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Abstract

Polysubstance abuse of alcohol and nicotine has been overlooked in our understanding of the 

neurobiology of addiction and especially in the development of novel therapeutics for its 

treatment. Estimates show that as many as 92% of people with alcohol use disorders also smoke 

tobacco. The health risks associated with both excessive alcohol consumption and tobacco 

smoking create an urgent biomedical need for the discovery of effective cessation treatments, as 

opposed to current approaches that attempt to independently treat each abused agent. The lack of 

treatment approaches for alcohol and nicotine abuse/dependence mirrors a similar lack of research 

in the neurobiology of polysubstance abuse. This review discusses three critical needs in 

medications development for alcohol and nicotine co-abuse: (1) the need for a better 

understanding of the clinical condition (i.e. alcohol and nicotine polysubstance abuse) (2) the need 

to better understand how these drugs interact in order to identify new targets for therapeutic 

development and (3) the need for animal models that better mimic this human condition. Current 

and emerging treatments available for the cessation of each drug and their mechanisms of action 

are discussed within this context followed by what is known about the pharmacological 

interactions of alcohol and nicotine. Much has been and will continue to be gained from studying 

comorbid alcohol and nicotine exposure.
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Introduction: Prevalence and Onset of Alcohol, Nicotine, and their 

Concurrent Use

Alcohol remains the most commonly used drug of abuse in the world, accounting for nearly 

6% of global deaths annually (WHO, 2014) with millions more engaging in abusive 

drinking that has additional health, legal and social consequences (SAMHSA, 2014). 

Alcohol use disorders (AUDs), or “alcoholism”, are major public health problems as 13.9% 

of the U.S. population currently meets DSM-V diagnostic criteria for an AUD (Grant et al., 

2015). Within this group, 50–92% also smoke tobacco (Miller & Gold, 1998; Falk et al., 

2006; De Leon et al., 2007), resulting in alcohol and nicotine abuse as the largest group of 

polysubstance abusers. Despite these striking numbers, preclinical research on this comorbid 

condition is relatively understudied, as investigators have focused primarily on 

understanding the effects of each of the drugs individually. Recently, this critical oversight 

has begun to be remedied through new NIH funding opportunities that already have served 

to increase the rate of discovery in alcohol and nicotine polysubstance abuse. As the 50%–

92% incidence values show, comorbid alcohol and nicotine exposure is the human condition 

for the majority of people with an AUD.

Excessive alcohol use produces a great burden to society; it accounts for 2.3 million years of 

potential life lost and an estimated $223.5 billion in economic costs per year (Kanny et al., 

2013). Approximately 57% of Americans aged 21 and over have consumed alcohol in the 

last month (SAMHSA, 2014) while 18% of the adult population are binge drinkers (Kanny 

et al., 2013). Binge drinking is defined by the National Institute on Alcohol Abuse and 

Alcoholism as a pattern of drinking that results in blood alcohol concentrations above the 

legal limit of 0.08 g/dL, through drinking 4+ drinks for women and 5+ drinks for men within 

2 hours. Although binge drinking is not necessarily synonymous with alcohol abuse, it is a 

risky pattern of consumption related to alcohol use problems. Tobacco use, on the other 

hand, is the leading cause of preventable death and accounts for approximately 20% of 

deaths per year (US Department of Health and Human Services, 2014). Nevertheless, 18% 

of adults over 18 years of age use tobacco products (Agaku et al., 2014). Tobacco smokers 

are more likely to binge drink, consume two times more alcohol, and are 10–14 times more 

likely to have an AUD than non-smokers (Carmody et al., 1985; DiFranza & Guerrera, 

1990; see also McKee & Weinberger, 2013 for review). In addition, non-daily smoking (not 

dependent) occurs most frequently during alcohol use (McKee et al., 2004) as alcohol use 

dose-dependently increases smoking urges (King & Epstein, 2005). The prevalence of 

concurrent use is not surprising since nicotine enhances ratings of alcohol reinforcement in 

humans (McKee & Weinberger, 2013) and alcohol self-administration in animal models 

(Doyon et al., 2013a). The enhancement of alcohol’s effects by nicotine may be 

subconsciously exploited in an I only smoke when I drink manner, known as “chipping,” as 

74% of smoking episodes occur while consuming alcohol in non-dependent smokers 

(McKee et al., 2004). Perhaps because of this rationalizing, non-daily smoking is associated 

with an even greater increase in risky drinking compared to daily smoking (McKee & 

Weinberger, 2013). Furthermore, concurrent use may pose significant barriers to successful 

alcohol cessation, as smoking is associated with increased alcohol dependence, greater 

symptoms of alcohol withdrawal, and decreased success in remaining abstinent from alcohol 
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(McKee & Weinberger, 2013; Chiappetta et al., 2014). Conversely, current or past AUDs 

decrease the likelihood of smoking cessation and current AUDs increase the likelihood of 

smoking relapse (Weinberger et al., 2013). Since alcohol and nicotine are often used 

concurrently, with each individual substance posing a barrier to the other substance’s 

successful cessation, it is imperative to consider alcohol and nicotine polysubstance abuse as 

a singular condition and develop effective therapies that target both substances, rather than 

treating each condition separately.

There are several pharmacological agents that are available to treat either alcohol or nicotine 

dependence independently; however, as will be discussed herein, these approved 

medications have limited efficacy in long-term cessation. Although new pharmacotherapies 

are being considered in the individual conditions, a striking absence of pharmacological 

treatments for alcohol and nicotine polysubstance abuse remains. Indeed, the lack of 

research support for this specific comorbidity has hindered the development of potential 

therapeutic treatments for comorbid alcohol and nicotine dependence. Furthermore, for drug 

discovery and medications development in alcohol and nicotine cessation to succeed, there 

are several critical needs beyond the obvious need for new drug targets. A major difficulty 

in drug discovery for cessation of drug use is that substance abuse/dependence is a disease 

state on a continuum with normal behavior where there is little consensus on many aspects 

of the disorder (Roman, 2014; Litten et al., 2015). In other words, the pathology is ill 

defined. Therefore, a better understanding of the factors that drive alcohol and nicotine co-

use and abuse is critical to the success of drug discovery. Indeed, this cannot be done 

without a better understanding of the pharmacological and physiological interactions of the 

drugs together, as well as each drugs particular effect on the other. In addition, Koob et al 

(2009) highlights the critical importance of having valid models that then reflect this deeper 

understanding of the disorder. Specifically, basic science must contribute to our 

understanding of the disorder, our understanding of how the drugs interact within the 

context of the disorder, but then, critically, must turn around and improve animal models of 

the disorder. In other words, a Rosetta Stone approach is necessary; one that couples the 

discovery of novel targets and pharmacophores with studies to better understand the 

disorder, and develop novel models to better mimic the disorder in which effective 

pharmacotherapies may be tested (Koob et al., 2009). Each of these parts of the stone will be 

discussed below as critical needs to the drug discovery process. After reviewing the 

pharmacology and current and experimental treatments available for alcohol and nicotine 

individually and their presumed mechanisms of action, alcohol and nicotine interactions are 

then discussed focusing on the role of the nicotinic receptor as the common sites of action 

for alcohol and nicotine. Next, we discuss the limited number of studies where alcohol and 

nicotine have been explored together, organized by the major neurotransmitter and signaling 

systems implicated in the development of alcohol and substance use disorders. Finally, the 

critical need for novel animal models that better mimic the human condition and in which 

experimental therapeutics can be tested is discussed drawing from best practices in the in 

vivo drug discovery literature.
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Need: A better understanding of the co-morbid condition

As stated above, a better understanding of the co-morbid condition of alcohol and nicotine 

co-use and abuse is critically needed. The starting point to understanding this interaction is 

elucidating the pharmacology of alcohol or nicotine alone, of which there is a wealth of 

information. We review briefly the current state of knowledge of each individual drug’s 

mechanism of action and discuss currently approved treatments for cessation. Experimental 

approaches in the drug discovery pipeline are also discussed as a way of foreshadowing 

potential new areas to examine for alcohol and nicotine interactions in their use and abuse.

Nicotine: Mechanism of Action

Although there are thousands of chemicals that one is exposed to during tobacco smoking, it 

is widely presumed that the tobacco alkaloid, nicotine, is the primary component responsible 

for an addiction to smoking. Nicotine acts at nicotinic acetylcholine receptors (nAChRs), 

ligand-gated ion channels that respond to the endogenous agonist acetylcholine, but also 

have a high affinity for nicotine. Nicotine acts as an agonist, initially at least, at all subtypes 

of nAChRs. When agonist is bound, the channel pore opens allowing for the influx of 

sodium (Na+) and/or calcium (Ca2+) and the efflux of potassium (K+) cations, changing the 

membrane potential. Increases in intracellular Ca2+ concentration then augment a variety of 

cell-signaling mechanisms. nAChRs are located on the soma of acetylcholine interneurons 

where they serve as autoreceptors, as well as on terminals of numerous types of neurons 

where they serve as heteroreceptors. This includes axon terminals in the dorsal striatum and 

NAc where nAChRs modulate dopamine release into the extracellular space. nAChR 

modulation of striatal dopamine release is thought to be primarily responsible for the 

rewarding and reinforcing properties of nicotine (Di Chiara, 2000; Volkow et al., 2002; Rice 

& Cragg, 2004). Upon repeated nicotine exposure, nicotine binding and consequent nAChR 

upregulation are hypothesized to drive nicotine dependence and addiction (Wonnacott, 

1990; Bardo, 1998; Sparks & Pauly, 1999; Di Chiara et al., 2004).

nAChRs are comprised of 5 subunits and various subunit compositions make up a variety of 

nAChR subtypes (Changeux, 2010). However, not all nAChR subtypes are subject to 

upregulation following repeated nicotine exposure. Of those that are susceptible to 

upregulation, the α4β2 and α7 subtypes are best characterized (Fenster et al., 1997; Gotti et 

al., 2006; Dani & Bertrand, 2007). Positron emission tomography scanning revealed nAChR 

upregulation in adults who are chronic smokers (Mukhin et al., 2008; Wullner et al., 2008). 

Although these receptors are upregulated, chronic exposure to nicotine desensitizes α4β2 

nAChRs, which leads to a decreased response to nicotine (Wonnacott, 1990). The consensus 

is that while more receptors are expressed following repeated nicotine exposure, these 

receptors are inactive, therefore an increased amount of nicotine is needed to produce the 

same response (Balfour, 1994; Picciotto et al., 2008). In a clinical study, Brody et al. (2006) 

reported that average smokers maintain nicotine levels sufficient to occupy 88–95% of α4β2 

nAChRs in brain. Because smokers maintain nicotine levels that saturate at least 88% the 

available nAChRs, drug craving begins, theoretically, when less than 88% of the available 

nAChRs are occupied. In support of this idea, the extent of α4β2 nAChR upregulation 

correlated negatively with patients’ ability to both quit smoking and maintain abstinence 
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after a variety of 12-week smoking cessation treatments, including nicotine-replacement 

therapy, pharmacotherapies or cognitive behavioral therapies (Brody et al., 2014). Thus, 

patients with greater α4β2 upregulation had less success overall with smoking cessation 

regardless of treatment regimen and tended to relapse more often after treatment completion 

compared to patients with lesser α4β2 upregulation. Taken together, these results suggest 

that 1) measuring nAChR upregulation may serve as a diagnostic tool to better assess a 

patient’s level of dependence prior to cessation attempts, and 2) using this knowledge, 

physicians may be able to design more extensive treatment plans to increase success rates 

for patients with high levels of nAChR upregulation.

As previously mentioned, nicotine activation of nAChRs results in dopamine release from 

presynaptic terminals. However, as repeated exposure to nicotine desensitizes nAChRs, 

dopamine release decreases. For example, Rice & Cragg (2004) demonstrated through a 

series of electrical stimulation studies that during low frequency, tonic firing, chronic 

nicotine exposure desensitizes nAChRs and inhibits striatal dopamine release. However, 

when electrical pulses were delivered at higher, phasic (burst)-firing frequencies, associated 

with reward transmission, nicotine enhanced dopamine release. Taken together, these results 

suggest that with repeated use, nicotine may not increase dopamine release, and thereby, the 

initial rewarding effects may be decreased. However, nicotine activation of nAChRs 

enhances dopamine release during reward-driven burst firing, enhancing the rewarding 

effects of other primary and secondary reinforcers.

Nicotine may also decrease dopamine release via an alternate mechanism involving 

cholinergic interneurons. Cholinergic interneurons impinge on both dopaminergic somas as 

well as axon terminals (Changeux, 2010). In a recent study, Wang et al. (2014) determined 

that nicotine desensitizes nAChRs located on cholinergic interneurons, inhibiting 

transmission between the interneurons and dopaminergic neurons, and thereby eliminating 

the nicotine-evoked dopamine release. As a result, nicotine prevents the depletion of 

dopamine in releasable vesicle pools during low-frequency firing, which reduces baseline 

noise and allows for a cleaner higher-frequency burst firing, and consequently, nicotine-

induced dopamine release during reward.

In summary, nicotine activation and desensitization of nAChRs and their net effect on 

dopamine release is a complex process. Effective therapeutic strategies for smoking 

cessation, therefore, need to consider the complex nature by which nicotine results in the 

modulation of dopamine release as well as the possibility that other components of tobacco 

smoke interact with the mesolimbic reward system to drive addiction. In addition, the 

majority of smokers concurrently use other drugs, particularly alcohol, which requires study 

of how alcohol interacts with these complicated processes and specifically within the 

context of the comorbid condition.

Therapeutics for Smoking Cessation

Currently, only a handful of pharmacological agents are available for smoking cessation (see 

Table 1), and none are available specifically for the treatment of alcohol and nicotine 

polysubstance abuse. Of the smoking cessation treatments that are available, few are 

efficacious as single-agent therapies, and relapse is common regardless of treatment type. 
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With or without pharmacological intervention, only about 3% of smokers are able to 

maintain abstinence for one year after attempting to quit (Hughes et al., 2014). Currently 

approved and emerging new pharmacological approaches for smoking cessation are 

described below.

Nicotine Replacement Therapy (NRT)—The first FDA-approved form of smoking 

cessation treatment was nicotine replacement therapy (NRT). NRTs are now available in 

five FDA approved forms, including gum, inhaler, patch, nasal spray and lozenges. NRT 

dosage forms are designed to administer low doses (5–20 mg daily) of nicotine, typically in 

a step-down approach. The goal of NRT is to make smoking cessation easier by reducing 

nicotine cravings and tempering the effects of nicotine withdrawal by gradually lowering 

circulating levels of nicotine, while forgoing the harmful effects of cigarette smoking (Stead 

et al., 2012). Approximately 50–70% of smokers who attempt to quit using NRTs are 

successful during a 12-week treatment period, but of those, 80% are smoking again by 1 

year after treatment (Ferguson et al., 2006; Stead et al., 2012). The high incidence of relapse 

seen with NRTs is likely due, at least in part, to the fact that NRTs do not alter nicotine 

dependence, but rather decrease motivation to smoke by providing nicotine. In addition, 

there are significant sex differences in NRT efficacy, with poorer long-term abstinent rates 

for women (Perkins & Scott, 2008). In summary, while NRTs often help some groups of 

motivated smokers to quit by reducing their urge to smoke, cessation is often short lived and 

relapse ensues.

Bupropion—The first non-nicotine smoking cessation therapeutic approved in the U.S. is 

the nAChR antagonist and neurotransmitter transporter inhibitor, bupropion (Zyban®). 

Bupropion is an allosteric antagonist at α3β4, α4β2, α6β2 and α7 nAChRs (Slemmer et al., 

2000; Miller et al., 2002; Rauhut et al., 2003). Bupropion-induced antagonism of nAChRs in 

the CNS attenuates the reinforcing properties of nicotine in rodents and humans, and 

attenuates nicotine withdrawal, making cessation feasible (Miller et al., 2002; Rauhut et al., 

2003; Warner & Shoaib, 2005; Carroll et al., 2014). Bupropion is also a weak 

norepinephrine and dopamine re-uptake inhibitor and also is marketed as an antidepressant 

(Wellbutrin®; Dwoskin et al., 2006). Because bupropion affects nAChRs as well as 

norepinephrine and dopamine transporters, it is plausible that bupropion inhibition of 

dopamine and norepinephrine reuptake contributes to the attenuation of the reinforcing 

properties of nicotine (Rau et al., 2005). However, inhibition of transport would increase the 

concentration of extracellular transmitter, which would be predicted to increase 

reinforcement, rather than decrease it. Others have reported that the effect of therapeutic 

doses of bupropion on dopaminergic transmission is negligible, suggesting that nAChR 

antagonism is responsible for its efficacy as a smoking cessation agent (Damaj et al., 2004). 

In clinical studies, bupropion treatment increased smoking cessation rates within 7 weeks of 

treatment (44% vs. 19% in placebo) as well as 1 year after treatment (23% vs. 12% in 

placebo; Hurt et al., 1997). However, data comparing bupropion treatment to NRTs has been 

somewhat inconsistent. At one year, NRTs show increased cessation rates, though one study 

measuring cessation rates at 3 months showed bupropion was more efficacious (Wu et al., 

2006). Since bupropion and NRT act via different mechanisms, these cessation therapeutics 

can be used in combination to obtain greater efficacy in smoking cessation. In a placebo 
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controlled trial, bupropion and NRT combination therapy was found to be more effective 

(36% were abstinent at 12 months) compared to bupropion (30%) or NRT alone (16%; 

Jorenby et al., 2006). Therefore, bupropion, administered either alone or in conjunction with 

NRT, shows significant efficacy as a long-term smoking cessation agent. Additionally, 

because of its utility in modulating dopamine and norepinephrine systems, bupropion could 

also serve as a potential therapeutic agent for comorbid alcohol and nicotine dependence.

Varenicline—In 2006, the FDA approved varenicline (Chantix®) for smoking cessation 

and is reported to be the most effect treatment for nicotine dependence on the market (Coe et 

al., 2005; Oncken et al., 2006; Reus et al., 2007; Fiore et al., 2008). Varenicline, a cytisine 

derivative approved for smoking cessation in Europe, is an α4β2 nAChR partial agonist that 

both prevents the rewarding effects of nicotine and reduces the withdrawal induced by 

smoking cessation (Mihalak et al., 2006; Cahill et al., 2011). Varenicline was designed to be 

a high affinity partial agonist at the α4β2* nicotinic receptor (nAChR) subtype; however, as 

concentrations are increased, varenicline selectivity is reduced with activity at α3β2*, 

α6β2*, and α3β4* and is a full agonist α7 nAChRs (Grady et al., 2010; Mihalak et al., 

2006). Although clinical trials have shown that varenicline treatment leads to increased 

short-term (4 week) abstinence rates compared to bupropion and NRT and increased long-

term (1 year) abstinence rates (23%) when compared to placebo (10%) or bupropion 

treatment (15%;), the majority of treated individuals ultimately relapse (Cahill et al, 2011; 

Jorenby et al., 2006; Mills et al., 2009; Volkow and Skolnick, 2012). As such, varenicline 

has proven to be an effective smoking cessation agent though its efficacy is limited. 

Additionally, varenicline has some efficacy in treating alcohol abuse, demonstrated in both 

animal models and human clinical trials as discussed extensively below (McKee et al., 2009; 

Wouda et al. 2011; Feduccia et al., 2014). Therefore, varenicline shows potential as a 

therapeutic for treating alcohol and nicotine polysubstance abuse.

Naltrexone—Naltrexone is an opioid receptor antagonist that is typically used in the 

treatment of opioid abuse/dependence, but also AUDs. However, naltrexone has been 

investigated more recently as a treatment for nicotine dependence. Naltrexone acts by 

inhibiting mesolimbic dopamine release in the NAc, which is modulated also by nicotine 

too. While preclinical evidence has not supported a role for endogenous opioids in nicotine 

self-administration (Corrigall & Coen, 1991), one clinical trial found that daily naltrexone 

increased smoking cessation rates in males, but not females (30% in men and 20% in 

women compared to placebo rates of 17% and 28%, respectively; King et al., 2012). 

Although cessation was maintained for the entirety of the 12-week treatment period, 

differences in abstinence rates between naltrexone treatment and control groups were no 

longer apparent at either the 26- or 52-week follow up assessments. Therefore, while 

naltrexone is somewhat effective for alcohol abuse (as discussed below), it does not appear 

to be more efficacious than other treatment options (NRTs, bupropion and varenicline) for 

smoking cessation. However, naltrexone does appear to reduce weight gain that often 

accompanies smoking cessation (Toll et al., 2008; Parsons et al., 2009; King et al., 2012), 

and therefore may hold promise as an augmentative treatment option.
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Mecamylamine—Mecamylamine is a nonselective, noncompetitive inhibitor of all 

subtypes of nAChRs (Nickell et al., 2013). While originally marketed as an antihypertensive 

agent, mecamylamine readily crosses the blood-brain barrier, making it a candidate for 

CNS-based therapeutics, including smoking cessation. Neuropharmacological studies have 

shown that mecamylamine dose-dependently decreases nicotine-evoked dopamine release 

from superfused rat striatal slices (Nickell et al., 2013). Additionally, mecamylamine 

deceases nicotine self-administration in animal models (DeNoble & Mele, 2006). In one 

clinical trial, mecamylamine increased cessation rates when combined with NRT compared 

to patients who used NRT alone (Rose et al., 1994); however clinical trials of 

mecamylamine have not been successful. Although the effective dose of mecamylamine is 

3-fold lower than the antihypertensive dose (Shytle et al., 2002), the nonselective effects of 

mecamylamine at these low doses include peripheral side effects (autonomic ganglionic 

blockade) such as constipation, dry mouth, and urinary retention that limit its utility as a 

smoking cessation agent. Nevertheless, the usefulness of a nAChR antagonist as a cessation 

therapy may be promising if the peripheral effects were eliminated. Therefore, 

mecamylamine analogs and other more selective nAChR antagonists may provide an avenue 

for future development of smoking cessation agents (Crooks et al., 2014).

GSK598809—Selective dopamine receptor (D3) antagonists have been proposed to 

prevent drug-seeking behavior by reducing the rewarding effects of drugs such as nicotine. 

In rats, the D3 antagonist GSK598809 reduced nicotine self-administration as well as 

nicotine-induced conditioned place preference (Mugnaini et al., 2013). These results suggest 

that D3 blockade can attenuate drug craving independent of nicotinic mechanisms. 

GSK598809 has progressed into Phase II clinical trials for smoking cessation as a singular 

agent and in combination with both cognitive behavior therapy and NRT (clinicaltrails.gov, 

2009a).

NicVAX—A novel approach to smoking cessation treatment is the anti-nicotine vaccines, 

for example, NicVAX. NicVAX is designed to specifically prevent and treat relapse of 

tobacco use by stimulating the production of anti-nicotine antibodies, which bind to nicotine 

as it enters the blood stream, thus preventing it from reaching the brain. While bound to anti-

nicotine antibodies in the plasma, nicotine cannot cross the blood-brain barrier to elicit its 

rewarding effects (Kosten & Owens, 2005). Interference with nicotine entry into the brain 

may attenuate nicotine dependence and prevent the rewarding properties of tobacco 

smoking; however, this therapeutic approach does not reduce nicotine craving (Maurer & 

Bachmann, 2007). NicVAX entered clinical trials in 2005, but failed to show efficacy over 

placebo in two rounds of Phase III trials (clinicaltrials.gov, 2009b). Subsequent data analysis 

revealed that a subgroup of individuals with high titers had success in demonstrating 

smoking cessation.

In summary, there are several pharmacotherapeutic treatment options for nicotine 

dependence that capitalize on different mechanisms to reduce aspects of nicotine addiction - 

reward, craving, and withdrawal symptoms - that promote abstinence. However, many of 

these medications do not show high rates of long-term success with respect to tobacco 

smoking cessation. As alcohol use negatively impacts smoking cessation (Weinberger et al., 
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2013), it is important to assess the contribution of alcohol use to the high relapse rates found 

with these therapies. Nevertheless, new nicotine therapies are being developed, and likely 

would be improved by treating alcohol and nicotine use as one condition.

Alcohol: Mechanisms of Action

The mechanisms of alcohol’s actions are complex, as it has widespread pharmacologic 

targets and effects that change as alcohol use progresses from first-time or acute use to 

chronic use and abuse. As describing alcohol’s mechanism of action results in a lengthy 

review in and of itself, we highlight alcohol’s major effects briefly and direct the reader to 

more thorough reviews (Lawrence et al., 2008; Vengeliene et al., 2008; Dopico & Lovinger, 

2009; Cui et al., 2013; Tabakoff & Hoffman, 2013; Most et al., 2014; Zhou & Kreek, 2014). 

Acute alcohol in a non-tolerant individual alters receptor and ion channel function both 

directly and indirectly. Directly, acute alcohol alters the function of multiple ligand-gated 

ion channels including GABAA receptors (Grobin et al., 1998), NMDA receptors (Lovinger 

et al., 1989) serotonin receptors (Lovinger, 1991), glycine receptors (Murail et al., 2011), 

nAChRs (Gessa et al., 1985) and norepinephrine receptors (Vengeliene et al., 2008). Acute 

alcohol also inhibits dihydropyridine-sensitive L-type voltage-gated calcium channels (Mah 

et al., 2011) and opens G-protein activated inwardly rectifying K+ channels (Ericson et al., 

1998; Lewohl et al., 1999). Neuroadaptations occur as alcohol use transitions to abuse and 

dependence, which contributes to alcohol craving and the maintenance of alcohol use 

(Vengeliene et al., 2008; Cui et al., 2013; Zhou & Kreek, 2014). Chronic alcohol 

consumption alters neurotransmitter systems including GABAergic (Grobin et al., 1998), 

glutamatergic (Grant et al., 1990), serotonergic (Kelai et al., 2008), dopaminergic (Liljequist 

et al., 1977; Karkhanis et al., 2015), adenosine (Butler & Prendergast, 2012), and 

cholinergic systems (Nordberg et al., 1982). Neuropeptide systems are also altered and 

include opioids (Gianoulakis, 1996), endocannabinoids (Basavarajappa & Hungund, 1999; 

Pava & Woodward, 2012), corticotropin-releasing factor (Dave et al., 1986; Phillips et al., 

2015), and neuropeptide Y (Thiele et al., 1998). Additionally, L-type voltage-gated calcium 

channels are modulated (Mah et al., 2011); and neuroinflammatory pathways are activated 

(Lippai et al., 2013), among other neuroadaptations (see also the following in depth reviews: 

Lawrence et al., 2008; Vengeliene et al., 2008; Cui et al., 2013; Tabakoff & Hoffman, 2013; 

Most et al., 2014; Zhou & Kreek, 2014). Thus, alcohol alters behavior and neural 

functioning through numerous mechanisms. Due to its widespread pharmacologic targets, 

alcohol is considered a “promiscuous” drug.

Especially relevant to comorbid alcohol and nicotine use, is the role of nAChRs in alcohol 

use. As discussed in greater detail below, the cholinergic system is involved in alcohol 

dependence and is therefore a viable target for novel pharmacotherapies (Rahman & 

Prendergast, 2012; Rahman et al., 2014). As described in the nicotine section above, 

nAChRs are located in the mesocorticolimbic pathway, where they contribute to 

reinforcement through activation of dopaminergic neurons in the ventral tegmental area 

(VTA; Okamoto et al., 2006; Tsai et al., 2009). Through actions at nAChRs, alcohol 

increases dopamine overflow in the NAc (Ericson et al., 1998), increases extracellular 

acetylcholine levels in the VTA (Larsson et al., 2005), and stimulates VTA dopaminergic 

transmission in vitro (Brodie et al., 1999) and in vivo (Gessa et al., 1985). Additionally, the 
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nAChR antagonist, mecamylamine, inhibits dopamine overflow in the NAc and reduces 

voluntary alcohol consumption in rats (Ericson et al., 1998). Interestingly, overexpression of 

α5, α3 and β4 subunits in transgenic mice reduces alcohol intake in a 2-bottle choice 

procedure (Gallego et al., 2012), which suggests a reduction in the rewarding effect of 

alcohol. In any case, these data highlight the role of the cholinergic system in alcohol 

reinforcement and drinking maintenance, as well as the therapeutic potential of nAChR 

ligands. More about the interaction of alcohol and nicotine at this common site of action is 

discussed below.

Pharmacological Treatment of Alcohol Use Disorders

Currently, there are only four medications approved by the FDA for the treatment of alcohol 

dependence: the competitive opioid receptor antagonist, naltrexone, extended release 

naltrexone, the acetaldehyde dehydrogenase inhibitor, disulfiram, and acamprosate, a 

modulator of glutamatergic tone (see Table 2). The limited number of pharmacotherapeutic 

approaches to AUDs is due, in part, to the promiscuous action of alcohol in the nervous 

system coupled with the poorly defined disease state and/or the presence of multiple – and 

also poorly defined - subpopulations of alcoholics (Roman, 2014). Indeed these drugs act on 

multiple neurotransmitter systems implicated in reward and addiction (e.g., dopamine, 

glutamate, and GABA) but have shown only moderate efficacy in the treatment of AUDs. 

While total abstinence (i.e., relapse prevention) is typically the main objective for 

pharmacological treatment of AUDs, recent research efforts are aimed at putative 

pharmacotherapies that reduce rates of consumption in alcohol-dependent individuals. 

Below, we will discuss approved drugs then emerging targets in drug discovery for the 

treatment of AUDs according to their general mechanism of action.

Disulfiram—Discovered in the 1920s and in use since the late 1940s, disulfiram 

(Anatabuse®) blocks the metabolism of alcohol by inhibiting the liver enzyme, acetaldehyde 

dehydrogenase. Alcohol intake therefore results in the accumulation of the primary 

metabolite, acetaldehyde, producing the disulfiram-alcohol reaction characterized by severe 

nausea, vomiting, headache, tachycardia, sweating, and flushing (reviewed in Franck & 

Jayaram-Lindstrom, 2013). Theoretically, the production of these aversive symptoms upon 

ingestion of alcohol deters the individual from drinking. This approach can work to prevent 

relapse in individuals who are motivated to remain abstinent, but, if an individual is highly 

motivated to obtain alcohol, they simply can discontinue the medication. Thus, compliance 

rates are low. In addition, consuming ethanol while taking disulfiram results in the 

accumulation of acetaldehyde in the blood, which can have dangerous medical risks. In a 

well-known trial employing 605 alcohol-dependent male veterans in the United States, 

disulfiram (250mg) was shown to reduce the number of drinking days by 35 - 43% 

compared to a lower dose of disulfiram (1mg) and placebo, respectively, but only in those 

individuals (20%) who were compliant with the treatment (Fuller et al., 1986). Overall, there 

were no significant differences between the groups in abstinence or other outcome measures. 

Recent efforts with “supervised Disulfiram” therapy have increased abstinence days 

(Krampe et al., 2011). Unfortunately, many drinking-related outcomes are not different, 

statistically, from placebo, and long-term effects have not been evaluated (Jorgensen et al., 
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2011). In sum, the clinical utility of disulfiram remains limited (Franck & Jayaram-

Lindstrom, 2013).

Naltrexone—Naltrexone (Revia® or Depade®), as described above, is a non-specific 

opiate receptor antagonist with an active metabolite, 6β-naltrexol that was first approved for 

use in alcohol dependence in 1994. Naltrexone is currently marketed in both oral and 

extended release injectable (Vivitrol®) forms. Early studies on naltrexone reported moderate 

success with reduced craving, blunted alcohol-induced euphoria and lower relapse rates in 

naltrexone versus controls (e.g. O’Brien et al., 1996). Similar to other therapeutics, higher 

efficacy was found in fully compliant patients. Subsequent studies have show that it is most 

effective in reducing the extent of “heavy” drinking (Pettinati et al., 2006), rather than in 

maintenance of abstinence (Garbutt, 2010). Importantly, there may be sex differences in 

naltrexone’s efficacy (Garbutt et al., 2005), again highlighting that no single drug has been 

widely successful in all individuals with an AUD. As previously reviewed, the effect size 

has been only modest, 0.15 – 0.2, which has impacted its use as a therapeutic (Garbutt, 

2010). Furthermore, the clinical utility of oral naltrexone is limited as indicated by the black 

box warning for the risk of liver damage (Franck & Jayaram-Lindstrom, 2013). Liver 

damage is a significant concern as long-term chronic alcoholics often have liver problems. 

The extended release naltrexone formulation lowers the risk of additional hepatotoxicity by 

bypassing first pass metabolism in the liver.

Acamprosate—Acamprosate (N-acetylhomotaurine) was first approved for use in the 

treatment of alcohol dependence in Europe in 1989, after significant efficacy was 

demonstrated for promoting abstinence in a large clinical trial (reviewed in Kranzler & 

Gage, 2008). In 2004, the FDA approved Campral® for this same indication in the U.S. 

Although acamprosate’s mechanism of action is not particularly well understood, its 

presumptive mechanism(s) of action are enhancement of GABAA receptor function 

(Williams, 2005) and indirect modulation of NMDA receptors via antagonist actions at 

group I metabotropic glutamate receptors (Harris et al., 2002). Both of the later effects are 

theorized to attenuate the hyperglutamtergic state that occurs during alcohol withdrawal. 

Various meta-analyses, based mostly on European trials, report moderate efficacy of 

acamprosate. For example, one meta-analysis of 17 trials that encompassed over 4000 

alcohol-dependent individuals confirmed that acamprosate increased 6-month abstinence 

rates by around 50% (from 23.4% to 36.1%; Mann et al., 2004). However, two large clinical 

trials completed in the United States failed to demonstrate significant efficacy of 

acamprosate (Anton et al., 2006; Mason et al., 2006). The reason for these disparate results 

is an active debate, focused on the differences between European and American studies in 

patient characteristics and abstinence requirements prior to study inclusion (see Franck & 

Jayaram-Lindstrom, 2013; Zindel & Kranzler, 2014 for discussion). Patient characteristics 

and/or subpopulations could be the critical reason for the difference in efficacy, as 

acamprosate may provide a particular benefit in promoting abstinence in highly motivated 

and abstinent drinkers (Maisel et al., 2013) or in females with a late age-of-onset of drinking 

and negative family history (Verheul et al., 2005). Once again, particular subgroups may 

respond better to one pharmacotherapy versus another and no single treatment has proven 

effective for producing abstinence in all drinkers.
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Anticonvulsants/GABAeric agents—Recent research efforts have been focused on 

assessing the efficacy of anticonvulsant medications for the treatment of AUDs. Several 

studies have examined topiramate, an anticonvulsant with several mechanisms of action 

including facilitation of GABAergic neurotransmission, inhibition of L-type calcium 

channels, and antagonism of the excitatory AMPA and kainate glutamate receptors 

(Kuzniecky et al., 1998; Matsumura & Nakaki, 2014). A double-blind, randomized clinical 

trial demonstrates that oral administration of topiramate reduced the number of ‘heavy 

drinking days’ in alcohol-dependent individuals (Johnson et al., 2007). These findings are 

consistent with others showing efficacy of topiramate in the treatment of alcohol 

dependence (Johnson et al., 2003; Johnson et al., 2004; Ma et al., 2006; Fernandez Miranda 

et al., 2007; Baltieri et al., 2008; Rubio et al., 2009). Topiramate is more efficacious in 

promoting abstinence than acamprosate (Narayana et al., 2008), and as good or better than 

naltrexone for treating alcohol dependence (Belcheva et al., 1991; Florez et al., 2008; 2011). 

In contrast, rates of abstinence were higher for disulfiram (Koppaka et al., 2012) than for 

topiramate in a 9-month randomized trial (De Sousa et al., 2008).

Gabapentin, an inhibitor of voltage-gated calcium channels (Sills, 2006), is another 

anticonvulsant medication assessed for treatment of alcohol dependence. Results from a 

recent randomized clinical trial indicate that oral administration of gabapentin dose-

dependently increases rates of abstinence in recently detoxified alcohol-dependent 

individuals (Mason et al., 2014). In contrast, findings from a 4-week randomized trial 

indicate that gabapentin did not promote abstinence in alcohol-dependent males (Furieri & 

Nakamura-Palacios, 2007). These results are consistent with another trial that suggested that 

higher doses of gabapentin are not effective in increasing rates of abstinence (Anton et al., 

2009). Zonisamide, a sodium channel blocker (Leppik, 2004), resulted in significantly fewer 

self-reports of craving in a 12-week trial (Rubio et al., 2010), but did not promote abstinence 

in another 12-week trial (Arias et al., 2010). Other anticonvulsant medications, such as 

oxcarbazepine, a calcium channel blocker (Croissant et al., 2006; Stefani et al., 1995), and 

tiagabine, an inhibitor of the GABA transporter, GAT-1 (Meldrum & Chapman, 1999; 

Paparrigopoulos et al., 2011) have shown limited therapeutic potential for the treatment of 

alcohol dependence.

Baclofen, a GABAB receptor agonist used to treat skeletal muscle spasms (Browning & 

Travagli, 2001), has been assessed for promoting abstinence in alcohol-dependent 

individuals, spurred by the popular press surrounding a book describing one doctor’s 

detailed self-report of the efficacy of high dose baclofen for alcoholism (Ameisen, 2005). 

One randomized, double-blind 12-week trial demonstrated that baclofen administration 

resulted in significant rates of abstinence compared to placebo. These findings were 

consistent with prior work indicating that baclofen administration is efficacious in 

promoting abstinence in dependent individuals (Addolorato et al., 2002; Addolorato et al., 

2011). However, other randomized trials suggest that baclofen did not promote abstinence at 

12 months (Garbutt et al., 2010). A recent meta-analysis found only weak support for its 

abstinence promoting effects (Lesouef et al., 2014). In sum, these studies collectively show 

that the relationship between anticonvulsants and abstinence remains unclear in regards to 

treatment of AUDs.
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Serotonergic Agents—Selective serotonin reuptake inhibitors (SSRIs) also have been 

assessed as potential candidates for treatment of AUDs as comorbidity rates of alcohol 

dependence and mood disorders are high. Results from a 14-week double-blind trial indicate 

that the SSRI, sertraline (did not affect percentage of “drinking days” but did increase 

relapse rates (Nutt et al., 1999; Pettinati et al., 2001). In one double blind, randomized trial, 

administration of sertraline produced significant decreases in alcohol consumption in late-

onset alcohol-dependent individuals, but significant increases in consumption were observed 

in early-onset alcoholics treated with sertraline (Kranzler et al., 2011). Further, sertraline 

administration produced significant decreases in ‘heavy drinking days’ in late-onset alcohol-

dependent individuals at 3-months post treatment (Kranzler et al., 2012). In contrast, 

administration of the SSRI, fluvoxamine did not produce significant increases in abstinence 

rates as compared to placebo in early onset alcohol-dependent individuals (Chick et al., 

2004; Stahl, 1998). Similarly, escitalopram, a newer SSRI, was not effective in relapse 

prevention when administered alone, but was shown to be effective when administered in 

combination with other drugs, such as gabapentin and naltrexone (Braestrup & Sanchez, 

2004; Stella et al., 2008).

Ondansetron, a serotonin 5-HT3 receptor antagonist, α7 nAChR antagonist and antiemetic, 

produced significant decreases in alcohol consumption in early onset alcohol-dependent 

individuals compared to late-onset alcoholics in an open-label 8-week study (Arcioni et al., 

2002; Kranzler et al., 2003). These findings were consistent with others who found that 

ondansetron dose-dependently promoted abstinence in early-onset patients, but not in late-

onset patients (Roache et al., 2008). In a randomized 11-week trial, ondansetron promoted 

abstinence in individuals with functional polymorphisms of the serotonin transporter gene 

(Johnson et al., 2011). Also, metadoxine, a 5HT2B antagonist (Daniely et al., 2011) was 

found to promote abstinence in alcohol-dependent individuals (Guerrini et al., 2006). 

Collectively, these findings suggest that there are individual differences (e.g., early versus 

late onset and polymorphisms in serotonin transporter gene) that underlie the differing 

efficacies of serotonergic agents for the treatment of AUDs. Drug combination therapy also 

should be considered when assessing effects of serotonergic agents on abstinence.

Dopaminergic Modulators—Antipsychotic medications have been assessed previously 

as potential candidates for the treatment of AUDs. Aripiprazole, an atypical antipsychotic 

medication, partial agonist at D2 and 5HT1A receptors, and 5HT2A antagonist, was 

assessed in a double blind clinical trial for treatment of alcohol dependence (Anton et al., 

2008; Potkin et al., 2003). Aripiprazole did not promote abstinence in alcohol-dependent 

individuals compared to placebo. Flupenthixol, an antagonist at D2 and 5HT2A receptors, 

resulted in significant increases in relapse rates compared to placebo at both 6 and 12 

months (Reimold et al., 2007; Wiesbeck et al., 2001; Wiesbeck et al., 2003). Consistent with 

these results, other studies have shown that antipsychotics, such as olanzapine, a D2 and 

5HT2A receptor antagonist (Bymaster et al., 1996; Guardia et al., 2004), tiapride, a selective 

D2 antagonist (Bender et al., 2007; Navarro & Manzaneque, 1997), lisuride, a dopamine 

agonist (Rinne, 1989; Schmidt et al., 2002), and amisulpride, an antagonist at D2 and D3 

receptors (Marra et al., 2002; Perrault et al., 1997) do not effectively promote abstinence in 
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alcohol-dependent individuals. These findings suggest that administration of dopaminergic 

agents alone is not efficacious in the treatment of AUDs.

Opioid Receptor Antagonists—Nalmefene is a kappa opioid receptor antagonist 

derived from naloxone (Faden et al., 1988) and currently approved in European countries for 

the treatment of alcohol dependence in patients who do not seek abstinence as a realistic 

goal. Results from large-scale randomized clinical trials indicate that as-needed oral 

administration of nalmefene, in combination with cognitive therapy, significantly reduces 

alcohol consumption in detoxified alcohol-dependent individuals (Gual et al., 2013; Mann et 

al., 2013; van den Brink et al., 2013). Future studies are needed to compare the efficacy of 

nalmefene to naltrexone for the treatment of AUDs.

In summary, these clinical studies demonstrate that several novel putative 

pharmacotherapies may offer hope to reduce rates of alcohol consumption in individuals 

with an AUD. Furthermore, an area of opportunity that has emerged in medications 

development is in human genetics, i.e. pharmacogenetics, which has led to the identification 

of specific genotypes that respond best (or worse) to particular pharmacotherapies (Zindel & 

Kranzler, 2014). Utilizing pharmacogenetic approaches, or personalized/precision medicine, 

along with defining successful treatment as a reduction in intake (and not what may be an 

unrealistic goal of abstinence), should broaden the options available for the treatment of 

AUDs. However, much remains to be learned and there are no drugs approved for cessation 

of alcohol and nicotine intake. As is discussed in the next section, nicotine changes many 

aspects of the addicted individual, from neurobiology to treatment response.

Alcohol and Nicotine: Mechanisms of interaction

The high rate of comorbid alcohol and nicotine dependence suggests the likelihood of a 

pharmacological interaction between alcohol and nicotine in the central nervous system. 

This interaction is especially clear in human studies where drinking alcohol increases 

various measures related to smoking, including amount of cigarettes smoked (Mitchell et al., 

1995), ratings of how pleasurable smoking is (Rose et al., 2004; Harrison et al., 2009), and 

craving to smoke (King & Epstein, 2005; for review see McKee & Weinberger, 2013). 

Conversely, smoking appears to increase alcohol drinking, most likely through enhancing 

the reinforcing effects of alcohol while reducing its perceived sedative effects (Batel et al., 

1995; Perkins et al., 1995; McKee et al., 2004; 2007; 2010; Harrison & McKee, 2008; 

McKee & Weinberger, 2013). Animal models have provided compelling evidence of this 

interaction in humans as nicotine enhances alcohol consumption in a variety of models 

(Blomqvist et al., 1993; Smith et al., 1999; Le et al., 2000; 2003; 2014; Doyon et al., 2013a; 

Sharma et al., 2014). Indeed, nicotine may drive the transition to compulsive drinking (Leao 

et al., 2015). However, the neurobiological and/or pharmacological mechanism behind this 

interaction is not yet clear, but likely arises from neural substrates that are common to both 

drugs. Although alcohol and nicotine have pharmacological actions in similar receptor 

systems, the effects of concurrent administration are not always additive, and in some cases 

are opposing (Lajtha & Sershen, 2010). This section of the review will describe the little that 

is known about the effects of concurrent alcohol and nicotine administration on major 

neurotransmitter and signaling systems implicated in the development of alcohol and 
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substance use disorders. Currently approved and experimental therapeutic agents that target 

these particular systems are discussed within each section to help illustrate the 

neurobiological mechanisms underlying the interaction of alcohol and nicotine.

Nicotinic Acetylcholine Receptors—Much attention has focused on one common site 

of action of both alcohol and nicotine, nAChRs (Larsson & Engel, 2004; Drews & Zimmer, 

2010; Cui et al., 2012; Doyon et al., 2013b). A large body of evidence, derived from human 

and animal subjects, suggests that pharmacological blockade of nAChRs reduces alcohol 

seeking and alcohol self-administration (Rahman & Prendergast, 2012). For example, 

administration of the non-selective nAChR antagonist, mecamylamine, reduces alcohol 

drinking in a host of animal models, as well as reduces the effects of alcohol on NAc 

dopamine release (Ericson et al., 1998; Le et al., 2000; Soderpalm et al., 2000; Farook et al., 

2009). As detailed above, however, results with mecamylamine in human smokers, have 

been mixed. Considering its adverse, peripheral effects on autonomic ganglia, the use of 

mecamylamine for the cessation of alcohol drinking is limited (Rahman & Prendergast, 

2012; Rahman et al., 2014).

Although the effect of alcohol on nAChRs appears to be nicotinic subtype dependent and 

region specific (Yoshida et al., 1982; Booker & Collins, 1997; Jerlhag et al., 2006; see also 

Larsson & Engel, 2004; Doyon et al., 2013b for review), the alcohol and nicotine addiction 

literature converge on α4β2-containing nAChRs, which are expressed on cell bodies of 

dopaminergic neurons in the VTA and on axon terminals in the striatum. Activation of these 

receptors elicits extracellular dopamine release in the NAc, which is believed to produce the 

rewarding effects of both drugs (Wonnacott, 1997; Soderpalm et al., 2000; Zoli et al., 2002; 

Champtiaux et al., 2003; Steensland et al., 2007; Chatterjee & Bartlett, 2010). Although the 

high affinity nAChRs, in particular, are implicated in mediating the rewarding effects of 

alcohol, there may well be roles for both high and low affinity nAChRs in mediating the 

rewarding effects of alcohol. Specifically, neuronal nAChRs containing α3/β2*, β3*, and/or 

α6* subunits also appear to mediate rewarding effects of alcohol (Kuzmin et al., 2009). 

Recent work implicates a role for α6-containing nAChRs for both drugs (Schilaty et al., 

2014), though their interaction may be indirect, through amplifying AMPA receptor function 

in the VTA (Engle et al., 2015). Although alcohol enhances nAChR-mediated currents in 

vitro, an effect not blocked by nAChR α7 antagonist α-bungarotoxin (Aistrup et al., 1999), 

mice lacking the α7 subunit consumed less alcohol than did wild-type mice (Kamens et al., 

2010). Thus, the homomeric α7 receptors have a role in alcohol and nicotine action. 

Nicotine may mitigate alcohol-induced neurotoxicity in adults, likely through α7-mediated 

effects on inflammation and/or activation of the cholinergic anti-inflammatory pathway 

(Han, 2014).

Whereas dihydro-β-erythroidine, a selective α4β2 antagonist, failed to reduce alcohol 

drinking in male mice (Larsson et al., 2002), there has been success in both alcohol and 

nicotine drinking cessation with nAChR partial agonists. Cytisine, a partial agonist at β2-

containing nAChRs (but also a full agonist at α3β4 and α7*; Carbonnelle et al., 2003), 

reduced alcohol intake in a variety of rodent models (e.g. Bell et al., 2009; Sajja & Rahman, 

2011, 2013a;b Sotomayor-Zarate et al., 2013). Despite the success of cytisine in animal 
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models and its approval for smoking cessation in Europe, its limited commercial appeal 

decreases the likelihood of its broad use.

The cytisine derivative and α4β2 nAChR partial agonist, varenicline however, shows some 

promise. Varenicline reduced voluntary alcohol intake in both animal models and human 

subjects (Steensland et al., 2007; McKee et al., 2009; 2013; Hendrickson et al., 2010; 

Kamens et al., 2010; Bito-Onon et al., 2011; Chatterjee et al, 2011; Saija and Rahman, 2013, 

Wouda et al., 2011; Mitchell et al., 2012; Litten et al, 2013; Sotomayor-Zarate et al., 2013; 

Kaminski and Weerts, 2014; de Bejczy et al, 2015; see also Chatterjee & Bartlett, 2010; 

Nocente et al., 2013; and Erwin & Slaton, 2014 for review). Preclinical studies demonstrated 

that the α4-containing receptor is necessary and sufficient for varenicline to decrease 

alcohol consumption (Hendrickson et al., 2011), whereas other nAChR subtypes do not 

appear to play as critical of a role (Hendrickson et al., 2010; Kamens et al., 2010; Liu et al., 

2013; Santos et al., 2012). One of the first studies to evaluate varenicline’s effects on 

alcohol intake and alcohol craving was a double-blind, placebo-controlled, human 

laboratory study employing non-alcohol dependent, heavy drinking smokers (n=20). 

Varenicline reduced alcohol self- administration (voluntary alcohol intake during a 2 hr 

period) and reduced alcohol craving and its subjective reinforcing effects (McKee et al 

2009). In a small trial employing non-dependent, heavy drinking smokers treated with 

varenicline for 4 weeks, a reduction in alcohol craving and a non-significant reduction in the 

number of heavy drinking days were reported; however, no difference in the number of 

drinks consumed was found with varenicline (Fucito et al., 2011). In a randomized, double-

blind 16 week trial, varenicline reduced alcohol consumption in non-treatment seeking, also 

non-alcohol dependent, heavy-drinking smokers; although the effect on drinking was 

independent of the effect on smoking (Mitchell et al., 2012). Using an epidemiological 

sample of smokers surveyed by phone from four countries, varenicline was associated with a 

reduced likelihood of drinking alcohol, which was also independent of smoking cessation 

(McKee et al., 2013). In a multi-site double-blind clinical trial evaluating 13 weeks of 

varenicline in a larger group (n=400) of subjects, who importantly were alcohol dependent 

and were stratified to treatment condition on baseline smoking status upon randomization, 

varenicline reduced both alcohol consumption and alcohol craving, which was independent 

of smoking status (Litten et al., 2013). A recent secondary analysis of the data from the 

Litten et al (2013) data revealed that varenicline had greater efficacy to decrease alcohol 

consumption in subjects who reduced their smoking and in those subjects who had “less 

severe” alcohol-dependence (Falk et al., 2015). Some recent small but placebo-controlled 

clinical trials have found that varenicline does not always reduce alcohol drinking or 

smoking, though it appears to effectively reduce alcohol craving (Plebani et al., 2013; 

Schacht et al., 2014). Importantly, in the subgroup of baseline smokers in the Plebani study, 

varenicline decreased self-reported tobacco smoking and had a lower rate of heaving 

drinking (Plebani et al., 2013). The reduction in alcohol craving may be the result of 

varenicline reducing the rewarding properties of alcohol or due to it’s enhancing the 

aversive effects of alcohol. These studies in particular, suggest that varenicline might be 

most effective among treatment-seeking individuals who are motivated to decrease alcohol 

and/or nicotine consumption. Therefore, like the majority of treatments for either substance 

alone, no single drug has been widely successful in alcohol or nicotine cessation.
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There are several limitations that should be taken into account in the interpretation of these 

clinical studies. First, the number of subjects in most studies was relatively small and the 

length of varenicline treatment varied from 1 to 16 weeks. Further, only one dose of 

varenicline was used when evaluating efficacy as a treatment for alcohol dependence, i.e., 

the dose used for tobacco cessation. Higher varenicline doses or longer treatment periods 

may be required to reduce alcohol intake than to reduce nicotine intake since varenicline 

acts directly at nicotinic receptors, whereas alcohol only modulates nicotinic receptor 

function. Also, the efficacy of varenicline may be dependent on the amount of alcohol 

consumed, which is difficult to determine considering the categorization of the subjects as 

not heavy drinkers, heavy drinkers or very heavy drinkers. Also, only two of the studies 

reported data for alcohol dependent non-smokers, as most of the subjects in these studies 

had concurrent nicotine dependence, as has been reported in the literature. Nevertheless, the 

majority of the studies indicate that the effects of varenicline were independent of tobacco 

smoking, and the most consistent finding was a varenicline-induced reduction in alcohol 

craving.

Dopamine signaling—Intertwined in the nAChR story, is another major neural substrate 

common to both drugs and their abuse/addiction, the mesolimbic dopamine reward system 

(Wise and Bozarth, 1987; Wise and Rompre, 1989; Di Chiara, 2000; Gonzales et al., 2004; 

Koob and Vokow, 2010; De Biasi and Dani, 2011). The mesolimbic dopamine system 

consists of dopamine projections from the VTA to limbic structures including NAc, 

amygdala and prefrontal cortex. The rewarding and reinforcing properties of nicotine and 

alcohol are associated with an increase in dopamine release in NAc (Di Chiara and 

Imperato, 1986, 1988; Benwell and Balfour, 1992; Samson et al., 1992; Diana et al, 1993; 

Weiss et al., 1993). A number of interconnected brain circuits regulate VTA activity and 

function and provide potential targets for both nicotine and alcohol effects that underlie their 

complex interaction (Fields et al., 2007; Hendrikson et al., 2013). For example, excitatory 

cholinergic input to the VTA from the pedunculopontine tegmental and laterodorsal 

tegmental areas have an important modulatory role on the VTA activity (Larsson and Engel, 

2004; Laviolette and van der Kooy, 2004), and are likely involved in the associations 

between nicotine and alcohol use. A number of nicotinic receptor subtypes are expressed on 

VTA dopamine neurons including α4β2*, α4α5β2*, α4α6β2*, α6β2* and α7, and mediate 

dopamine release (Picciotto et al, 1998; Champtiaux et al., 2002; Grady et al, 2007; Gotti et 

al., 2010). Excitatory afferents to the VTA also arise from the dorsal raphe serotonergic 

neurons (Herve et al., 1987) and inhibitory afferents come from GABAergic neurons in the 

rostromedial tegmental nucleus, ventral pallidum, LDTg, and NAc (Geisler and Zahm, 2005; 

Xia et al., 2011; Jhou et al., 2009).

The interaction of nicotine and alcohol on the complex regulation of VTA function has only 

recently been evaluated. Through different mechanisms, nicotine and alcohol each increase 

the firing rate and phasic bursting activity of VTA dopamine neurons projecting to NAc 

facilitating dopamine release (Gessa et al., 1985; Mameli-Engvall et al., 2006; Schilstrom et 

al, 2003; Foddai et al, 2004; Exley et al, 2011). Nicotine directly activates nicotinic 

receptors in VTA (Mameli-Engvall et al., 2006; Exley et al, 2011) and activates cholinergic 

inputs from LDTg and PPTg (Omelchenko and Sesack, 2005; Floresco et al, 2003; Lodge 
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and Grace, 2006; Maskos, 2008), as well as a number of other afferents that converge on the 

VTA dopamine system (Doyon et al., 2013a,b). Alcohol acts less specifically relative to 

nicotine, but also directly and indirectly activates VTA dopamine neurons (Brodie et al., 

1990, 1999; Okamoto et al, 2006; Hendrickson et al., 2013). Nicotinic receptors have been 

suggested to be targets of alcohol potentiation as a result of stabilization of the open channel 

state of the receptor (Wu et al., 1994; Nagata et al., 1996; Forman and Zhou, 1999; Zuo et 

al., 2004). Nicotine and alcohol each increase dopamine release in NAc in microdialysis 

studies (Di Chiara and Imperato, 1986, 1988; Ericson et al, 1998; Doyon et al, 2003; 

Larsson et al., 2005). Interestingly, alcohol-induced NAc dopamine release involves 

nicotinic receptors in VTA and locally in NAc (Blomqvist et al, 1993; Ericson et al, 1998; 

Le et al., 2000; Soderpalm et al., 2000; Farook et al, 2009a; Hendrickson et al., 2013). 

Alcohol-induced NAc dopamine release is blocked by mecamylamine, a nonselective 

nicotinic receptor antagonist in VTA, but not NAc (Blomqvist et al, 1993, 1997; Ericson et 

al., 2008; Larsson and Engel, 2004; Larsson et al, 2005), alpha-conotoxin MII, a selective 

antagonist for alpha6-containing nicotinic receptors (Larsson et al, 2004; Kuzmin et al., 

2009), and varenicline, an alpha4beta2 partial agonist (Ericson et al., 2009).

Although nicotine and alcohol reward and abuse clearly involve the mesolimbic dopamine 

system, mechanistic information has been obtained only recently to help explain the 

complex and multifaceted interactions between nicotine and alcohol on the mesolimbic 

dopamine system. The timing and order of presentation of nicotine and alcohol has a 

profound influence on the overall outcome. That is, simultaneous co-administration of 

nicotine and alcohol produces an additive increase in NAc dopamine release relative to the 

response of each drug (Tizabi et al., 2002; Doyon et al., 2013a,b). Perhaps surprisingly, 

pretreatment with nicotine diminishes the sensitivity of the mesolimbic dopamine system to 

alcohol (Lopez-Moreno et al., 2008; Doyon et al., 2013a,b; Ostroumov et al., 2015). An 

acute 3, 15 or 40 hr pretreatment with nicotine (0.4 mg/kg, ip) significantly blunted the 

alcohol (1.5 g/kg, iv)-induced increase in dopamine release in rat NAc (Doyon et al., 

2013a,b). This prolonged inhibitory effect of nicotine on alcohol-induced dopamine release 

was blocked by dihydroxy-beta-erythroidine (DHBE) pretreatment, but not by 

methyllycaconitine (MLA), indicating specific involvement of β2-containing, but not α7-

containing nicotinic receptors. Importantly, pretreatment with nicotine did not inhibit 

nicotine-induced dopamine release, suggesting that the nicotine-induced attenuation of the 

alcohol effects on dopamine release could not be explained simply by changes in nicotinic 

receptor function. Rather, the prolonged (15–40 hr) effect of acute nicotine pretreatment on 

dopamine release induced by alcohol was suggested to be due to an enhancement of 

GABAergic inhibition of dopamine neuron firing in VTA and required stress hormone 

signaling (glucocorticoid and/or progesterone) specifically in the VTA (Doyon et al., 

2013a,b; Ostroumov et al., 2015). The observation that acute pretreatment with nicotine 

blunts the mesolimbic dopaminergic response to alcohol seems counter to the greater 

alcohol intake in smokers. However, as suggested previously (Martinez et al., 2005), a 

reduction in dopamine system functioning likely leads to compensatory increases in alcohol 

intake to augment dopamine release and further promote reward. These findings are 

certainly intriguing. Important follow-up questions to this research include determining the 

nicotine dose relationship, the impact of chronic intermittent administration of nicotine on 
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the effect of alcohol on the mesolimbic dopamine system, the duration and dose (binge) of 

alcohol presentation and questions regarding experimenter administered versus self-

administered drug.

GABAergic signaling—Given that GABAergic neurotransmission has received extensive 

attention regarding alcohol’s intoxicating effects; it follows that this neurotransmitter system 

would be implicated in concurrent nicotine and alcohol abuse. GABA is the primary 

inhibitory neurotransmitter in the brain and regulates the mesolimbic dopamine system 

(Kalivas, 1993). Alcohol-induced adaptations of the ionotropic GABAA subtype of receptors 

(Kumar et al., 2009) are ultimately responsible for alcohol tolerance (Liang et al., 2007) and 

physical dependence (Liang et al., 2004). Less research has been done on metabotropic 

GABAB receptors, however positive allosteric modulators of GABAB receptors have 

recently become a target for drug development in the treatment of AUDs and other drugs of 

abuse (Agabio et al., 2012; Phillips & Reed, 2014). As discussed above, concurrent alcohol 

and nicotine use modulates GABAergic signaling within the mesolimbic dopamine system. 

Alone, both drugs produce dose dependent increases in NAc dopamine levels and when 

applied concurrently, they additively increase dopamine release at low, but not high, doses 

(Doyon et al., 2013a; Tizabi et al., 2002). However, GABAergic interneurons in the NAc 

express nAChR subtypes that are desensitized by nicotine (Pidoplichko et al., 2004). The net 

effect is that nicotine pretreatment and receptor desensitization decreases alcohol induced 

dopamine release in the NAc by enhancing GABAergic transmission in the VTA (Doyon et 

al., 2013a). Additionally, nAChRs modulation reduces GABAAR sensitivity to GABAAR 

agonists, including alcohol (Lof et al., 2007). Behaviorally, this could lead to decreased 

sedative and increased activating properties of alcohol (Lof et al., 2007), which is consistent 

with reports from human studies (Perkins et al., 1995).

Additionally, nAChRs are important modulators of GABAergic and glutamatergic 

neurotransmission in the hippocampus. Specifically, α7 and α4β2 nAChRs are highly 

concentrated on inhibitory hippocampal interneurons and mediate nicotine potentiation of 

GABAergic transmission within the hippocampus (Proctor et al, 2011). Therefore, nicotine 

indirectly increases GABAergic neurotransmission through the α7 and α4β2 nAChRs, and 

alcohol potentiates this effect (Proctor et al., 2011).

The GABAA receptor complex is also directly affected by simultaneous nicotine and alcohol 

addiction and withdrawal. For instance, tobacco smokers had a decreased availability of 

benzodiazepine sensitive GABAA receptors compared to non-smokers during recovery from 

alcohol dependence (Staley et al., 2005). Given that the upregulation of benzodiazepine 

sensitive GABAA receptors correlates with alcohol withdrawal severity, the nicotine-

induced suppression of receptor availability found in tobacco smokers may attenuate some 

of the symptoms of alcohol withdrawal (Cosgrove et al., 2011). Although nicotine may 

reduce some of the GABA-mediated symptoms of alcohol withdrawal, as mentioned earlier, 

smoking reduces overall alcohol abstinence rates (McKee & Weinberger, 2013). Indeed, 

during protracted withdrawal, GABAA receptor upregulation remains only in alcohol 

dependent individuals who smoke, but return to normal in alcohol dependent non-smokers, 

and the level of GABAA receptor upregulation correlates with craving for alcohol and 

cigarettes (Cosgrove et al., 2014). Interestingly, in non-human primates dependent on 
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nicotine instead of cigarettes, GABAA receptors return to baseline after one month of 

abstinence in both nicotine and control groups during alcohol abstinence (Cosgrove et al., 

2014). These results indicate that it may be the constituents in tobacco smoke, rather than 

nicotine, which prevent the normalization of GABAergic signaling. Nevertheless, tobacco 

smoking has a powerful modulatory effect on alcohol-induced GABAA receptor changes 

during alcohol withdrawal and abstinence.

Glutamatergic signaling—Excitatory neurotransmission is a common target for alcohol 

and nicotine (for review see Prendergast & Mullholland, 2012) and modulatory interactions 

between alcohol and nicotine are mediated, in part, via modulation of glutamatergic 

neurotransmission. Glutamatergic systems include ionotropic (N-methyl-D-aspartate 

[NMDA], α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA], and kainate 

receptors) and metabotropic glutamate (mGlu) receptors (e.g., group 1 mGlu-family 

proteins). Overstimulation of these amino acid receptor complexes is known to produce cell 

death following exposure to ethanol and other excitotoxins (Olney et al., 1986). The NMDA 

receptor is a likely candidate for producing these excitotoxic effects in vitro; through an 

excessive influx of extracellular calcium and the subsequent activation of phospholipases, 

endonucleases, and proteases (Choi, 1992). Indeed, chronic alcohol exposure increases 

calcium influx through NMDA receptors, confers the sensitivity of NMDA receptors 

(Lovinger et al., 1993), increases expression of NMDA-receptor complexes (Floyd et al., 

2003), and increases aggregation of NMDA receptors at the synapse (Carpenter-Hyland et 

al., 2004). Neuroadaptive effects of NMDA receptors and group 1 mGlu-family protein 

following binge-like alcohol exposure contributes functionally to cytotoxicity of 

hippocampal cell layers neurotoxic effects of alcohol in vitro and in vivo (Reynolds et al., 

2015a; b).

Recent research efforts have delineated the influence of glutamatergic signaling on the 

interactive effects of alcohol and nicotine. For example, co-administration of alcohol and 

nicotine for 10 consecutive weeks produced long-lasting increases in basal extracellular 

glutamate within the medial prefrontal cortex whereas neither alcohol nor nicotine produced 

these effects alone (Deehan et al., 2015). Leão et al. (2015) suggest a role for glutamatergic 

pyramidal neurons in the dorsomedial prefrontal cortex in acceleration of compulsive 

alcohol drinking in alcohol-dependent rats following chronic nicotine administration (8 

mg/kg/day). These synergistic effects of alcohol and nicotine on glutamate release likely 

reflect neuroadaptative changes in glutamate receptor function. For example, Ford et al. 

(2012) demonstrated that NMDA receptor activity mediates the discriminative-stimulus 

effects of alcohol and nicotine co-administration in inbred C57BL/6J trained to discriminate 

alcohol-nicotine mixtures (0.8 mg/kg nicotine+0.5–2.0 g/kg alcohol). In vitro, the combined 

application of alcohol (5 mM) and nicotine (100 nM) increases AMPA receptor function in 

VTA dopaminergic neurons whereas neither alcohol nor nicotine altered the function of 

these receptors alone (Engle et al., 2015). Other prior studies employing 

electrophysiological techniques demonstrate that alcohol application (80 mM) attenuates 

nicotine-induced increase in hippocampal NMDA and AMPA excitatory postsynaptic 

currents (EPSPs) (Proctor et al., 2011). In addition, microarray and western blot analyses 

reveal that tobacco smoking produced marked increases in vesicular glutamate transporters 
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SLC17A6 and SLC17A7 in the human VTA whereas co-exposure to alcohol reversed these 

effects (Flatscher-Bader et al., 2008). Collectively, these studies demonstrate that alcohol 

and nicotine interactions produce neuroadaptative changes in glutamatergic 

neurotransmission and signaling that likely contribute to their abuse potential via alterations 

in synaptic plasticity.

Endogenous opioids—The endogenous opioid systems in brain are widely distributed 

and consist of at least three major receptor subtypes, i.e., μ, δ and κ. Each of these subtypes 

has preference for endogenous opioid, with μ being selective for β-endorphin, δ being 

selective for met- and leu-enkephalin and κ being selective for the dynorphins A and B. The 

strongest evidence for an involvement of endogenous opioid peptides in concurrent alcohol 

and nicotine use comes from clinical trials using naltrexone (Revia® or Depade®), which is 

a non-specific opioid receptor antagonist with an active metabolite 6β-naltrexol. Although 

not specifically evaluated as a potential therapeutic for comorbid alcohol and nicotine 

dependence, it has been tested against each substance separately as discussed above. While 

naltrexone does not differentiate among μ, δ and κ opioid receptors, κ receptors may play a 

prominent role based on work with nalmefene. Nalmefene is a κ opioid receptor antagonist 

derived from naloxone (Faden et al., 1988) and results from large-scale randomized clinical 

trials in Europe indicate that oral administration of nalmefene, in combination with cognitive 

therapy, significantly reduces alcohol consumption in detoxified alcohol-dependent 

individuals as discussed above (Mann et al., 2013; van den Brink et al., 2013). Despite these 

findings, there is little work specifically assessing the role of opioid peptides on concurrent 

alcohol and nicotine dependence. One preclinical study assessed the effects of naltrexone 

using a multiple schedule of reinforcement in which rats received either alcohol or nicotine 

in alternating 5-min intervals each day (Le et al., 2014). Naltrexone reduced alcohol intake, 

but not nicotine intake. In contrast, other preclinical studies examining antinociception have 

shown an additive effect of alcohol and nicotine that is reduced by naloxone (Campbell et 

al., 2006), as well as by μ, δ and κ selective antagonists (Campbell et al., 2007). Together, 

these findings suggest a dissociation between the role of opioid peptides in regulation of 

combined alcohol and nicotine reward from the regulation of combined alcohol and nicotine 

antinociceptive activity, which is likely due to differences in limbic and brainstem systems 

controlling these behaviors.

Serotonin—Serotonin systems are known to play a prominent role in emotional 

processing, aggressivity and other mood-based traits (Lin et al., 2014; Cools et al., 2011). 

From serotonin-synthesizing cell bodies in the midbrain raphe system, serotonin neurons 

project rostrally to innervate various limbic and cortical structures. The serotonin pathway 

emanating from the dorsal raphe consists of primarily fine axons that are highly susceptible 

to neurotoxic damage following drug treatment (Wilson et al., 1989), which may underlie 

some of the mood disturbances that accompany drug abuse. However, as for the specific role 

of serotonin in concurrent alcohol and nicotine dependence, the evidence is largely 

circumstantial. For example, at least one report has speculated that serotonin may mediate 

the ability of nicotine to enhance dopamine VTA activity and alcohol reward (Soderpalm et 

al., 2000). Circumstantial evidence also indicates that serotonin systems are involved in 

comorbid depression and polydrug abuse. SSRIs can ameliorate the comorbid occurrence of 
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depression with addiction to various drugs of abuse, including alcohol and nicotine (Torrens 

et al., 2005). Further, variants of the repeat length polymorphisms of the serotonin 

transporter gene are associated with both depression and polydrug abuse (Homberg & 

Lesch, 2011; Murphy et al., 2003). Thus, although more direct evidence is needed, it appears 

that affective disorders involving serotonin dysfunction may be a common pathway for 

multiple addictive disorders, and thus treating the underlying depression may reduce alcohol 

and nicotine polydrug abuse.

Endocannabinoid—One area particularly ripe for discovery is in the endocannabinoid 

system. The endocannabinoid signaling system, though originally identified as the 

endogenous site of action for Δ9-tetrahydrocannabinol (THC) from Cannabis sativa 

(Matsuda et al., 1990), is now known for its roles in modifying synaptic efficacy (Freund & 

Hajos, 2003). The endocannabinoid signaling system consists of two main types of G-

protein coupled receptors, the cannabinoid 1 (CB1) and 2 (CB2) receptors and their 

endogenous ligands, the endocannabinoids, such as anandamide and 2-arachidonoylglycerol 

which remain the best characterized (Devane et al., 1992; Herkenham et al., 1990; Sugiura 

et al., 1995); see also (Hillard et al., 2012; Piomelli, 2003) for review). The breadth of the 

roles the endocannabinoid system plays in brain and behavior is highlighted by the fact that 

the CB1 receptor is considered the most abundant G-protein coupled receptor and accounts 

for the majority of cannabinoid action in brain (Herkenham et al., 1990). CB1 receptors are 

expressed at high levels in many of the brain regions implicated in addiction such as basal 

ganglia, cingulate cortex, frontal cortices and hippocampus, while moderate levels are found 

in many other addiction-relevant regions such as amygdala, basal forebrain and NAc 

(Mackie, 2005). Indeed, others have noticed the remarkable overlap in the expression of 

nAChRs and CB1 receptors in the mesolimbic dopamine system, amygdala, and 

hippocampus (Gamaleddin et al., 2015), which may underlie the interaction between 

endocannabinoid and cholinergic systems, especially in nicotine abuse/dependence 

(Narushima et al., 2007). Similarly for alcoholism, many groups have explored the 

relationship between alcohol exposure, alcohol addiction and the endocannabinoid system 

(e.g. (Hansson et al., 2007; Hungund & Basavarajappa, 2004; Naassila et al., 2004); see also 

(Pava & Woodward, 2012). It seems that many studies have implicated the endocannabinoid 

system for their on demand presynaptic action in modulating dopamine release in both drug 

and natural rewards (Cheer et al., 2007). And, as has been reviewed for alcohol (Pava & 

Woodward, 2012) or nicotine (Gamaleddin et al., 2015) elsewhere, low CB1 levels are 

associated with a greater likelihood of developing an AUD (e.g. (Ortiz et al., 2004) while 

CB1 antagonism or deletion has been effective in reducing both alcohol and nicotine self-

administration and other addiction relevant behaviors (e.g. (Castane et al., 2002; Cippitelli et 

al., 2005; Cohen et al., 2002; Freedland et al., 2001; Hungund & Basavarajappa, 2004; 

Hungund et al., 2003; Rodriguez de Fonseca et al., 1999; Simonnet et al., 2013); see also 

(Gamaleddin et al., 2015; Pava & Woodward, 2012) for more detailed review). Although 

there appear to be some similarities in how alcohol or nicotine alone affect the 

endocannabinoid system (e.g. Gonzalez et al., 2002), there are only a handful of studies that 

have investigated the combination of alcohol and nicotine on the endocannabinoid system 

and these have focused solely on manipulating CB1 receptors. For example, rimonabant, the 

CB1 receptor antagonist pulled from clinical trials for its psychiatric adverse drug reactions, 
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dose-dependently reversed nicotine-induced relapse to alcohol (Lopez-Moreno et al., 2007) 

as well as alcohol-induced nicotine conditioned place preference reinstatement (Biala & 

Budzynska, 2010). Thus, the role of the endocannabinoid system in drug abuse coupled with 

the common effects alcohol and nicotine have on the structure and function of the 

endocannabinoid system support that this system is ripe for discovery.

Need: Neurobehavioral methods for assessing potential medications

Animal models of voluntary drug taking behavior can provide good translational models for 

drug addiction behaviors in humans. However, it is important to identify which paradigms 

create successful animal models of addiction in order to efficiently and effectively test new 

treatments for addiction. Ideal behavioral paradigms for studying addiction treatment in 

animals are those that accurately predict the effectiveness of a clinical candidate in human 

trials. Previous research has primarily focused on animal models of either voluntary alcohol 

consumption or nicotine self-administration separately, with relatively few studies 

examining voluntary co-administration of alcohol and nicotine in the same animal (Funk et 

al., 2015; Hauser et al., 2012; Le et al., 2014; Marshall et al., 2003; see also McBride et al., 

2014 for review). Finding a suitable model for alcohol drinking and nicotine self-

administration is imperative in identifying and testing new compounds for this common 

polysubstance dependence.

Although there are many aspects of comorbid alcohol and nicotine dependence that merit 

examination during preclinical evaluation, including craving and relapse, the initial focus 

should be on establishing a reliable and high-throughput animal model that is based on 

voluntary alcohol and nicotine intake. However, rodents typically do not readily consume 

alcohol in quantities that are representative of binge drinking in humans. For this reason, it is 

common to use selective breeding techniques to increase the frequency and amount of 

alcohol consumed. Several selectively bred lines of mice have been generated for alcohol 

drinking (Crabbe et al., 2009; Matson & Grahame, 2013). However, since it is difficult to 

perform long-term studies on intravenous nicotine self-administration in mice, rats offer a 

distinct advantage. Among the various selective rat lines available, the alcohol-preferring (P) 

rat developed and maintained at Indiana University has been among the most widely used 

(Bell et al., 2006). P rats voluntarily consume not only intoxicating amounts of alcohol, but 

also avidly self-administer intravenous nicotine (Le et al., 2006). Thus, P rats may be 

especially advantageous for drug discovery for concurrent alcohol and nicotine use.

In outbred rats, various procedures have been designed to increase voluntary oral alcohol 

consumption, and include sucrose fading (Tolliver et al., 1988; Maldonado et al., 2008), 

food and water deprivation (Macenski & Meisch, 1992), and limited access to alcohol 

(Sinclair et al., 1992). Recently, sucrose and saccharin have been shown to be addictive in 

and of themselves (Morgan & Sizemore, 2011), acting as a more potent reinforcer than 

cocaine (Augier et al., 2012), while also potentially altering blood alcohol concentrations 

(Matthews et al., 2001). Therefore, the use of sweetened alcohol solutions adds a potential 

confounding variable in models of addiction. More recently, paradigms of intermittent 

access to alcohol have been shown to successfully induce high voluntary oral alcohol 

consumption (Simms et al., 2008; Hwa et al., 2011).
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In terms of drug discovery to treat combined alcohol and nicotine dependence, preclinical 

investigational studies should include procedures that model concomitant use of both 

alcohol and nicotine. For in vivo model systems, viable procedures might include 

conditioned place preference, self-administration, and reward via intracranial brain 

stimulation. Among these, measuring medication-induced decreases in concomitant alcohol 

and nicotine intake would be modeled most closely using self-administration, with alcohol 

available orally and nicotine administered intravenously. Despite the importance and 

prevalence of comorbid alcohol and nicotine use, however, there is surprisingly little 

literature available on combined alcohol plus nicotine administration in animal models. In 

one relevant study in P rats, the nicotinic receptor desensitizer sazetidine-A was found to 

decrease alcohol and nicotine intake independently (Rezvani et al., 2010). While this 

research provides a potential therapeutic compound that is efficacious in reducing the intake 

of both drugs independently, a model needs to be developed that includes simultaneous 

availability of both alcohol and nicotine that typifies human smokers who drink heavily.

Little is known about the concurrent administration of alcohol and nicotine in animal 

models. In one study (Hauser et al., 2102), P rats were shown to readily self-administer 

alcohol plus nicotine solutions to attain pharmacologically relevant levels of both drugs. 

Although subjects were given access to the combination of alcohol and nicotine in solution, 

subjects were never given the choice between concurrently available alcohol and nicotine. 

Nonetheless, these findings, in combination with findings from animal addiction models for 

alcohol and nicotine individually, provide the foundation for exploring choice procedures 

with concurrent access to alcohol and nicotine to construct a useful animal model of alcohol 

and nicotine polysubstance addiction, which could be used to evaluate novel compounds as 

treatments.

One way to evaluate potential candidates as treatments for combined alcohol and nicotine 

polysubstance use is to use a concurrent schedule of reinforcement in animal models. With a 

concurrent schedule, alcohol and nicotine are available simultaneously, each presented 

under a simple schedule (e.g., fixed ratio); animals are able to switch back-and-forth freely 

between alcohol and nicotine. Concurrent schedules have been used frequently to study 

alcohol intake provided by two or more bottles that vary in alcohol concentration (Rodd-

Henricks et al., 2001; Rodd et al., 2009). In addition, concurrent schedules have been used 

with access to either alcohol or food (Ginsburg & Lamb, 2006) and with access to either 

nicotine or food (Mello et al., 2013). In more recent studies, male Wistar rats were trained to 

self-administer alcohol alone, nicotine alone, then subsequently were given concurrent 

access to alcohol and nicotine (Funk et al., 2015; Le et al., 2014). Results from these studies 

indicated that while varenicline was found to decrease nicotine self-administration, alcohol 

self-administration was not altered. These results contrast with another study using outbred 

male Sprague-Dawley rats (Bito-Onon et al., 2011), which showed that nicotine 

pretreatment increased operant self-administration of oral alcohol, and this nicotine-induced 

enhancement of alcohol intake was decreased by varenicline. While this study did not use 

concurrent self-administration of both alcohol and nicotine, it does suggest that combined 

alcohol plus nicotine treatment may be sensitive to varenicline. These results are consistent 
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with human clinical trials discussed above where varenicline in human tobacco smokers 

reduced alcohol consumption (Mitchell et al., 2012).

As an alternative to concurrent schedules, a multiple schedule can be used in which animals 

earn either alcohol or nicotine in two alternating time components. In this schedule, only one 

reinforcer is available at a time and the different components are signaled by the 

presentation of a signal (e.g., light, tone). Multiple schedules have been used to assess the 

reinforcing effect of a single drug, such as cocaine, amphetamine or alcohol, in one 

component and food in the alternate component (Cohen, 1991; Weissenborn et al., 1995; 

Czachowski et al., 1999). A major advantage of multiple schedules in medication 

development is that the effect of a lead candidate can be ascertained relative to nonspecific 

actions on responding. For example, the SSRI fluvoxamine decreases alcohol intake at doses 

that do not reduce food intake (Ginsburg et al., 2005). Similarly, the nicotinic antagonist 

mecamylamine decreases nicotine self-administration at doses that do not decrease food-

maintained responding (Stairs et al., 2010).

At least one study has examined alcohol and nicotine self-administration using a multiple 

schedule (Le et al., 2014). Results showed that nicotine increased alcohol consumption and, 

conversely, alcohol consumption decreased nicotine self-administration. Interestingly, the 

ability of naltrexone to decrease alcohol consumption was enhanced by nicotine self-

administration using alternating access components, which indicates that an interactive 

effect of alcohol and nicotine according to this particular test with a pharmacotherapy. 

While these results are encouraging, selectively bred alcohol-preferring rats were not used in 

this latter study, and thus the amounts of alcohol consumed were relatively low.

Another procedure for examining the reinforcing effects of drugs in animals is the choice 

procedure. Typically, this type of procedure involves the choice between self-administration 

of a drug or selecting a non-drug reinforcing stimulus, such as food or water (Griffiths et al., 

1981; Lenoir et al., 2013; Thomsen et al., 2014). After being trained initially to earn each 

reinforcer type separately, animals are given a choice to work for one of the two reinforcers. 

While there are many variations in the choice procedure, most procedures require an initial 

period of sampling both reinforcers, followed by choice trials. This procedure is often used 

to study differences in the reinforcing effects between two different drugs and two doses of 

the same drug (Hutto & Crowder, 1997; Caprioli et al., 2009). For example, a choice 

procedure determined that the relative reinforcing effect of cocaine was greater than the 

relative reinforcing effect of nicotine (Manzardo et al., 2002). The choice procedure also has 

been used to assess drug interaction effects in which animals learn to self-administer two 

drugs in order to produce a synergistic enhancement in reinforcement, e.g., the “speed-ball” 

effect when cocaine and heroin use are combined (Ward et al., 2005; Caprioli et al., 2009). 

Thus, choice procedures may find important utility for evaluating the effect of novel 

medications on the relative reinforcing effects of alcohol and nicotine.

Conclusions

Although much has been gained in our basic understanding of the neurobiology of addiction, 

major gaps exist in our understanding of polysubstance abuse, particularly the interaction of 
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alcohol and nicotine. As is obvious from the strikingly high rate of comorbid abuse – as high 

as 92% in people with AUDs (Miller and Gold, 1998) – the comorbid condition is the most 

prevalent condition. However, the main pharmacotherapeutic strategy thus far has been to 

develop medications that are efficacious in reducing either alcohol or nicotine use as 

separate entities. With alcohol dependence, the most common pharmacological treatments 

are naltrexone, acamprosate, and disulfiram; while in nicotine dependence, varenicline, 

bupropion, and nicotine replacement therapy are the most common pharmacological 

treatments. Even with these limited pharmacological options for the cessation of the 

individual drugs alone, none have been widely successful. While there is some promise in 

targeting the primary common site of action of alcohol and nicotine, the nAChRs, via the 

α4β2 nAChR partial agonist, varenicline, this may only be efficacious for a subpopulation of 

polysubstance abusers. Because people use and abuse drugs for a myriad of reasons, a 

similar variety of treatment approaches is necessary.

Recent funding initiatives such as the Collaborative Research on Addiction at NIH (CRAN) 

supplements have resulted in significant steps forward in our understanding of how these 

two drugs interact in the brain. However, as has been reviewed above, major research needs 

still are apparent and in areas that go beyond the obvious need for a better understanding of 

the pharmacological interactions of alcohol and nicotine and the discovery of novel targets 

and pharmacophores for new therapeutic approaches. There are critical needs for a better 

understanding of the various subpopulations within this comorbid condition and that 

knowledge must be integrated with the generation of better, valid models of polysubstance 

abuse. As Koob (2009) reviewed, the novel pharmacological targets discovered in these new 

models forms a heuristic framework for the successful development of novel medications to 

treat addiction. Thus, by better understanding the human disease state, which clearly 

involves more polysubstance abuse than we care to admit or have taken the time to 

investigate because of the complexities involved, drug discovery can be driven forward.
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