case 

1. (b) Case 2. (c) Case 3. Left: Conventional PA of eight organs (Stage 0). Middle: 

Prediction-based PAs using the segmented liver (Stage 1). Right: Prediction-based PAs 

using the segmented liver, spleen, and kidneys (Stage 4). Orange indicates the liver, purple 

the spleen, pink the kidneys, yellow the pancreas, green the GB, red the aorta, and cyan the 

IVC. PAs are illustrated by cloud-like semi-transparent volume rendering. The segmented 

organ shapes are represented by semi-transparent surface rendering. At Stage 4, 

segmentation of R-kidney, gallbladder, and IVC (in addition to the liver) stops updating, and 

thus their segmented surfaces are shown instead of PAs.
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Figure 11. 
Examples of cross-sectional CT images of our data. See Table 4 for the descriptions of each 

IC. (a) A-1, (b) A-2, (c) B-1 (d) B-2, (e) C, and (f) D.
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Figure 12. 
Summary of accuracy evaluation for proposed prediction-based and conventional shape–

location priors when unsupervised IC-IM was used for intensity model. Dice coefficients 

(DCs) of 134 CT data using prediction-based and conventional shape–location priors for 

each of seven organs were plotted. The averages of DC, Jaccard index (JI), and average 

symmetric surface distance (ASD) as well as statistical significance are also shown in a table 

format. In the table, * and ** indicate that significant accuracy improvement with 

significance levels of 0.05 and 0.01 was observed, respectively. DCs of three cases indicated 

in Figs. 17(a), (b), and (c) are plotted by ○,□, and Δ, respectively.
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Figure 13. 
Accuracy improvement of each segmentation submodule corresponding to each block in 

Fig. 2. The same shape-location and intensity priors were used as the proposed method in 

Fig. 12. Statistical significance was observed among all submodules for all organs (p < 

0.01).
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Figure 14. 
Effects of multi-stage updating in proposed multi-organ segmentation based on OCG. 

Average DC of 134 CT data at each stage is plotted for each organ. (a) Plots for the spleen, 

R-kidney, and L-kidney. (b) Plots for the pancreas, GB, aorta, and IVC. Only the liver was 

used as the predictor at Stage 1. The spleen, R-kidney, and L-kidney were used as the 

predictors in addition to the liver at Stages 2 to 4.

Okada et al. Page 44

Med Image Anal. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 15. 
Similarity between supervised and unsupervised IC-IMs. Normalized cross correlations 

(NCCs) between supervised IC-IM and unsupervised IC-IM using conventional (yellow bar) 

and prediction-based PAs (orange bar) were shown. NCCs of the six imaging conditions 

were averaged.
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Figure 16. 
Summary of accuracy evaluation for three intensity models when the proposed prediction-

based shape–location priors were utilized. DCs of 134 CT data using TD-IM, unsupervised 

IC-IM, and supervised IC-IM for each of eight organs were plotted. With respect to the 

liver, only the result using TD-IM is shown. Average DC, JI, and ASD values and statistical 

significance are also shown below the plots in a table format. In the table, * and ** indicate 

that significant accuracy improvement with significance levels of 0.05 and 0.01 was 

observed, respectively.
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Figure 17. 
Illustrative segmentation results (a) Case in Dataset B-2 (arterial phase enhancement). (b) 

Case in Dataset C (portal venous phase enhancement). (c) Case in Dataset D (non-contrast). 

From the left to the right, input CT image, manual segmentation, and results using the 

proposed prediction-based shape–location priors & TD-IM (blue), the proposed prediction-
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based priors & unsupervised IC-IM (orange), the proposed priors & supervised IC-IM 

(green), and the conventional priors & unsupervised IC-IM (yellow). Upper Axial cross-

section. Lower 3D rendering. Orange, purple, pink, yellow, green, red, and cyan volumes 

and regions indicate the liver, spleen, kidneys, pancreas, GB, aorta, and IVC, respectively. 

Dice coefficient (DC) of each segmented organ is also shown in a table format. In (b), 

orange contour indicates the contour of the liver region to show liver leakage. White arrows 

show the failed region by the conventional priors. Black arrows show the improved or failed 

regions by the prediction-based priors. Arrow heads show the regions of liver leakage.
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Table 1

Commonly used acronyms.

Acronym Description

Shape–location prior OCG Organ Correlation Graph

PA Probabilistic Atlas

SSM Statistical Shape Model

Intensity prior IC Imaging Condition

IM Intensity Model

TD-IM Target-data specific IM

IC-IM Imaging-condition specific IM

Evaluation measure of segmentation results DC Dice Coefficient

JI Jaccard Index

ASD Average Symmetric Surface Distance

Organ R-kidney Right kidney

L-kidney Left kidney

GB Gallbladder

IVC Inferior Vena Cava
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Table 2

Commonly used notations.

Symbols Description

I(x) CT image

x 3D coordinates

k Organ index

Ak Set of shape–location and intensity priors of organ k

Pk(x) Probabilistic atlas (PA) of organ k

sk(b) Statistical shape model (SSM) of organ k

Hk(I) Intensity model (IM) of organ k

HOk(I) Normalized histogram of organ k

HBk(I) Normalized histogram of background of organ k

b Shape parameter vector

S eg(·) Segmentation operation

s0 Surface shape vector (concatenation of 3D coordinates) of target organ

sk Surface shape vector of predictor organ k

s̃i Predictor vectors (set of surface shape vectors of predictor organs) of case i

Tp Training datasets of predictor organs for partial least squares regression (PLSR)

Tt Training datasets of target organ for PLSR

PLSR(s̃; Tp, Tt) PLSR model

ri Residual of case i after PLSR prediction, which is the difference between predicted and true shapes
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Table 3

Organ classification. Type 1 organs are segmented unconditionally and are always predictor organs. Type 2 

organs are segmented conditionally and can be predictor organs. Type 3 organs are segmented conditionally 

and cannot be predictor organs.

Type Set of organs Role

Type 1 V1 = {liver1, liver2, liver3, liver4} predictor

Type 2 V2 = {spleen, R-kidney, L-kidney} predictor and target

Type 3 V3 = {pancreas, GB, aorta, IVC} target
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